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Abstract To more effectively target complex diseases like can-
cer, diabetes and schizophrenia, we may need to rethink our
strategies for drug development and the selection of molecular
targets for pharmacological treatments. Here, we discuss the po-
tential use of protein signaling networks as the targets for new
therapeutic intervention. We argue that by targeting the archi-
tecture of aberrant signaling networks associated with cancer
and other diseases new therapeutic strategies can be imple-
mented. Transforming medicine into a network driven endeavour
will require quantitative measurements of cell signaling pro-
cesses; we will describe how this may be performed and combined
with new algorithms to predict the trajectories taken by a cellular
system either in time or through disease states. We term this ap-
proach, network medicine.
� 2008 Federation of European Biochemical Societies. Pub-
lished by Elsevier B.V. All rights reserved.
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1. The need for a novel drug development strategy

Drug discovery and development have resulted in many suc-

cessful therapies over the last century. Current drug develop-

ment efforts almost uniformly focus on a specific step in a

well-described disease pathway and aim to identify highly spe-

cific inhibitors for this particular step. However, these strategies

have generally been less effective for identifying therapeutically

useful approaches for treating complex diseases. This is sup-

ported by recent discouraging trends in the areas of complex

regulatory diseases including cancer and diabetes. Firstly, the

number of submissions for FDA approval declined in the

2000s, and this was coupled with a decline in all phases of drug

development. The average price of bringing a drug to market is

now approximately 860M USD [1], and there is a general trend

towards a rise in expenditure for drug development [2]. Sec-

ondly, only 25% of new drugs over the last decade were consid-

ered innovative, in the sense of a new drug indicated for a

previously unmet medical need [3], although this number is

likely to increase due to an increasing number of first-in class

products [5]. Thirdly, although there was a net rise in small-
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molecule, recombinant protein and monoclonal antibody ther-

apeutics approved in the US from 1980 to 2001 this trend has

not continued from 1996 to 2002 [4], which indicates a more re-

cent slowdown in the success of drug discovery efforts.

There are other important trends, for example, whereas most

current drugs were discovered before their molecular targets

were known, a recent trend towards more rational drug design

has been observed [8]. Increasingly more drugs are developed

in highly specialised biotech companies [6]. Furthermore, it

has been suggested that the increase in drug development price

is not due to an increase in clinical trial time, as the review pro-

cess time has actually declined [7]. It has been argued that the

current approval and funding systems favour non-risky drug

development towards well-studied targets [1]. This trend was

also observed in a recent network analysis that found that

an overabundance of �follow-on� drugs, that is to say, drugs

against already targeted proteins are over-represented in cur-

rent drug discovery efforts [8].

Recently, more attention has been directed towards molecu-

lar drug targets in cellular signalling networks, such as protein

kinases and GPCRs. Therefore tools are needed to �dig deeper�
in protein networks associated with diseases and it will become

increasingly important to address issues such as sensitivity and

quantification to focus more research on these frequently low-

er-abundance proteins.

Thus it seems that there are fewer drugs being developed and

that creating such compounds is increasingly difficult and
expensive. Many papers have been written to discuss the pos-
sible economical and political reasons for this, some of which
are mentioned above; however few papers [17,19,24,25] have

addressed the limitations in the current strategy for selecting
drug targets of complex diseases such as cancer, diabetes and
mental illness.

Here, we will discuss the possibility that the hunt for a single

highly specific compound that targets a single molecular cellu-

lar target in many cases will likely fail for complex diseases.

Instead we propose that the molecular networks associated

with disease and in particular their dynamics as a target for

intervention. Thus, we suggest that protein signaling networks

are powerful drug targets. Here, we will discuss how quantita-

tive and directional protein interaction networks can be mon-

itored with current proteomics methods, and in combination

with recent advances in computational algorithms facilitate

the construction of network models to describe transitions

between disease states. Having gained insight into these

aberrant networks the next step in developing a network
blished by Elsevier B.V. All rights reserved.
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medicine is to target the network itself. We suggest two differ-

ent strategies for this, one involves a synthetic biology ap-

proach that aims at rewiring (by adding new interactions) of

the network using small molecules or novel synthetic modular

proteins, which we previously described [38]. This strategy ex-

ploits the modular nature of signalling proteins to change the

topology and wiring of the network by adding or depleting

interactions. A second path aims at extracting control architec-

tures and hierarchies of kinases to suggest combinations of

inhibitors to change the topology and information flow within

the network. This strategy relies on the fact that network

topology is dynamic and regulated by post-translational mod-

ifications such as phosphorylation. Thus, the information flow

within the network can be targeted by changing the phosphor-

ylation states of key proteins.
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2. Directional and quantitative phosphorylation networks

Any given cell in a physiological environment receives

numerous simultaneous input cues that must be processed

and integrated to determine changes in cellular behaviour such

as migration, proliferation, apoptosis and differentiation.

Reversible protein modifications are one of the underlying

mechanisms that govern such cellular information processing.

In particular, protein phosphorylation has proven to be a pri-

mary driving force behind cellular signal propagation. Through

its ability to control protein–protein interactions, complex for-

mation, enzyme activity and protein degradation and translo-

cation, phosphorylation impacts every aspect of cellular

biology [9]. All these modes of regulation are essential for prop-

er cellular organisation and responses to input cues and we will

refer to the set of these events as a phosphorylation network. Re-

cent technical developments in mass spectrometry (MS) have

permitted the identification and quantitation of thousands of

in vivo protein phosphorylation sites. We recently introduced

computational algorithms, NetworKIN and NetPhorest

[10,11] to further enhance the modelling of such networks based

on experimentally validated phosphorylation sites.

In combination with methods such as single-cell monitoring

by phospho-flow [42,43], kinase-activity assays and conven-

tional immuno-blotting, mass-spectrometry is steadily enhanc-

ing our capability to sample the states and dynamics of cellular

signalling networks: The phospho-flow technology is based on

the detection of a phosphorylation event by a specific antibody

within a single cell. Firstly, cells are labelled by antibodies rec-

ognizing specific phosphorylated proteins (for example p-ERK

or p-PKB) and cell markers (for instance CD20 or CD33). Sec-

ondly, they are sorted and measured by FACS thereby provid-

ing quantitative measurement of single-cell signalling events.

High-throughput kinase assays provide important information

for systems modelling [23,24]. Various forms of kinase assays

have been developed that use either kinase specific immuno-

purification or specific kinase chemosensors [44,45]. The advan-

tage of these activation-based assays is that they provide a di-

rect measurement of enzyme activity, rather than an inferred

indirect activity based on alterations in phosphorylation state.

However, integration of these data are key for their interpre-

tation and utility in modelling of cellular phenotypes. There-

fore, computational tools have been developed to combine

these heterogeneous data sets and construct predictive models.

These approaches have provided insights into the complex cel-
lular biology of signalling systems. We argue that these data-

driven models are important for the understanding of cellular

function under a variety of conditions such as disease, differen-

tiation, migration and apoptosis.

Mass-spectrometry is a powerful approach to the analysis of

protein networks [12–16], which can be effectively used for pro-

tein quantitation, as well as the analysis of post-translational

modifications (PTM) and protein dynamics. Stable isotopes

can be introduced into proteins in cell culture (SILAC), for

quantitative or comparative purposes [14]. These reagents pro-

vide information of the relative amounts of proteins between

the network states sampled, and identify state-specific binding

partners. Another reagent type (iTRAQ, [17,18]) allows 4–8

channel multiplexed experiments in which several (currently 4–

8) different samples can be combined; the relative amounts of

a protein can therefore be simultaneously quantified across mul-

tiple experimental conditions. In particular, iTRAQ allows for

the relative quantitative analysis of tissue samples, which is

important for the analysis of networks in different cancer states

and during tumour progression. Furthermore, it allows the dy-

namic reorganization of protein networks to be monitored over

time. Perhaps the most challenging aspect of proteomics in-

volves the analysis of PTMs [14–16]. PTMs are especially impor-

tant for the dynamical changes to protein network topology,

since interactions are frequently dependent on modifications

such as phosphorylation [17,18].

Thus our ability to monitor cell signalling networks under con-

ditions relevant for disease states and their transitions, such as
gain of metastatic potential within a tumour, is rapidly grow-
ing [19].
3. Cue, signal, response – from networks to cell behaviour

Constructing network models from protein–protein interac-

tion methods like LUMIER [20], yeast 2-hybrid [21] and MS

[12,13] is essential for systems level understanding of the cellu-

lar machinery. However, these networks are even more power-

ful when integrated with cellular outcome and quantitative

phenotypic data [22], which makes it possible to describe the

information processing within the system. A series of papers

from the Lauffenburger, Yaffe and White labs have combined

cue, signal and response measurements to construct models of

cellular decision processes [23–28]. The state of nodes within a

signaling network was interrogated (‘‘signal’’) in a systematic

manner using phospho-flow, kinase assays, antibody-arrays

and mass-spectrometry, and correlated to cellular phenotypes

(‘‘response’’) such as apoptosis, proliferation and migration.

The signals used to perturb the system (‘‘input cues’’) were var-

ied and combined to obtain measurements of cellular re-

sponses to conflicting (‘‘orthogonal’’) signals. The resulting

data were subsequently subjected to data-driven modeling by

applying a combination of partial least square regression

(PLSR) and principal component analysis (PCA), for numeri-

cal modelling and data condensation, respectively. Using this

approach on large phosphorylation data sets have proven a

powerful way of deriving knowledge about critical sites and

establishing predictive models of cellular systems. As an

example, the White and Lauffenburger labs applied PLSR to

phospho-proteomic data and phenotypic measurements

(migration and proliferation) from cells expressing EGFR
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alone or in combination with HER2, in order to produce a

coefficient vector indicating the importance of the identified

phosphorylation sites with respect to either migration or pro-

liferation [26,27]. By constructing a model to recapitulate the

measured data, the authors identified 9 phosphorylation events

that alone could be used to predict a cellular decision (prolif-

eration versus migration) [26,27]. PLSR has also been applied

to generate systems models for cytokine- or sepsis-induced

apoptosis and to predict a common effector hypothesis for sig-

nal integration [24,25]. These models have proven useful in

predicting cellular decision processes; for example the kinase

MK2 was identified by the Yaffe lab to play a pro-survival role

based on its activation profile in the PLSR model [28].

In addition direct sampling of a signaling network can yield

new information. For example, by performing MS quantifica-

tion of a signaling network Huang et al. [16] found that ampli-

fication of c-MET, a receptor tyrosine kinase (RTK), can lead

to resistance to an inhibitor of the EGFR RTK in tumours

expressing ErbB3/EGFRvIII. Further by using phospho-spe-

cific antibody arrays or phospho-proteomics, U87 cells

expressing EGFRvIII and a lung carcinoma cell line resistant

to Gefitinib (Iressa) were shown to exhibit increased c-MET

activation. Combinatorial treatment with both an EGFR

inhibitor and a c-MET inhibitor had synergistic effects on

growth inhibition, survival and anchorage-independent growth

[16,29]. This work shows the power of molecular networks in

deriving new drug strategies.

Technologies other than MS can be used to reveal how ther-

apeutic compounds influence cellular signaling. For instance,

to study how the signalling networks in acute myelogenous

leukemia (AML) cancer cells are correlated with clinical out-

come, the lab of Gary Nolan utilised unsupervised clustering

of phospho-flow data to group samples from patients accord-

ing to their differential network profiles (or signatures). The

authors observed that patient response to chemotherapy was

highly correlated with the initial clustering based on the signal-

ling network state, thus indicating that the behaviour of the

individual network can be used to determine and predict pa-

tient responsiveness and choice of treatment [30].
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4. Network medicine – targeting networks

Above we have discussed how networks and in particular

their dynamical properties can be used to link cellular informa-

tion processing to cellular outcome and phenotype. Therefore,

we propose to exploit the knowledge of networks to investigate

mechanisms for targeting the network itself.

In a network-disease survey Barabasi and co-workers

showed that the so-called essential genes are more likely to

be hub proteins which are components of anchored and widely

expressed multi-protein complexes [31]. Furthermore, their

study showed that most disease genes are more varied in

expression patterns and with no tendency to encode such

hub proteins [31]. Similarly a network analysis identified mark-

ers not as individual genes but as subnetworks of interacting

proteins that could classify breast cancer metastasis [32]. It

was further shown that genes with known breast cancer muta-

tions reside between such subnetworks interconnecting many

differentially expressed genes.

Another issue to consider is that of ‘‘cell specificity’’, Miller-

Jensen et al. [24] showed that common effector processing net-
works mediate cell-specific responses to external cues. The

importance of this work and that of White and colleagues

[17,19,26] is that it is the network utilisation that seems to be

changed in different disease states. Thus, by identifying these

subnetworks that are common across cell types but which

are utilised to different extents, for example through changes

in phosphorylation, one can envisage they can be targeted.

These studies point to the importance of network topology

in finding markers of disease. Other studies focus on the utility

of network information in unravelling new disease genes [46].

Thus, several papers have addressed the idea of using network

information to unravel new oncogenic components, for exam-

ple by integrating various systematic datasets to construct net-

work models that identify new oncogenes in breast cancer

[33,34]. By integrating complementary genomic approaches,

Boehm and colleagues showed that the IKK-epsilon kinase is

a new breast cancer oncogene. The authors presented an ap-

proach that predicted a new mechanism for NF-kB activation

in breast cancer downstream of PI3K kinase. These studies

underline the utility of data integration and integrative dat-

abases like STRING, STICH and Phospho.ELM that incorpo-

rate the majority of large-scale datasets and cover most current

methodologies [35–37].

We envisage two types of approaches to target networks:

firstly, the network could be re-wired with small molecules or

synthetic modular proteins that introduce novel protein inter-

actions or inhibit existing ones [38–40]. Secondly, the informa-

tion flow within the network can be targeted by applying

small-molecules against several nodes (for example kinases)

simultaneously. To develop this strategy, one would analyse

the topology of the measured network and correlate it to phe-

notypic markers (either molecular or macroscopic). This will

result in a better understanding of how the aberrant network

dynamics contribute to disease and will help to define multiple

protein nodes that can be targeted to rewire the network, or in-

duce the specific collapse or topology change of aberrant net-

works. We previously argued how this could be done by

utilising the modular nature of signalling networks, through

the generation of new modular synthetic proteins [38].

Given such a potential network drug (or combination of

drugs) one would want to carry out extensive sensitivity anal-

yses [41] in various cancer cell lines and with orthogonal in-

put cues [23] in order to get as realistic as possible a picture

of the response space for the drug candidate. It is essential to

point out that structural and molecular based drug develop-

ment will continue to play a central role in determining the

best leads for a given node within the network. Thus, trans-

forming medicine into a network driven endeavour goes hand

in hand with a systems level understanding of cellular infor-

mation processing.
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