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Abstract During the last decades, biology has decomposed cel-
lular systems into genetic, functional and molecular networks. It
has become evident that these networks consist of components
with specific functions (e.g., proteins and genes). This has gener-
ated a considerable amount of knowledge and hypotheses con-
cerning cellular organization. The idea discussed here is to test
the extent of this knowledge by reconstructing, or reverse engi-
neering, new synthetic biological systems from known compo-
nents. We will discuss how integration of computational
methods with proteomics and engineering concepts might lead
us to a deeper and more abstract understanding of signal trans-
duction systems. Designing and successfully introducing syn-
thetic proteins into cellular pathways would provide us with
a powerful research tool with many applications, such as devel-
opment of biosensors, protein drugs and rewiring of biological
pathways.
� 2005 Federation of European Biochemical Societies. Published
by Elsevier B.V. All rights reserved.
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1. Biomolecular interactions and systems biology

Analysing the individual molecular components of the cell,

and their immediate interactions, is critical for understanding

cellular organization. However, a central tenet of systems biol-

ogy holds that defining the dynamic behaviour and complex

properties of cells requires an exploration of larger biological

networks. Here, we will explore how the biochemical mecha-

nisms that underlie physiological regulatory pathways, partic-

ularly protein–protein interactions, may be developed into a

meaningful system biological analysis. We suggest that by cre-

ating artificial biological pathways from known components,

we can test our ability to predict biological behaviour, and en-

hance our understanding of complexity. Such manipulations

are also important to learn how disease-causing gene products,

such as oncoproteins or pathogenic proteins of microorgan-

isms, affect cellular function. These latter polypeptides com-

monly re-wire the signaling pathways of the host cell, leading

to multifaceted changes in cellular phenotypes. For example,

a single aberrant oncogene product, such as the v-Src tyrosine
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kinase, can elicit alterations in gene expression, cytoskeletal

architecture, metabolism, proliferation and migration [1].

Previously, artificial transcriptional networks have been con-

structed in vivo and in vitro using rational approaches to gene

circuit design, thereby creating feed-back [2], stability [3], tog-

gle switch [4] and cell–cell communication devices [5]. Similar

methods might be applicable to signaling proteins, since signal-

ing pathways are naturally subject to very complex regulation

[6,7].
2. Modular nature of protein–protein interactions

The majority of proteins encoded by the human genome

have a modular design, in the sense that they contain multiple

folded domains, many of which mediate specific protein–

protein interactions. Interaction domains are typically struc-

tured such that their N- and C-termini are juxtaposed in space,

and as a consequence they can potentially be inserted into a

loop on an existing protein, while leaving their ligand-binding

surface exposed. This modular design may have facilitated the

evolution of new biological functions, through the juxtaposi-

tion of interaction or catalytic domains in novel combinations.

As an example, protein-tyrosine kinases commonly exert their

effects by phosphorylating sites that are subsequently recog-

nized by the SH2 domains of downstream targets. With the

emergence of phosphotyrosine (pTyr) signals to promote com-

munication between cells and multicellularity, incorporation of

an SH2 domain into an existing protein could have provided

an immediate physical connection with an activated tyrosine

kinase [8,9]. The signature of such domain insertions can be

seen in signaling proteins such as phospholipase Cc, where

two adjacent SH2 domains and a SH3 domain (which recog-

nizes proline-rich sequences), are inserted as a unit into a PH

domain (which binds phosphoinositides) [10].

A further important feature of interaction domains preva-

lent in metazoan species is their remarkable flexibility. Any

one domain may be present in hundreds of copies in the hu-

man proteome, and different members of a particular domain

family can show quite distinct binding properties. SH3 do-

mains, for example, typically bind proline-rich motifs that

adopt a polyproline type II helix, even prior to SH3 recogni-

tion; some SH3 domains, in contrast engage basic sequences

that undergo an order–disorder transition upon binding to

form a 310 helix [11]. In a similar fashion, PH domains, which

commonly bind phosphoinositides at the plasma membrane,

have the same structural fold as PTB domains (which recog-

nize phosphorylated Asn-Pro-X-Tyr motifs), EVH1 domains
blished by Elsevier B.V. All rights reserved.
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(that associate with proline-rich sequences), a subunit of

FERM domains (involved in integrin and cytoskeletal signal-

ing), GRAM domains (components of Myotubularin phos-

phoinositide phosphatases), the N-terminal region of the p62

subunit of the TFIIH transcription factor (which binds a 3 0

endonuclease), and a subunit of BEACH domains [12–14]. In

this case, the PH fold appears to be a versatile scaffold that

has evolved distinct ligand-binding surfaces and biological

functions.

As noted above, modular interaction domains frequently

bind short peptide motifs in their targets, and this recognition

can depend on post-translational modification of the ligand,

such as phosphorylation on tyrosine or serine/threonine, acet-

ylation or methylation of lysine residues, or prolyl hydroxyl-

ation [15]. This allows protein interactions to form and

dissolve in response to external signals, such as growth factor

stimulation, or internal cues such as DNA damage [16,17]. We

suggest that our understanding of the modular architecture

and dynamic binding properties of regulatory proteins and

their constituent interaction domains has now advanced to a

stage where these domains can be used as building blocks to

develop new synthetic proteins and modular networks.
1 Note: In structural bioinformatics the term ‘‘module’’ is used
differently from genetic networks. A module here is a basic structural,
functional and evolutionary unit of a polypeptide. Often domains
correspond to folding units. Linear modules are peptide stretches
whereas domains are larger and contain more structural information.
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3. Identification and prediction of interaction motifs

A recent analysis has suggested that around 10 000 types of

structurally different protein interactions can be anticipated

[18]. Many of these interactions will likely fall into one of

two major classes, involving either domain–domain interac-

tions with relatively large surface interfaces between globular

folded domains, or interactions between globular domains

and short peptide motifs. Understanding the molecular prop-

erties of these different types of interactions can provide tre-

mendous descriptive and predictive power.

Interactions in which a folded domain binds a short peptide

sequence can be of high affinity (low nM), and consequently

stable and longlived, exemplified by interactions between the

regulatory subunits of cAMP-dependent protein kinase

(PKA) and their binding motifs on Akinase anchoring proteins

[19]. This particular protein–protein interaction functions to

hold PKA in an inactive state close to specific targets, in read-

iness for a local increase in the concentration of cAMP [20].

However, most domain–peptide interactions are much weaker

(in the micromolar range) [21], and frequently dependent on

post-translational modification of the peptide ligand, or con-

formational change to expose the binding surface of the folded

interaction domain. Consequently, such interactions tend to be

transient, and are well suited to the dynamic regulation of sig-

nalling pathways and regulatory networks.

Domain–peptide interactions have been intensively investi-

gated in the context of individual signalling pathways and

comprehensively analysed for their binding properties using

degenerate peptide libraries [22]. Such complexes also lend

themselves to future chip-based approaches. They have also

been explored in high throughput (HTP) experiments, for

example, by combined yeast 2-hybrid and phage display anal-

ysis of interactions mediated by yeast SH3 domains [23,24].

However, their transient and conditional nature, which is the

very thing that makes them biologically important, can also

render them difficult to study. They tend to be under-repre-

sented in the large-scale affinity purification assays reported
so far [25,26], and may be missed by yeast two-hybrid meth-

ods, for example if they require a modification such as tyrosine

phosphorylation which is unlikely to occur in yeast. Thus,

most interaction networks derived from HTP data are domi-

nated by the more stable domain–domain interactions, and

may therefore lack the biochemical and biological complexity

imparted by these more evanescent interactions, which likely

confer dynamic responsiveness to cellular networks. A recent

advance in the exploration of mammalian signalling networks

makes use of protein pairs tagged, respectively, with a Flag

epitope and luciferase, and expressed in human cells. This tech-

nique (termed LUMIER, [62]) has been automated, and thus

many thousands of potential interactions can be interrogated

in a physiological setting. Equally important, the effect on

intracellular interaction networks of stimulating cells with

growth factors can be rapidly tested.

Transient networks may also be under-studied because they

are difficult to handle computationally [27–30], since short pep-

tide sequences are statistically insignificant and are often lo-

cated in disordered or unstructured regions of the host

protein [31]. A prime example of this is the C-terminal tail of

the p53 oncoprotein, which is disordered in solution, but which

also harbours tens of post-translational modification sites and

peptide motifs. Since disordered segments in globular proteins

often cause difficulties during expression, purification and crys-

tallization of a protein, they are frequently experimentally re-

moved, and are therefore lost for subsequent analysis [32,33].

In higher Eukaryotes 60–80% of the proteome consists of

multidomain proteins [34,35]; these can be viewed as being

built of modular 1 globular domains, connected as beads on

a string by non-globular, often unstructured or disordered,

linkers. Regions biased towards a subset of amino acid resi-

dues (termed low-complexity) often contains hyper-clusters

of linear motifs, the arch example being proline rich sequences

which are bound by a large group of modular protein domains

(e.g., SH3, WW, EVH1, GYF). These non-globular or disor-

dered segments therefore contain a large family of modular lin-

ear motifs, potentially involved in protein interactions.

The comprehensive and sensitive identification of function-

ally relevant interaction motifs has been difficult, primarily be-

cause linear motifs are typically very short (4–8 residues). An

improvement in predicting physiological sites has employed

algorithms that predict the structural context for linear motifs,

and thus their availability to bind an interaction domain.

These new tools for improved prediction of non-globular

and disordered regions in proteins [31,32,36,37] will be helpful

for predicting linear interaction motifs, and also aid in the de-

sign of protein expression vectors for biophysical studies [32].

These computational tools can also be applied to the explora-

tion of intrinsically disordered proteins such as Tau, Prions,

Bcl-2 and p53 [33]. Not only are these proteins hot-spots for

linear motifs, but they are also important for the study of pro-

tein folding and diseases, relating to misfolding and aggrega-

tion of proteins (such as Alzheimers�, Parkinsons� and BSE)

[38].
 C
om

m
ons L

icense



1810 T. Pawson, R. Linding / FEBS Letters 579 (2005) 1808–1814

 18733468, 2005, 8, D
ow

nloaded from
 https://febs.onlinelibrary.w

iley.com
/doi/10.1016/j.febslet.2005.02.013 b
4. Regulated protein–protein interactions

Transient or conditional interactions can potentially lead to

the oriented flow of information in signal transduction path-

ways, and may connect distinct sub-networks in response to

specific cues. As noted above, modular protein interactions

can be directly induced by modification of the linear peptide

ligand. In addition, signalling proteins frequently adopt an

autoinhibited conformation, in which interaction domains en-

gage internal peptide ligands. In the prototypic example of the

inactive Src tyrosine kinase, both the SH2 and SH3 domains

are bound through intramolecular interactions that suppress

their ability to interact with exogenous proteins and also inhi-

bit kinase activity [39]. Activation of the Src tyrosine kinase

liberates the SH2 and SH3 domains to recruit targets, and

potentially re-wire pTyr-dependent networks [8,9].
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5. Protein interactions can be used to build larger complexes;

switch-like functions

The concepts discussed above suggest that protein interac-

tion domains, while rather simple in isolation, can be used in

a combinatorial fashion to generate more complex behaviours,

such as co-operativity and switch-like functions. In T cells,

stimulation of the antigen receptor induces the formation of a

pTyr-dependent network, involving two docking proteins,

LAT and SLP-76 [40]. Tyrosine phosphorylation of mem-

brane-associated LAT creates binding sites for the SH2 do-

mains of the adaptor protein Gads, and phospholipase Cc,
and these proteins can also interact through their SH3 domains

with SLP-76. Interestingly, the C-terminal SH3 domain of

Gads induces an order-disorder transition in SLP-76, and this

may have a cooperative effect on PLC-c binding and activity,

and on the specificity with which Gads and PLC-c interact with
phoshphorylated sites on LAT [11]. Phosphorylation-depen-

dent protein interactions may also show digital switch-like

behaviour, based on a requirement for multiple phosphoryla-

tion sites to enforce binding to an interaction domain [41], refer

to Fig. 1. In the case of the yeast Cdk inhibitor Sic1, multi-site

phosphorylation during the G1 phase of the cell cycle appears

important for Sic1 binding to the WD40 repeat domain of

Cdc4, a component of an SCF E3 protein-ubiquitin ligase com-

plex [42]. This interaction is required for Sic1 polyubiqutination
Fig. 1. (A) A single phosphorylation site as seen in many activation loops of
cellular switch (CDK/Sic1 complex) created by a multistep phosphorylatio
proximity to the phosphorylation site can function as a single residue switch
and proteosome-mediated degradation, which lifts the inhibi-

tion of Cdk activity necessary for the cell to enter S-phase

[42]. This phosphorlation-dependent interaction network there-

fore provides directionality to the cell cycle. Such ultrasensitive

behaviour is not limited to protein–protein interactions. Inter-

estingly, the polybasic region of the N-Wasp protein binds in a

cooperative fashion to the phospholipid phosphatidylinositol

(PI)-4,5-bisphosphate, which may allow for a switch-like bind-

ing of N-Wasp to membranes in response to a small increase in

PIP2 concentrations [43].

We have previously tested the notion that phosphorylation-

dependent interactions may be used to couple distinct sub-

networks, by employing a chimeric adaptor protein in which

a pTyr recognition domain (SH2 or PTB) is fused to a death

effector domain (DED) from the adaptor protein FADD

[41]. This chimeric polypeptide binds to activated receptor

tyrosine kinases, conditional upon their autophosphorylation,

and to Caspase-8, an initiator of the apoptotic pathway. In

cells expressing such an adaptor, mitogenic signals can recruit

and activate the caspase pathway, thereby inducing cell death.

In effect, this artificial adaptor creates a phosphorylation-

dependent link between two sub-networks that are normally

insulated from one another, leading to a novel cellular

behaviour.

An interesting challenge would be to design artificial multi-

domain proteins which can be activated to re-wire cellular net-

works by conformational reorganization [44]. Creating such

gating function in chimeric proteins would be useful both to

provide exquisite control over their activation, and also to ex-

plore the properties and evolution of physiological circuits.

The first step towards this goal was recently made by Lim

and colleagues [45], who created chimeric proteins focused

on a region (VCA) from the N-Wasp polypeptide which binds

the Arp2/3 complex and thereby promotes branching actin

polymerization. By flanking the VCA region with interaction

domains (i.e., SH3, PDZ) and their peptide ligands, they cre-

ated a working, dual input, synthetic protein switch, refer to

Fig. 2 [45]. The regulation of this switch is based on autoinhib-

itory intramolecular interactions that are alleviated by compet-

ing binding events, in the form of exogenous peptides. These

data have all been obtained in vitro, and it will be of consider-

able interest to create an artificial switch of this sort that func-

tions inside cells. One precedent is provided by fusion proteins

containing the ligand-binding domain of the estrogen-receptor
kinases. This gives an unswitched response curve. (B) An ultra-sensitive
n process. (C) There is some evidence [59] that a proline residue in
.
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Fig. 2. A dual input switch that behaves as an ‘‘AND’’ device was
created using the system shown. The switch function is based on
autoinhibitory interactions (PDZ-domain/PDZ-peptide and SH3-
peptite) that are alleviated by competing binding events (PDZ-
domain/LIG-PDZ and SH3-domain/LIG-SH3).
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(ER). In the absence of a steroid ligand, the ER associates with

heat shock proteins that can block the activity of a covalently

linked domain. Added estradiol or tamoxifen binds the ER,

causes release of heat shock proteins, and activation of the

polypeptide fused to the ER [46].
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6. Emergence in protein function

We have previously discussed the possibility that the juxta-

position of interaction domains and motifs in novel combina-

tions may contribute to the evolution of new biological

functions. The addition or removal of interaction modules

can also be achieved in real time through alternative splicing,

which together with post-translational modifications can

greatly increase the numbers of protein isoforms in any cell

with different binding properties, and potentially with different

effects on regulatory networks. It remains unclear how the

addition/elimination of domains or motifs might modify the

overall complexity and function of a biological system, or

how this might give rise to emergence in a cellular system.

Informatics studies have shown that a general functional clas-

sification of a protein sequence can be performed by looking at

its set of ‘‘features’’, which includes post-translational modifi-

cations and other derived parameters [47]. However, complex-

ity appears to arise partly as a result of emergent properties of

a system, but it is not clear whether our current inventory of

modules is sufficiently well defined to describe this in quantita-

tive terms. In this context, building new synthetic systems with

chimeric proteins, using the currently known set of signalling

components and interaction modules, will allow us to monitor

their ability to perturb complexity. Standard network parame-

ters, for instance connectivity and average cluster size, can be

measured experimentally.
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7. Specificity and cross-talk in signalling pathways

Transient interactions between proteins play an important

role in preventing aberrant interactions between pathways in

normal cells, and in stimulating cross-talk when this is physio-

logically desirable. Since these interactions frequently involve

the recognition of peptide motifs by modular interaction do-

mains, it is critical to understand how short linear peptides
can confer specificity towards their cognate domain partners,

especially in cases where their binding affinity is modest. In

any one cell, many different members of a particular domain

family are likely expressed (yeast for example have 28 SH3 do-

mains), which might then compete for related ligands. Several

mechanisms likely act in combination to build specificity. One

is expression and subcellular localization – only when two pro-

teins are co-expressed and co-localized will an interaction take

place. This allows for combinatorial effects, since one domain

may localize a protein, for example to a specific membrane site,

thereby directing a second domain to specifically recognize a

binding partner. Second, selectivity is driven by both permis-

sive and inhibitory forces, and a steric restriction on binding

non-physiological binding partners may therefore be just as

important as an ability to engage the appropriate target. Thus,

a linear proline-rich motif in the yeast Pbs2 protein, a MAP ki-

nase scaffold, engages the SH3 domain of the Sho1 osmosen-

sor, but does not undergo aberrant crosstalk with other yeast

SH3 domains. However, the Pbs2 motif does interact promis-

cuously with SH3 domains from non-yeast species [48]. This

has led to the suggestion that an interaction motif need only

discriminate between a set of domains that it meets in the con-

text of the cell in which it is expressed, or the subcellular com-

partment in which it is localized [48]. Although some

interaction domains show a very specific interaction with a sin-

gle target, this usually applies only to proteins with highly spe-

cialized functions in one or a few cell types. In a biological

setting, most interaction domains likely have numerous part-

ners, which may differ according to the cell type, or within a

single cell depending on the environmental conditions. Thus,

it may be dangerous to assign an interaction domain to a un-

ique function in a cellular network, when its connectivity is

likely undergoing constant flux.
8. Topologies and architectures of modular interaction networks

Deriving the topology and dynamics of protein–protein

interaction networks in cellular signaling systems under differ-

ent conditions, such as in the DNA damage response or fol-

lowing the expression of a disease gene product, will be

important for understanding robustness, complexity and

checkpoint mechanisms of biological systems. Orthogonal

sets of data (i.e., protein interactions, protein localization,

gene expression arrays), from different cellular conditions

are proving useful for network analysis [49,50]. To provide

deeper functional insight into protein interaction networks,

the relevant modules (domains and linear motifs) within a

network can be used to decipher its observed interactions

(i.e., domain–domain or motif–domain), and to predict their

stability. Deriving network dynamics by analysis of cell cycle

dependent interaction data will be of significant interest, for

example.

Recent efforts have been made to derive new molecular de-

tails from proteome-wide protein interaction data. Typically,

these data are provided in the form ‘‘protein A interacts with

protein B’’. By applying recently developed algorithms, it is

possible to predict how proteins A and B interact. This involves

looking for protein features that can mediate an interaction,

for example through binding of a linear motif to a globular do-

main, and can lead to the identification of previously unknown

interaction sequences [51]. This is potentially important in
 C
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9. Dynamics of complexes and networks

We have argued that transient interactions, such as those

based on protein phosphorylation or switch-like conforma-

tional changes, may influence the topology/architecture and

dynamics of cellular signaling networks.

Predictive and experimental analysis of modular interactions

can readily be extended to illuminate the dynamics of cellular

signaling networks, by exploring time-dependent networks

such as those that control the cell cycle. Both normal cell cycle

progression and DNA damage response are regulated in large

part by the action of protein kinases, including polypeptides

such as ATM, ATR, Chk1 and Chk2. The interconnections

of these proteins and their substrates involves a series of inter-

action modules, such as FHA and BRCT domains and their

phosphorylated peptide ligands, but the shape of these path-

ways and networks is only just emerging [16,52]. An important

goal for such analysis will be to see how the networks change

throughout the cell cycle by obtaining real-time catalytic mea-

surements on these kinases in response to DNA damage, or

during normal cell cycle progression, in order to add a tempo-

ral component to the signaling network model [53].

Combining biocomputational predictions with large experi-

mental phosphorylation and interaction datasets [54,55] will

allow for the development of a complex temporal model for

the cell cycle that cannot be obtained from either approach

alone. Recently, a computational study showed for the first

time how periodically and constitutively expressed subunits

can be found in the context of a temporal cell cycle, thereby

revealing new networks [56].
Fig. 3. Modular reverse engineering. Starting from the parts inventories (SM
modular proteins. Two strategies should be followed, one based on rational
The second strategy is a directed evolution approach with hight-throughput
assays can be carried out in vivo but we also envisage in vitro �network ass
interaction networks are mediated and perturbed by the introduction of mo
10. Synthetic biology – reverse engineering networks

The biological potential of modularity in signaling proteins

might be explored by designing new proteins in a modular

manner (i.e., not at an atomic level). In other words, modules

could be joined in an in silico predicted sequence background.

This is in contrast with more traditional protein engineering

approaches such as ‘‘rational design’’, ‘‘de novo’’ and ‘‘molec-

ular evolution’’, refer to Fig. 3. Assuming proteins are assem-

bled in a modular fashion, it follows that one can apply

principles from modular systems engineering. Thus, by rede-

signing or reverse engineering of known modular proteins,

new synthetic, modular and functional polypeptides could be

constructed. By attempting this we can fully explore whether

modules have served as building blocks in the evolution of pro-

tein function, something that has been suggested from bioin-

formatics and experimental analysis [57], but remains to be

substantiated for reverse engineered proteins. Such experi-

ments will address the extent to which biological systems actu-

ally conform to this paradigm of modularity. A system with

logical, dynamical and programmable behaviour could be

assembled from well-defined components/parts (e.g., domains

and linear motifs). This approach is different from the classical

molecular biology method of creating chimeric proteins by

changing an existing system. This would also allow biologists

to establish a repertoire of components that could be plugged

together in an open-source version of wetlab hacking [58].

An integrated approach of in silico and in vivo design, cou-

pled with directed evolution, might allow us to determine fun-

damental building blocks of selected interaction networks.

Engineered proteins can be expressed and tested for predicted

functions, refer to Fig. 3, such as activation of specific signal-

ling pathways using phospho-specific antibodies (for example

to MAP kinases and STAT proteins). This could be performed
ART[60]/pfam[61], ELM[28] and Scansite [30]) one can assemble novel
modular (non-automatic) recombination of domains and linear motifs.
random synthesis and screening of synthetic proteins. The functional
ays� to determine how complexity and connectivity in protein–protein
dules.
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at the single cell level using flow cytometry with phospho-

specific antibodies. Another approach would be to look at

markers of DNA synthesis/apoptosis. These synthetic proteins

could function as control units (gates and switches) that allow

for switching and gating in cellular or in vitro systems, thus

allowing us to rewire or probe signaling pathways [41].
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