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1 Abstract 

This Bachelor thesis is about the creation of a model which describes the behavior of 

pike (Esox lucius). Pike are cannibalistic loners which form and defend their own 

territories. The mechanisms that lead to this territory formation are unclear up to now. 

To model this formation process a scent mediated approach is used where fish 

respond to each other by encountering scent marks that have been deposited in the 

past. Pike that meet foreign scent marks return to their own territory with increased 

probability, depending on their body size ratio. Territory sizes are compared to 

measured pike tracking data from a small lake near Berlin, Germany to find optimal 

parameter settings for the model. The resulting model is able to reproduce the 

measured data and may be used to make predictions about pike behavior in view of 

different environmental parameters. 

Die vorliegende Bachelorarbeit beschreibt ein Modell, welches das Verhalten von 

Hechten (Esox lucius) simulieren soll. Hechte sind kannibalische Einzelgänger, die 

eigene Territorien bilden und verteidigen. Weitestgehend unbekannt sind jedoch die 

Mechanismen, die zur Ausbildung dieser Territorien führen. Die Kennzeichnung der 

Territorien im Modell erfolgt über Duftstoffe, welche über einen gewissen Zeitraum 

erhalten bleiben und die örtliche Präsenz eines Fisches anzeigen, welche auch zeitlich 

versetzt noch registriert werden kann. Hechte, die fremde Duftstoffspuren entdecken, 

ziehen sich in ihr eigenes Territorium zurück, wobei die Stärke dieser Reaktion von der 

Größe beider beteiligter Fische abhängig ist. Die Größe der Territorien wurde mit 

gemessenen Daten aus einem kleinen See in der Nähe Berlins verglichen, in dem 

Hechte mit Sendern versehen und deren Positionen aufgezeichnet wurden. Auf diese 

Weise wurden Parameter-Einstellungen des Models optimiert, sodass das Model in der 

Lage ist, die gemessenen Daten zu reproduzieren. Zukünftig kann es dafür verwendet 

werden, Vorhersagen über das Verhalten der Hechte, beispielsweise im Angesicht sich 

ändernder Umweltbedingungen, zu machen. 
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2 Introduction 

2.1 Motivation 

Lakes are of interest as study object because of their self-contained and natural 

character. This thesis presents an attempt to analyze whole lake measurement data 

systematically. Therefore, a reference method [1] of scent-mediated animal 

interaction has been adapted to the requirements of the given situation in the specific 

lake so as to find out whether this theoretical model is able to reproduce the data. The 

obvious question to follow is whether the model furthermore has the power to make 

predictions about different conditions.  

 

Figure 1: Position of Lake Döllnsee near Berlin, Germany (source: openstreetmap.org) 

Numerous approaches (see chapter 2.3 for a chronological overview of existing 

models) deal with the problem of modelling animal interactions. I remodeled one 

existing approach [1] and used an optimization algorithm which helps to adjust the 

model parameters to the real circumstances. Due to the fact that some parameters 

cannot be justified by data measurements I looked for an objective function and 

scanned parameters in order to model the territorial formation of pike which is the 

main focus of this work.  
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2.2 Territory formation in pike 

Pike are one of the most essential carnivore fish in water ecology and play a crucial 

role in the ecosystem and population rate dynamics [2]. There is already a lot of 

information about pike, gathered in a review by Raat (1998) [3].  

Pike (Esox lucius) spawn from April till May. Those time spans can vary for different 

regions and the named time is a reference for Germany [4]. These oviparous fish start 

sexual maturity at the age of one year. However not age but rather size is a more 

important indicator of puberty for pike [5]. Most male pike are at least 19 cm and 

female 30 cm when reproducing the first time.   

It was found that pike tend to be cannibalistic especially when resource availability 

becomes unsatisfactory. With enough resources pike eat fish of other species but still 

avoid conspecifics [6]. Size ratio plays a crucial role in behavior of different pikes in 

encounter situations. Field studies revealed the coexistence of equally sized pike in 

close areas but almost never pike of different sizes in the same area (about 30-40 m2) 

[7]. It can be concluded that pike show no schooling behavior [3]. Pike that are eaten 

by conspecifics have averaged one quarter of its predator’s size [8] but can also be 

much bigger up to maximal 70% as recent data from the department of Freshwater 

Ecology and Inland Fisheries Berlin (group of Robert Arlinghaus) via personal 

communication showed. Pike that are too small do not provide enough energy and are 

not in danger to be eaten by bigger pike. Pike diet is dominated by one or two prey 

species, sometimes more [9]. The presence of pike can be recognized for some time by 

other fish because of scent marks that are left after eating prey [10]. That is why they 

often defecate far away from their territory in order not to scare potential new prey 

[11]. 

Pike, especially small ones, prefer littoral zones with much vegetation [9] whereas 

large pike occupy both pelagic and vegetation zones [12]. Large pike also cover wider 

distances than small ones and are found more often in pelagic zones of lakes [13]. Fish 

which swim long ways gained weight much faster than resident pike because their 

chance of prey is bigger [14]. Fish have to take risks and swim out far to gain weight 

but their risk of being eaten decreases with increasing body length and weight. We 

have to distinguish between home range and territory although both terms often are 
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used synonymously. Home ranges cover almost the whole used area where fish feel 

safe and return to very often and so, home ranges are larger. Burt (1943) defined 

home ranges as “that area traversed by the individual in its normal activities of food 

gathering, mating and caring for young” [15]. Territories are actively defended by an 

animal and that is why they have to be smaller than the home range area [15]. 

Kaukoranta and Lind caught pike, tagged them and released them into the water again. 

They found that most pike are resident and stay in small limited areas. Seldom pikes 

are found at positions more than 5 km away from releasing position [16]. The average 

distance is 500 m. Analysis of activity patterns show that pike stay inactive most of the 

time [17], especially in littoral zones. Pike of every age prefer definite territories and 

always return to those areas. This behavior is seen even more often by young pike [18] 

due to the need to find refuge from predators. 

2.3 Ecological models of territory formation 

A good overview of the recent history of territory formation is given in a review paper 

by Potts and Lewis [19]. Mainly there are two strands of territorial models: partial 

differential equations and individual-based approaches.  

Ordinary differential equations (ODE) relate functions with their derivative of first or 

higher order, depending on only one variable. The probably best known ecological ODE 

is the Lotka-Volterra-equation from 1925 [20]. It describes predator-prey interaction in 

terms of population size and postulates that there has to be an intrinsic systematic 

balance. A negative feedback following a change in predator or prey population makes 

sure that usually neither species is in acute danger of extinction. 

In order to add a spatial component, we have to change from ODE to partial 

differential equations (PDE). PDEs depend on two or more variables. An example is the 

heat equation which describes the temporal and spatial distribution of heat in a certain 

region.  

One approach of ecological modeling is to investigate the influence of individual 

behavior on patterns in the population. First who tried to model this microscale-to-

macroscale approach were Lewis and Murray [21]. They investigated the occurrence of 

deer as an answer on the behavior of wolf packs und developed a PDE model which 
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shows how deer as wolves’ prey choose to stay most likely in so called buffer regions 

between different wolf packs. There the occurrence of wolves is less likely and so the 

buffer zones serve as refuge for deer. Lewis and Murray already use scent-mediated 

interaction. Their model’s assumptions are based on real tracking data but are not 

compared to it systematically as it is intended in this thesis’s work. 

A more fine grained way than differential equations are individual-based models (IBM) 

where each agent is modeled. This approach is advantageous if individuals and their 

behavior are of interest, so distinct territories can be modelled. 

In 2011 Giuggioli, Potts and Harris [22] added timescale observations to this often 

studied interaction mediated by olfactory signals and containing conspecific avoidance 

using IBM. They recorded and calculated the mean square displacement of territorial 

boundaries depending on the time after a territory began to form. 

Two years later in 2013 Potts and Giuggioli extended their model from 2011 and 

presented their findings in a paper which describes animal’s stigmergy and social 

spacing [1]. Marsh and Onof define stigmergy as “indirect communication mediated by 

modifications of the environment” [23]. This is done by scent marks deposited by 

animals which cause indirect reactions of other individual’s. Although this idea is not 

new, given the fact that Lewis and Murray already have used scent mark mediated 

reactions, they enriched this scientific field by analyzing and investigating the 

correlation between encounter rate of animals and individual avoidance behavior [1]. 

In Potts’s model animals are random walkers on a two dimensional lattice with 

discrete fields. Periodic conditions were implemented so that animals that leave the 

mesh on one side immediately reappear on the opposite side of the mesh (see figure 

2). So no boundary conditions have to be considered. The animals which are supposed 

to make a step and the duration of a step are drawn randomly by a Gillespie algorithm 

[1]. Since all animals have the same propensity values it is a simplified version of 

Gillespie. 
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Figure 2: Utilization plot of stigmergy model. This figure is taken from Potts’s and Giuggioli’s 
paper [1]. Contour levels show the density of animal occurrence for this area. Animals that 
are going to make a step outside the whole area, reappear on the corresponding opposite 
side (periodic conditions). 

Animals leave their scent marks on every field they occupy. The scent mark is active for 

a certain time 𝑇𝐴𝑆. The whole model is unitless so 𝑇𝐴𝑆 represents a number of time 

steps. In the time between deposition and inactivation the scent mark’s strength is 

decreasing until it fades away completely. The mean value of the last 𝑇𝐴𝑆 positions is 

called centroid, representing the territory area center. The centroid has to be updated 

with every step. 

Animals are random walkers only until they discover a field where another animal’s 

scent mark is still active. If they enter such a field they will show retreating behavior. 

That means that there is a higher chance of walking in direction of its centroid than 

walking in another direction [1]. 

Potts and Giuggioli’s model suits our requirements well for different reasons. Animals are 

seen as autonomous individual agents. Territories form just because of their retreating 

behavior when animals encounter foreign scent marks. Movement is an important part of 

the model because its dynamic influences the model’s results enormously. Furthermore it 

corresponds well with the data we have, because both model and measured data produce 

a list of time courses where positions of fish have been recorded and can be analyzed. 
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3 Methods 

3.1 Pike tracking data 

There are several experiments investigating pike behavior. One of the first who 

investigated fish with modern transmitting technique were Hasler et al. (1969) [24] 

who tracked white bass (Roccus chrysops) with ultrasonic devices. Their main interest 

lied in the swimming speed and general behavior of fish. They found that white bass 

often swam directly towards their spawning ground instead of random movement.  

Poddubnyi, Malinin and Gaiduk [25] (1970) were the first ones who tracked northern 

pike. They found territorial patterns among pike although their tracking time was only 

50 to 60 hours.  

Diana (1977) [26] however doubted the existence of home ranges and argued the 

tracking time of Poddubnyi and Malinin being too short to make a statement about the 

existence of home ranges. He tracked pike himself over a time of 47 days and 

proposed that no home ranges were established by pike.  

In 1980 Chapman and Mackay tracked pike and investigated the influence of 

meteorological factors on pike behavior. As Diana did not determine distribution of 

habitat types as vegetation and free water, they started a new experiment. There 

seems to be no correlation between rain and habitat behavior. Furthermore they 

found that pike stayed close to the shore on sunny days and went to pelagic zones on 

windy days. Pike’s versatility was greater than expected which Chapman and Mackay 

proposed as an important feature of behavior of top predators [27].  

Many years later in 2001 Jepsen et al. radio tagged pike over a time period of 9 months 

but analyzed data only fragmentary over chosen times of interest. He investigated diel 

(24-hour-periods) activity patterns, home range sizes and habitat utilizations. He 

confirmed the existence of pike home ranges. Also he compared behavior of pike 

between an artificial reservoir and a natural lake and found that in summer pike stayed 

closer to vegetation, which can be found mainly in the littoral zones, than in winter. 

Moreover he discovered an equal level of movement during a day period whereas the 

movement level changes significantly over different times in the year [12]. 



11 

The group around Robert Arlinghaus started a project in 2010 at a 250 ha lake near 

Berlin, Germany, called Kleiner Döllnsee, where fish in large numbers and of different 

species were tagged and their positions recorded every 25 seconds. Characteristics of 

each fish were documented before releasing them into water again. Those 

characteristics are length, weight and sex. As part of the experiment fish from other 

nearby lakes were transferred to Kleiner Döllnsee to investigate the difference in 

behavior depending on whether fish swim in familiar environment or not. For this 

thesis all tracked pike were considered and handled equally. 

Due to technical restraints the data at some sections is very noisy. Therefore it was 

preprocessed to get time courses for each fish. 

3.2 Spatial simulation 

As an alternative to PDEs it is possible to model every reaction individually. For this 

purpose a so called chemical master equation (CME) exists [28]. This equation 

describes the probability 𝑏 of reaction 𝑅𝜇 being the next reaction to happen at time 

point 𝑡 + 𝜏 as the product of the probability that nothing else happened before and 

the probability that the next reaction will be 𝑅𝜇. 

Because of its complexity and its character as an ODE there is usually no distinct 

solution for the CME. Nevertheless, in 1977 Gillespie [28] developed a method in order 

to choose one possible trajectory of the reaction system according to the possibilities 

given by the CME. He considered fluctuations and the possibility to integrate rather 

complex conditions. The crucial difference to the CME is the absence of infinitesimal 

small time intervals. Instead there is a stochastical choice of reaction and time point.  

In Gillespie’s description there are two important values: After which time interval 

𝜏 will the next reaction occur and which reaction 𝑅𝜇 of all possible reactions 

(𝑅1, … , 𝑅𝑀) will it be? Therefore, we introduce two stochastic values 𝑟1 and 𝑟2.  

The probability 𝑏 of reaction 𝑅𝜇 occurring in time interval (𝑡 + 𝜏, 𝑡 + 𝜏 + 𝑑𝜏) is 𝑏 =

𝑔𝜇 ∗ 𝑑𝜏, where 𝑔𝜇 is the propensity (=“how likely is a reaction to occur per unit time” 

[29]) of reaction 𝜇 and 𝑔0 is the sum of all propensities 𝑔𝜇. Therefore, Gillespie 

deduced the following formula [28]: 

𝑏(𝜏, 𝜇) = 𝑔𝜇 ∗ 𝑒−𝑔0𝜏      (1) 
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That is the probability density function 𝑏. It describes the probability density that the 

next reaction will be 𝑅𝜇 and will happen at time point 𝑡 + 𝜏. When determining the 

time step we are not interested in one reaction in particular but all 𝑀 possible 

reactions together so we substitute 𝑔𝜇 by 𝑔0 = ∑ 𝑔𝜇
𝑀
𝜇=1 . After integration we get the 

probability distribution that the next reaction occurs in time interval (𝑡, 𝑡 + 𝜏). 

𝐵(𝜏) = 1 − 𝑒−𝑔0𝜏 

under the condition that for 𝜏 →  ∞ the value for 𝐵 has to become 1. However, we are 

looking for the probability that the next reaction does not occur in (𝑡, 𝑡 + 𝜏) and so we 

take 𝐵̅ = 1 − 𝐵(𝜏) because that is the time span we want to skip. 

𝐵̅(𝜏) = 𝑒−𝑔0∗𝜏 

With given probability 𝐵̅ = 𝑟1 and unknown time step 𝜏 we obtain: 

 𝜏 =
1

𝑔0
∗ 𝑙𝑛 (

1

𝑟1
)      (2) 

for a random number 𝑟1 (0 < 𝑟1 ≤ 1). That will be our chosen time step 𝜏. 

Henceforth, we choose the reaction that will happen. Therefore we have to draw a 

second random number 𝑟2 (0 < 𝑟2 ≤ 𝑔0) und the corresponding reaction 𝜇 such that 

∑ 𝑔𝑖 < 𝑟2 < ∑ 𝑔𝑖

𝜇

𝑖=1

𝜇−1

𝑖=1

      (3) 

holds true [28]. The whole algorithm follows this scheme:  

1. Initialize values for all propensities and parameters. 

2. If necessary, update individual propensities. 

3. Select time step and reaction and update them. 

4. Jump to step 2 until time is over or no molecules are left. 

In our model there are no chemical reactions. Instead of choosing a reaction we always 

choose the fish that’s position will be updated next. Propensities of fish are 

proportional to their measured swimming speed depending on body length (size). It is 

the product of swimming speed and its activity. Additionally the propensity rises by a 

fixed factor if the fish is swimming outside of the vegetation region (pelagic zone).  
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One-dimensional diffusion constants 𝐷𝜇 are brought into Gillespie algorithm by the 

following converting formula as Hepburn et al. showed [30]: 

𝑔𝜇 =
𝐷𝜇

∆𝑥2
      (4) 

∆𝑥 is the mean width of one step. For the mean square displacement 〈∆𝑥〉2 = 2𝐷∆𝑡 

holds true because in one dimension there is always the chance to go in one of 2 

possible directions with a 𝑔𝜇 for each direction. A second dimension would alter this 

formula to 〈∆𝑥〉2 + 〈∆𝑦〉2 = 4𝐷∆𝑡 because in our lattice grid there are always 4 

possible directions to go. That is why in two-dimensional models 𝜏 is calculated [31] as: 

 𝜏 =
1

4 ∗
𝐷𝜇

∆𝑥2

∗ 𝑙𝑛 (
1

𝑟1
)       (5)  

3.3 An approach to model territory formation 

This chapter explains the model from Potts and Giuggioli, which we call general 

stigmergy model in the following. It was reimplemented in the Python programing 

language. 

3.3.1 Stigmergy and social spacing 

If one of the fish meets a foreign scent mark, it shows retreating behavior towards its 

centroid. The retreating tendency depends on the current scent mark strength. The 

decrease in scent mark strength is described by the age 𝜏 of the mark in relation to the 

total time the scent mark stays active 𝜏 𝑇𝐴𝑆
⁄ . An additional global parameter 𝛼 

determines how the age of the scent mark influences the probability 𝑝 of retreating 

behavior. 𝛼 is called the degree of stigmergy. 

𝑝𝛼(𝜏) =
1

2
+

√1 − (
𝜏

𝑇𝐴𝑆
)

𝛼

2
      𝑖𝑓 0 ≤ 𝜏 ≤ 𝑇𝐴𝑆      (6) 

𝑝𝛼(𝜏) = 0.5      𝑖𝑓 𝜏 > 𝑇𝐴𝑆      (7) 

The influence of 𝛼 on the probability of retreat 𝑝 is shown in figure 3A as well as a 

contour level plot (B-E) (from now on: utilization plot) which describes the density 

distribution of animals. 
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Figure 3: Influence of 𝜶 on probability of retreat 𝒑𝜶. This figure is taken from Potts’s an 
Giuggioli’s paper [1]. A: For high 𝜶 the retreating probability stays high even for old scent 
marks (𝟏 − 𝝉/𝑻 small). B-E: With decreasing 𝜶, boundaries alter from sharp to soft because 
animal reactions become weaker. 

There are different probabilities to make a step in any of the four directions: up (u), 

down (d), left (l), right (r). In absence of a foreign scent mark each probability has the 

same value and a retreat is as likely as no retreat. 

𝑢 = 𝑑 = 𝑙 = 𝑟 = 0.25 

𝑝 = 0.5      (8) 

When encountering a foreign scent mark probabilities for each direction become 

different and the value for 𝑝 increases as shown in figure 4. The following formulas 

describe how different probabilities are calculated in this case. Following information 

is required as input: Current position of the animal (𝑥, 𝑦), position of the centroid 

(𝑥𝑐, 𝑦𝑐) and the retreating probability 𝑝.  

𝑢 =
1

4
∗ [1 − (2𝑝 − 1) ∗

𝑦 − 𝑦𝑐

√(𝑥 − 𝑥𝑐)2 + (𝑦 − 𝑦𝑐)2
] 

𝑑 =
1

4
∗ [1 + (2𝑝 − 1) ∗

𝑦 − 𝑦𝑐

√(𝑥 − 𝑥𝑐)2 + (𝑦 − 𝑦𝑐)2
] 

𝑙 =
1

4
∗ [1 + (2𝑝 − 1) ∗

𝑥 − 𝑥𝑐

√(𝑥 − 𝑥𝑐)2 + (𝑦 − 𝑦𝑐)2
] 
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               𝑟 =
1

4
∗ [1 − (2𝑝 − 1) ∗

𝑥 − 𝑥𝑐

√(𝑥 − 𝑥𝑐)2 + (𝑦 − 𝑦𝑐)2
]      (9) 

Note that in order to consider periodic conditions, some additional calculations 

regarding those formulas have to be made. The shortest way to the centroid 

sometimes crosses the borders of the defined mesh. This is built in by transferring the 

centroid to the corresponding periodic position outside of the mesh if the distance 

from current position to centroid is longer than half the mesh’s side length. 

To clarify the meaning of those formulas for the simulation and their constraint there 

is a quiver plot in figure 4 which shows the different probabilities for each direction 

and position with a given centroid and a given and constant 𝑝-value. 

 

Figure 4: Quiver plot of returning direction probabilities. The centroid of this example animal 
is at position (𝟏, 𝟏). Narrow arrows represent the probabilities for each of the 𝟒 possible 
directions, according to formulas 9. Thick arrows are the sum of all 𝟒 direction probabilities. 
They always point exactly towards the centroid and follow the shortest path (periodic 
conditions). 

Potts and Giuggioli introduced a parameter 𝑍, called the spatial competition.  

𝑍 = 4𝐷𝑇𝐴𝑆𝜌      (10) 

It contains the diffusion constant 𝐷, the maximum active scent time 𝑇𝐴𝑆 and the 

density 𝜌. Since in the stigmergy model the diffusion constant in Pott’s model is always 
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fixed to 𝐷 = 0.25, 𝑍 can be simplified to 𝑍 = 𝑇𝐴𝑆 ∗ 𝜌. Increasing the 𝑍-Parameter is 

supposed to increase the interaction pressure between animals. With higher 𝑇𝐴𝑆 scent 

marks stay active for a longer time which increases the occurrence of retreating 

behavior. A higher density 𝜌 makes the animals move closer due to a smaller area on 

which the system operates. 

The density 𝜌 is not defined more precisely in Potts and Giuggioli’s paper. Because the 

number of animals 𝑛 in all calculations is set to a fixed value, I assume that a variation 

of 𝜌 only leads to a change in mesh size. The density 𝜌 then needs to be negative 

proportional to the area size of the mesh. That is why area size 𝐴 and mesh side length 

𝑠 are calculated as following: 

𝐴 = 𝑛/𝜌 

               𝑠 = √𝑛/𝜌      (11) 

In formula 5 (page 13) the time for each jump step is described. ∆𝑥 equals one lattice 

site length which is 1. Since 𝐷 = 0.25 holds true, the time 𝜏 for each jump is drawn 

from a random number 𝑟1 via: 

𝜏 = 𝑙𝑛 (
1

𝑟1
)      (12) 

3.3.2 Outcome of this model 

An important characteristic of the system is the average encounter rate which tells us, 

how often animals meet each other.  

To make sure that territory sizes do not change with time, the simulation contains a 

burn-in-time after which the counting process starts. Table 1 shows the parameter set 

of Potts’s model that was used to show the encounter rate with respect to the 𝛼-value 

for different 𝑍. For each 𝑍 the values for 𝑇𝐴𝑆 and 𝜌 density are listed separately. 

parameter variable term value 

Time steps 𝑡𝑡𝑜𝑡𝑎𝑙  110,000 

Burn-in-time 𝑇𝑏𝑢𝑟𝑛 10,000 

Competition parameter 𝑍 (9, 40, 122, 400) 

   Active scent time    𝑇𝐴𝑆    (2000, 4000, 6000, 10000) 

   Density    𝜌    (0.0044, 0.01, 0.0204, 0.04) 

Number of animals 𝑁 25 

Table 1: Setting for encounter rate calculation [1].  
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Figure 5 visualizes the encounter (average of each individual’s encounter with other 

animals) rate with the given parameters. It is normalized to the number of animals, 

density and number of time steps.  

 

Figure 5: Encounter rate as calculated from Potts and Giuggioli (log-scale on x-axis). This 
figure is taken from their paper [1]. Encounter rate is normalized to diffusion constant D, 
density 𝝆 and number of steps. For different 𝜶-values the encounter rate changes non-
monotonously. 𝒁 describes the competition between animals. For high 𝒁-values the 

encounter rate is higher for 𝜶 = 𝟏𝟎−𝟐. For high 𝜶-values the encounter rate becomes small 
because animals turn around whenever they meet a foreign scent mark. The chance of 
encounter at its minimum. 

Potts and Giuggioli explain the appearance of the peak around 𝛼 = 10−2 as follows: 

With increasing 𝛼 the number of animals per marked area (overlap) decreases more 

steeply than the average territory size does. The ratio of both those quantities, the 

local population density, increases in this region. The population density scales with 

the encounter rate, so the encounter rate increases around 𝛼 = 10−2 [1].  

3.4 Parameter adjustment 

In our model (for information about differences to Potts’s model see chapter 4.1) it is 

unlikely that only one exact parameter setting is appropriate to reproduce original 

data. The main focus will lie on the 𝛼-parameter and the active scent time 𝑇𝐴𝑆. I expect 

that low  𝛼 values and little active scent times will make animals swim nearly randomly 
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causing very large territories, larger than those of fish in the reference lake. High 𝛼 

values and long active scent times however, probably will give rise to sharp boundaries 

between the territories with almost no overlap which is not coherent with the 

measured data either. 

There are several methods for an automated optimization process, mostly aimed at 

finding best results. Our project however does not necessarily have one distinct result 

in this two-dimensional optimization process. For example the modelled territory size 

could be equivalent to the measured data for small 𝛼 in combination with huge  𝑇𝐴𝑆 

and also for high 𝛼 with little 𝑇𝐴𝑆 values. The parameters 𝛼 and 𝑇𝐴𝑆 have the ability to 

compensate each other when increasing one and decreasing the other. So they are 

non-identifiable. Because of its stochastic character there are statistic variations which 

make it difficult for optimization methods to find good results. Work effort would be 

disproportionate to the saved time because the resolution of model results is not high 

enough for automated methods. Therefore I forgo an automated optimization and 

choose a manual parameter scanning procedure instead.  

The following parameters can not be obtained from measured data and need to be 

adjusted: 

- number of time steps 𝑡𝑡𝑜𝑡𝑎𝑙  

- degree of stigmergy 𝛼 

- active scent time 𝑇𝐴𝑆 

As an objective function we chose the territory size in general for a coarse grained 

overview and the territory size depending on fish body size for detailed analysis. 

Territory size is a suitable quantity as objective function because it is easy to calculate 

with comparatively little computing time and a very crucial property of our model 

since we want to investigate territory pattern formation. 

First I want to find out how many time steps are needed to get steady states in our 

model. Steady state means in this case, that territory sizes do not change essentially 

even when modelling time is further increased. 
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In our model (see chapter 4.1) Gillespie propensities are different for each fish, 

depending on fish size. This is a crucial difference and it enables the investigation of 

different behavior of pike according to their size. 

Due to the dependancy of degree of stigmergy 𝛼 and active scent time 𝑇𝐴𝑆, I will not 

optimize both quantities separately. In a two-dimensional function (ℝ2 → ℝ) I will 

vary 𝛼 and 𝑇𝐴𝑆 each in one dimension and determine the value of our objective 

function given the corresponding two settings for 𝛼 and 𝑇𝐴𝑆. For detailed analysis of 

territory size with respect to fish size I would need a third dimension regarding the 

body length (size) of fish. Fish are categorized in 𝑐 size classes (𝑙1, 𝑙2, … , 𝑙𝑐) with each 𝑙𝑖 

representing a size range. Size range 𝑙𝑖 always begins where 𝑙𝑖−1 ends. 

To simplify the optimization process I reduce this third dimension by just calculating 

the sum of squares 𝑞 for each setting 𝑠 between original data and modeled territory 

sizes for every size class 𝑙𝑖.  

𝑞𝑠 =
1

𝑐
∗ √∑(𝑥̅𝑖 − 𝑚̅𝑖)2

𝑐

𝑖=1

       (13) 

Where 𝑞𝑠 is the sum of squares, 𝑐 is the number of size classes, 𝑥̅𝑖  is the modeled 

average territory size of all fish within size range 𝑙𝑖 and 𝑚𝑖 is the measured average 

territory size of all fish within size range 𝑙𝑖 from original data. Low values of 𝑞𝑠 indicate 

a good setting where territory sizes are similar to the measured data from the 

reference lake. 

The territory size of the lake data is calculated (Max Flöttmann) by determining the 

surface area of a minimum convex polygon with a 50% - kernel. That means that the 

polygon is chosen in a way, such that 50% of all measured data points are inside the 

polygon. This way we try to remove all data points which represent the fish’s position 

at a certain time but do not belong to its home range where it stays often. Home range 

size calculation in the model was done in a different way. No kernel has been used 

there. Just all different points that were occupied by a fish, except from those within 

burn-in-time, were counted. This is due to the fact that the model is not supposed to 

simulate the phase which leads to the steady state but just the steady state itself (see 

chapter 4.1). So, there is no difference in home range size and territory size made in 
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our model. The model’s plotting method however, does not show data points where 

the fish has been seldom, which is similar to a kernel-method. 

The simulation requires a lot of memory and running time so that we were constrained 

to introduce some simplifications. It is infeasible to simulate the whole lake over a 

sufficient time period. That is why we reduced the lake dimensions and also the 

number of fish to maintain an equal density (fish per area). Number of fish is reduced 

by the reduction factor 𝑘. The area was decreased by the same factor which means 

that each side length was decreased by √𝑘. Territory sizes are multiplied by 𝑘, so that 

they are normalized to the original lake size. 

4 Results 

4.1 Adaptation 

Our main goal is to find a way to predict the whole system behavior. If there is a 

chance of varying just microscale reactions affecting the whole system, additionally 

this model will give us the possibility to make assumptions about behavioral patterns 

of wild pike. 

Potts and Giuggioli’s model suits our requirements well for different reasons. Animals 

are seen as autonomous individual agents. Territories form just because of their 

retreating behavior when animals encounter foreign scent marks. Movement is an 

important part of the model because its dynamic influences the model’s results 

enormously. Furthermore it corresponds well with the data we have, because both 

model and measured data produce a list of time courses where positions of fish have 

been recorded and can be analyzed.  

The results from our reproduction of the encounter rate with the given data from the 

paper look different because we cannot reproduce the characteristic peak (Figure 5, 

see Appendix in chapter 7 for further information). But still, we decided to use the 

model because we think that the main idea was implemented correctly.  

To adapt the model to our needs we had to modify it substantially. Periodic conditions 

are not useful in a real lake and have been substituted by natural blocking boundary 

conditions. Now if fish are supposed to jump to a position outside the lake, their 
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randomly chosen step will be calculated again until it is inside. Boundaries are 

determined by the original shape of Lake Döllnsee. The lake’s dimensions have a direct 

impact on the systems behavior because the available space scales with lake area size 

in square. The chosen resolution is r ≈1 m2 per lattice site.  

There is vegetation at the littoral zone of our lake. I needed to implement it in our 

model because fish show different behavior in the pelagic zones as mentioned in the 

introduction. The littoral zone is laid over the whole lake as another layer (shown in 

figure 6).  

 

Figure 6: Schematic picture of Lake Döllnsee and its pelagic zone (inside the inner polygon). 

Especially small but also bigger fish tend to form territories in the lake’s pelagic zone 

with the vegetation region. We consider this by introducing different weighting factors 

for the calculation of the fish’s centroids. All occupied fields inside the vegetation 

region are weighted higher by a factor 𝑤𝑣𝑒𝑔 > 1, when calculating the centroid. All 

fields in the open water where no vegetation can be found are weighted normally 

(𝑤𝑣𝑒𝑔 = 1). A fish that has been in the littoral zone at least once and is forced to 
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retreat to its centroid – which only happens if it meets another foreign scent mark – 

will be slightly shifted to the littoral zone.  

As mentioned in the introduction pike show different behavior according to their body 

size. Since pike are cannibalistic, small fish usually keep a distance to bigger fish. Size 

dependence is considered in our model by a change in the 𝛼-value. We assume that 

fish can recognize the size of their interaction partner which deposited the 

encountered scent mark. A function 𝑐 determines by which factor the standard value 

𝑎0 is raised if one fish meets a scent mark of a larger fish with respect to the size 

ratio 𝑟𝑠: 

𝑎𝑟𝑠
= 𝑎0 ∗ 𝑐(𝑟𝑠)      (14) 

𝑐(𝑟𝑠) = 𝐴 ∗ 2
−(

𝑟𝑠−𝜇
𝜎

)
2

+ 1      (15) 

Parameter 𝐴 indicates the maximum increase of 𝛼 whereas 𝜇 > 0 shifts the local 

extremum to the right. 𝜇 should be equal to the size ratio at which the likelihood to be 

eaten is at its peak. 𝜎 influences the function’s vertical dilation or compression. The 

new value of 𝛼, which is 𝛼𝑟𝑠
, will be applied once to this encounter and set back to 𝛼0 

immediately afterwards. Figure 7 shows how 𝛼 changes for different size ratios 𝑟𝑠. 

 

Figure 7: Raising factor 𝒄. 𝜶 will be multiplied by 𝒄. Fish react on other fish depending on 
their own size compared to the other fish’s size. Since fish size ranges from 𝟑𝟓 to 𝟕𝟎, there is 
no size ratio smaller than 𝟎. 𝟓. For size ratios bigger than 𝟎. 𝟕𝟓 there is no raise in 𝜶 (raising 

factor = 𝟏) because pike show no predatory behavior. Used parameters are: 𝑨 = 𝟏𝟎𝟓 
(maximum 𝜶 raising factor), 𝝁 = 𝟎. 𝟒𝟏 (size ratio for maximum 𝜶 raising factor), 𝝈 = 𝟎. 𝟏 
(vertical dilation of this function) 
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Parameters are chosen such that fish can be eaten from size ratio of 𝑟𝑠 = 0.3 up to 

𝑟𝑠 = 0.7 [32]. 

Bigger fish should swim faster than smaller fish (for speed data see Table 3, chapter 

4.4). In addition to that, fish are supposed to have smaller swimming speed in the 

pelagic zone. That’s why I need to modify our Gillespie simulation. There are several 

methods to realize differences in swimming speed:  

Currently if a fish is supposed to make a step, it chooses one of its neighboring lattice 

sites to enter. A fish with higher swimming speed could choose a field to enter with a 

certain distance bigger than one. I tried this possibility and found that it is very 

disadvantageous because the model’s idea is based on solid borders around a 

territory. When animals can jump from one lattice site 𝑠1 to another one  𝑠2 without 

entering the lattice sites between 𝑠1 and 𝑠2 gaps in the border line arise. There is the 

possibility that fish ignore each other even when they technically cross routes. That 

means other animals can pass these gaps without showing retreating behavior 

because no scent mark is deposited on these fields. 

A more accurate way is to give fish different propensities. Fish with higher propensity 

are drawn more often by the Gillespie algorithm which is equivalent to a higher 

swimming speed. The propensity 𝑔𝑓 of a fish 𝑓 with size 𝑠𝑓 and position 𝑝𝑜𝑠𝑓 is 

calculated as follows:  

𝑔𝑓 = 𝑔𝑠𝑖𝑧𝑒(𝑠𝑓) ∗ 𝑔𝑣𝑒𝑔(𝑝𝑜𝑠𝑓)      (16) 

The standard propensity for fish 𝑔𝑓 is multiplied by a factor 𝑔𝑠𝑖𝑧𝑒 according to the fish 

size and by a second factor 𝑔𝑣𝑒𝑔 according to the position in the lake depending on 

whether it is in the littoral or pelagic zone. 

The original stigmergy model [1] had a built-in diffusion constant for each animal. 

Diffusion constants describe the average mobility of molecules and are deduced from 

the mean square covered distance per time. Diffusion constants do not play an 

essential role in this implementation because, the movement speed is based on 

propensities (see formula 16). 

Time steps 𝑡𝑡𝑜𝑡𝑎𝑙  in our model are scaled so that one step accords with one second, by 

adjusting propensities correspondingly. However, this unit has to be handled with care 
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because the model does not necessarily simulate the forming process of territories but 

rather the finite state which shows complete home ranges and territories. 

The burn-in-time in our model is fixed to 10% of the whole simulation time. Moreover I 

do not distinguish between male and female pike and do not consider the age of fish.  

4.2 Measured territory size depends on fish size 

There is much information about Kleiner Döllnsee provided by the group of Robert 

Arlinghaus. The lake has a size of 250,000 m2, a mean depth of 4.1 m and a maximum 

depth of 7.8 m [33]. Its shape is available as polygon data points (Klefoth and Kobler, 

2007). We have very detailed knowledge about the macrophyte coverage (figure 8A) 

but simplified it for our model into Boolean values (True: coverage > 0%) and got a 

second polygon as result (Figure 6). 

 

Figure 8: Excerpt from data provided by the group of Robert Arlinghaus. A: Macrophyte 
coverage of Lake Döllnsee (source: presentation by David March-Morlà). In our model I used 
only the one polygon which represents the 𝟎% - threshold of coverage. B: Trace plot of three 
different fish, domiciled in Lake Döllnsee. C: Trace plot of a fish that was transferred from 
Lake Wuckersee, near Berlin, Germany. It seems that foreign fish need to explore the whole 
available area first before forming territories. 

It is found that foreign transferred fish need more time to find territories than fish that 

have spawned in Lake Döllnsee (figures 8B and 8C). However, those fish domiciled to 

the lake still often swim far distances before finding areas in which they stay for most 

of the time, which we call home ranges. Of all 146 tracked fish, 43 have spawned in 

Lake Döllnsee. Table 2 shows the abundance of pike in the lake. Furthermore it is 

visualized by figure 9. 

Age Mean length Number 

1 17.2 ± 3.6 1115 
2 29.1 ± 5.3 834 
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Age Mean length Number 

3 38.3 ± 6.2 524 
4 48.2 ± 6.9 232 
5 57.0 ± 6.9 108 
6 65.2 ± 6.3 45 
7 71.0 ± 4.7 29 
8 75.3 ± 3.3 19 
9 78.8 ± 2.8 12 

10 81.5 ± 3.1 7 
11 85.0 ± 1.7 3 

Table 2: Abundance of pike population and mean body length for different age classes (data 
provided by the group of Robert Arlinghaus). Of all pike only those of size 𝟑𝟓 − 𝟕𝟎 𝒄𝒎 are 
modelled because there is no tracking data available from smaller or bigger pike. 

 

Figure 9: visualization of abundance (Table 2), number of pike in Lake Döllnsee, their age and 
size. A: There are many young pike and very few old pike. B: size of pike correlates with age. 

Territory size ℎ is correlated with body size of pike. Figure 10A shows the size of 

territories depending on fish body size. Figure 10B shows the same data but body sizes 

of fish have been binned to nearest lower multiple of 5 cm, so that the correlation can 

be recognized more clearly. 
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Figure 10: Correlation of fish’s body size (𝒄𝒎) and measured territory size (𝒎𝟐). A: Raw data 
of territory size depending on fish size. B: All body sizes were rounded to the next lower 
multiple of 𝟓. Then the mean of all territory sizes for each body size class has been 
calculated. Vertical lines represent the mean standard displacement. This illustration 
provides a better demonstration of the correlation between both quantities. 

4.3 Modelled territory size depends on a set of parameters 

Due to memory restrictions I had to reduce the amount of fish as well as the lake’s 

dimensions by the reduction factor 𝑘. The influence of this measure is shown by 

confronting both ways in figures 11A and B. Rough extends of territory pattern remain 

constant. I assume that territory size is not influenced significantly as long as the lake’s 

boundaries do not have a high impact on limiting territory dimensions on one territory 

flank. Since territories should be much smaller than the lake’s dimensions this measure 

can be implemented without corrupting the results too much. The density remains 

constant. The calculated territory size is normalized by multiplying it by 𝑘.  

 

Figure 11: Demonstration of the reduction factor’s influence. A: reduction factor 𝒌 = 𝟏𝟎. The 
lake’s area is 𝟏𝟎 times smaller than the original lake. B: 𝒌 = 𝟏 (no reduction). There is a 𝟏𝟎-
fold zoom applied to the plot to make both pictures (A+B) comparable. No change in area 
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patterns in comparison of A and B is visible. Territory Size and extend shapes seem not to be 
influenced significantly. Density remains constant. 

Territory patterns are mainly defined by two values: The degree of stigmergy 𝛼 and the 

active scent time 𝑇𝐴𝑆. High 𝛼 and 𝑇𝐴𝑆 cause sharp boundaries between territories and 

lead to almost no overlap so that the whole available space is split to all fish in 

different extends depending on size and initial conditions. Low values for 𝛼 and 𝑇𝐴𝑆 on 

the other hand, cause large overlap of territories because animals almost do not react 

on each other. Figure 12 shows the influence of both parameters on the utilization 

plot. 

 

Figure 12: Influence of degree of stigmergy 𝜶 and active scent time 𝑻𝑨𝑺 on territory 

boundaries. A: 𝜶 = 𝟏𝟎−𝟎.𝟓 and 𝑻𝑨𝒔 = 𝟏𝟎𝟖. Territories are well delimited and there is no 

overlap between the territories of different fish. B: 𝜶 = 𝟏𝟎−𝟐.𝟓 and 𝑻𝑨𝑺 = 𝟏𝟎𝟒.𝟓. Many 
territory sizes are only limited by the simulation time but not by the interaction with other 
fish. There is huge overlap and little reaction on each other. The chosen plotting method 
removes all position points, where fish do not have been often. 

Territory size is also defined by different parameters, the most direct being the 

number of simulation steps 𝑡𝑡𝑜𝑡𝑎𝑙. The longer a simulation is running the larger 

territories become. In search of a steady state I look for a 𝑡𝑡𝑜𝑡𝑎𝑙  value where territory 

size ℎ does not change significantly any more when further increasing 𝑡𝑡𝑜𝑡𝑎𝑙. 
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Figure 13: Average modelled home range size depending on number of steps for 
different 𝑻𝑨𝑺. For certain thresholds on the x-axis the average territory size should reach 
saturation. Obviously the number of steps is not sufficient for some saturations with 
certain 𝑻𝑨𝑺. This is because of the limited computer memory and prevention of long running 
times. 

As can be seen in figure 13, there is still no 𝑡𝑡𝑜𝑡𝑎𝑙  visible for which the territory size 

derivative  
𝑑ℎ

𝑑𝑡
 is zero. Nevertheless I chose 𝑡𝑡𝑜𝑡𝑎𝑙 = 5 ∗ 106 (57.8 days) because much 

higher values extravagate the main memory and increase simulation time. An increase 

in reduction factor 𝑘, to compensate the higher 𝑡𝑡𝑜𝑡𝑎𝑙, would lead to more corrupted 

results.  

Besides 𝑡𝑡𝑜𝑡𝑎𝑙, the values for 𝛼 and 𝑇𝐴𝑆 play a crucial role in territory size. I first 

investigated the influence of 𝛼 on territory size ℎ with constant 𝑇𝐴𝑆 and then the 

influence of 𝑇𝐴𝑆 on ℎ with constant 𝛼 (see Figure 14). 

Both 𝛼 and 𝑇𝐴𝑆 show critical values for the upper/lower limit (figure 14) which marks 

the point where a further increase/decrease does not change territory size 

significantly. These will be the chosen limits for the optimization process (see chapter 

4.5). 
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Figure 14: Average territory size depending on 𝜶 (A) or 𝑻𝑨𝒔 (B) for different number of steps 
(log-scale on x-axis). This calculation helps to find a range for both parameter within which 
they should be optimized because there is a territory size limit for both very high and very 
low values of 𝜶 and 𝑻𝑨𝑺. (Used parameters: A: 𝑻𝑨𝑺 = 𝟏/𝟓 ∗ number of steps. B: 𝜶 = 𝟎. 𝟎𝟏) 

4.4 Most parameters are obtained from measurements 

For many parameter values we can resort to measurement data. So we know the 

number of fish out of the abundance and their size distribution (see table 2). The data 

gives us insight into swimming speed and activity (Shinnosuke Nakayama). The total 

velocity has been determined by multiplying the activity (percentage of time a fish 

swims actively) and the median velocity. The results are shown in Table 3. 

size class (𝑐𝑚) median velocity (
𝑚

𝑠
) activity (%) total speed (

𝑚

𝑠
) 

25 − 35 0.2089141 0.01813534 0.003788728 
35 − 45 0.2100969 0.03219665 0.006764416 
45 − 55 0.190974 0.03960992 0.007564465 
55 − 65 0.1742125 0.07384041 0.012863922 

Table 3: swimming speed for different size classes (Shinnosuke Nakayama, columns 1-3). 
Total speed is calculated as the product of median velocity and activity. 

Larger fish are faster than smaller fish. Larger pike show much more activity 

(percentage of whole measurement time) than small ones but they are not necessarily 

faster. Not for all fish size classes that I want to optimize speed data is available. That is 

why I have to extrapolate. We chose a sigmoidal curve of the form: 

𝑔𝑠𝑖𝑧𝑒 = 𝑑1 ∗
𝑑2 ∗ 𝑙𝑠𝑖𝑧𝑒

̅̅ ̅̅ ̅̅ − 𝑑3

√1 + (𝑑2 ∗ 𝑙𝑠𝑖𝑧𝑒
̅̅ ̅̅ ̅̅ − 𝑑3)

2
+ 𝑑4       (17) 

where 𝑔𝑠𝑖𝑧𝑒 is the part of the propensity which depends on fish size. Additionally, 𝑔𝑠𝑖𝑧𝑒 

is a measure for swimming speed. 𝑙𝑠𝑖𝑧𝑒
̅̅ ̅̅ ̅ is the mean size in size class 𝑙𝑠𝑖𝑧𝑒 (see chapter 
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3.4). 𝑑1, … , 𝑑4 are free parameters. Those parameters were adjusted manually, such 

that the given data matches the whole distribution. The result is shown in figure 15. 

 

Figure 15: approximation of velocity depending on fish body size. Dots represent measured 
data whereas the lined curve is modelled sigmoidal in order to find a continuous function 
that converts fish body size into velocity. Under a linear fit, small fish would have been 
assigned negative velocities. That is why we chose a sigmoidal form. Chosen values: 𝒅𝟏 =
𝟎. 𝟎𝟏, 𝒅𝟐 = 𝟎. 𝟎𝟎𝟓, 𝒅𝟑 = 𝟐. 𝟖, 𝒅𝟒 = 𝟏. 

Some parameters cannot be obtained from measurement data. The part of the 

propensity which depends on the fish’s position, 𝑔𝑣𝑒𝑔, is set to 3, which means, that 

fish in the pelagic zone will swim 3 times faster than those in the littoral zone. Because 

fish stay inactive in littoral zones most of the time (see chapter 2.2) the swimming 

inhibition, induced by 𝑔𝑣𝑒𝑔, could be much higher, but the model is not construed for 

fish that swim slow and seldom. The fish’s movement is a crucial action that leads to 

territory formation, that is why 𝑔𝑣𝑒𝑔 was set to a moderate value. 

We chose to set the centroid weighting factor 𝑤𝑣𝑒𝑔 to 10, because especially small fish 

are not supposed to form territories in pelagic zones, justified by the observed 

behavior. Since large fish will react on other fish less strong they are not influenced 

that much by 𝑤𝑣𝑒𝑔. 
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Parameter 𝐴, introduced in formula 15, tells us how much the degree of stigmergy 𝛼 is 

increased, when small fish meet large fish. It was set arbitrarily to 𝐴 = 105, because 

there is no relevant data which helps to optimize 𝛼, which is directly connected to 𝐴 

and small pike need to react very strong on big fish. 

4.5 Results of parameter adjustment 

The main parameters that need to be scanned are 𝑇𝐴𝑆 and 𝛼. They present the core of 

the whole modelling approach. The range of these parameters has been determined as 

shown in chapter 4.3. The following parameter set in table 4 has been implemented. 

parameter variable term value 

Number of fish 𝑁 2928 

Time steps 𝑡𝑡𝑜𝑡𝑎𝑙  5 ∗ 106 
Burn-in-time 𝑇𝑏𝑢𝑟𝑛 5 ∗ 105 
Vegetation centroid 
weighting factor 

𝑤𝑣𝑒𝑔 10 

Vegetation velocity factor 𝑝𝑝𝑜𝑠 3 

Size classes (𝑙1, 𝑙2, … , 𝑙𝑐) (35, 40, 45, 50, 55, 60,65,70) 

   Abundance (% of 𝑡𝑡𝑜𝑡𝑎𝑙)  (13, 29, 25, 15, 10, 4, 3, 1) 

   Total velocity (10−4 𝑚

𝑠
)  (27, 37, 51, 71, 93, 118, 138, 154) 

Reduction factor 𝑘 10 

Table 4: Setting for optimization of 𝜶 and 𝑻𝑨𝑺 

With variation of 𝑇𝐴𝑆 and 𝛼 we get a heat map for the territory size in a two-

dimensional matrix which is shown in figure 16. 

Red color indicates large territories whereas blue color indicates small ones. As 

expected, territory size increases with small 𝛼-values because the strength of 

interaction is small which leads to almost random walk, inducing large territories. The 

same applies to the active scent time 𝑇𝐴𝑆. When scent marks fade away fast 

(small 𝑇𝐴𝑆), there is no basis for interaction, resulting in territory increase.  

The sum of squares serves as quality criterion of the given setting. Figure 17A shows 

the sum of squares for different 𝑇𝐴𝑆 and 𝛼 over the whole range that has been 

determined as mentioned in chapter 4.3. To achieve better perceptibility, in figure 17B 

the range for both parameters 𝑇𝐴𝑆 and 𝛼 has been zoomed and for better definition 

the intervals have been reduced. Furthermore the reciprocal is plotted because only 

very small values are of interest to us. 
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Figure 16: heat map of modelled home range sizes depending on 𝜶 and 𝑻𝑨𝑺 (inverse scale on 
y-axis). Blue color stands for small, yellow for medium and red for large home ranges. With 
increasing 𝜶 and 𝑻𝑨𝑺 home ranges become smaller because of the higher competition 
between fish. 

 

Figure 17: Sum of squares as quality criterion of parameter setting. Both modeled and 
measured territory sizes are compared and the sum of squares was calculated. A: Sum of 

Squares. There is a faint dark blue band starting from 𝒍𝒈(𝜶) = −𝟐. 𝟓. B: Reciprocal (𝟏
𝒔⁄ ) of 

sum of squares with reduced range for both 𝜶 and 𝑻𝑨𝑺. So the setting with good values (dark 
blue band in A, light blue and yellow/red color in B) are better visible. 𝜶 and 𝑻𝑨𝑺 
compensate each other (non-identifiable character). In the outstanding area (colors different 
from dark blue) modeled territory sizes are very similar to measured values. 
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As expected, not only one single setting leads to a small sum of squares, but a series of 

non-identifiable settings starting from small 𝛼-values (bottom left corner in figure 17B) 

and long active scent times 𝑇𝐴𝑆 turning to small 𝑇𝐴𝑆 and high 𝛼 (top right corner). 

On the matrix’s bottom right side territories are smaller than the target values and on 

the upper left side they are larger (compare to Figure 16). Due to the limited resolution 

(∆ lg(𝛼) = ∆lg (𝑇𝐴𝑆) = 0.25) there is much noise in the results of the data, but the 

main idea of their non-identifiable character (Figure 17B) is made clear. Some values 

have been extremely small, such that the color palette shifted to dark blue for almost 

all regions except the extreme values. Those values have been removed from the 

figure.  

Figure 18A shows a utilization plot with the parameter setting, printed in table 5. 

parameter variable term value 

Degree of stigmergy 𝛼 10 −0.75 
Active scent time 𝑇𝐴𝑆 10 4.5 

Table 5: Parameter setting for figure 18. All other parameters remain unchanged. The 
parameter adjustment results state these parameters as good values for the simulation. 

 

Figure 18: Example plot for different fish. A: Utilization plot where territories for selected 
fish are shown. B: Trace plots for same fish which represent all positions where fish have 
been over the entire simulation time. Complete traces (B) are much bigger than territories 
(A) and show great overlap whereas territories are delimited. 

Territories seem to have sharp boundaries in figure 18A, but a look on the complete 

trace plot in figure 18B shows that the utilization goes much farther than just the 

plotted territory. The heat map in figure 18A is instructed to show densities of 

utilization by varying the transparency of its color. So those regions with high densities 

of measurements are printed full colored, others have a higher level of transparency. 
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In this way, only territories are plotted and not all fields of its home range that have 

been visited by a fish. This is an adequate visualization method since we want to 

investigate territory formation. The whole trace of fish reaches far into the neighboring 

territories, while territories do not overlap. In this model the trace plot area is similar 

to its home range. 

Figure 19 compares modelled and measured data. Shown is the mean of 10 

simulations in the first (lined) curve and the mean of all territory sizes for each fish size 

in the second (dotted) curve. The average sum of squares of those 10 simulations is 

3594, which is a comparatively good value. The parameter setting for this simulation is 

the one shown in Table 5. The vertical lines show the mean square displacement of 

each of all 10 simulations. Especially for big fish, the mean square displacement is very 

high, because of the little number of fish with this size. 

 

Figure 19: Comparison of modelled with measured territory size. Measured data is averaged 
over all fish of the corresponding size. Modelled size is averaged over 10 simulations. 
Vertical lines represent mean square displacement of modelled territory sizes. The 
parameter setting is shown in Table 5. 
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5 Discussion 

The main achievement of this work is the connection between active scent times 𝑇𝐴𝑆 

and degree of stigmergy 𝛼. They stand representatively for the duration of chemical 

cues indicating recent presence and the strength of interaction between fish. Those 

findings provide insight in behavior of pike and help to understand the formation of 

territories.  

First I tried to reverse engineer the stigmergy model by Potts and Giuggioli and 

estimated its quality by comparing their encounter rate curve with mine. There are still 

differences between the curves. After personal communication with the authors we 

believe that those discrepancies probably arise from different calculation methods 

regarding the centroid determination. We adapted the stigmergy model to our needs 

and used parameters deduced by the measurements of the group of Robert Arlinghaus 

from the department of fisheries Berlin. In the last step we optimized all parameters 

that cannot be obtained from empiric results by varying them and comparing them 

with original data of territory size as a quality criterion of our model. We found 

settings that match both data and model which we will now discuss in order to find 

their advantages and deducible statements. 

A frequently asked question is: Are scent marks a realistic assumption when 

investigating pike interactions? It is proven that at least pike prey (European minnows, 

Phoxinus phoxinus) leave pheromones which serve as Schreckstoff for other fish [10]. 

So pike can be recognized via scent marks. There is no data available about the time 

the scent marks stay active. Another approach is that small 𝑇𝐴𝑆 stand representatively 

for sight range of fish instead of chemical cues which stay for a longer time. Therefore 

we act on the assumption of very small active scent times. The parameter optimization 

of 𝛼 and 𝑇𝐴𝑆 leave open, which values should be chosen to get a realistic model. The 

optimization just reveals a dependency of both values. Small active scent times 𝑇𝐴𝑆 

require high 𝛼-values as shown in Figure 17B. This is consistent with the fact that fish, 

if they meet each other, will react very strongly, especially when small pike meet large 

ones [7]. This leads to the conclusion that of all possible 𝛼 - 𝑇𝐴𝑆 - combinations those 

are in favor where 𝑇𝐴𝑆 is low and 𝛼 is high. The results for 𝑇𝐴𝑆 that we get from the 
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optimization range down to about 8.7 hours, which is about 0.6 % of the whole 

simulation time. For lower 𝑇𝐴𝑆 territory sizes become too small, independent of 𝛼. 

There are huge differences in home range and territory sizes even for equally sized 

pike (see error bars in Figure 19). A reason for this is among other things the 

differences in initial conditions. Fish are initialized randomly somewhere in the littoral 

zone. Fish, for example, that are initialized in the lake’s corners tend to form larger 

territories because they have to defend them only to one side. Moreover, fish that 

were initialized very close form smaller territories than those that have been assigned 

large almost exclusive regions by coincidence. Because of a missing temporal forming 

stage, in which fish would show different behavior und just try to find own territories, 

territory size depends very much on initial conditions and only averages over many 

territory sizes give hints about the dependencies of territory sizes on other 

parameters. 

For reasons of time some parameter influences have not been tested entirely. So I am 

not sure how much burn-in-time is necessary to get saturation in territories sizes. But 

in our model an accurate setting of burn-in-time is less essential than for total time 

steps 𝑡𝑡𝑜𝑡𝑎𝑙, because territory sizes do not depend on interim but final values. The 

number of time steps should be higher than the chosen number to make sure that 

model output is not influenced by a too-short modelling time. Because of the available 

main memory I had to limit modelling time.  

6 Outlook 

For time reasons this thesis is limited to the actual state of working process which is a 

good conclusion because the model is able to show pike’s territory formation. Also I 

found a series of parameter settings which can reproduce measured data. Continuing 

investigation could improve the results of this model. 

The value for 𝐴 (factor that raises 𝛼-value for special encounter size ratios, formula 15) 

was set arbitrarily to 𝐴 = 105. Further testing could help to understand the influence 

of this parameter. Same is true for 𝑤𝑣𝑒𝑔 (higher weighting factor of centroid in littoral 

zone) and 𝑔𝑣𝑒𝑔 (increase of swimming speed in pelagic zone). Lake measurement data 

shows that fish stay inactive for most of the time. This part was ignored in the model 
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where only the average velocity was implemented. An implementation of active and 

inactive times depending on fish size could increase the model’s output accuracy. 

Small fish just avoid large fish in our model. An interesting feature would be the 

cannibalistic predatory behavior, so that fish are eaten by conspecifics. The number of 

small fish in the parameter setting then had to be much higher and it could be 

investigated which behavior of small fish leads to success in growth and rise in food 

chain. 

Some of the concepts used in this model could be adapted to other fields. So the 

Gillespie part could be taken over in spatial molecule simulations. 

The current state of the model allows us to roughly reproduce measurements. The 

next step should be the deduction of predictions about pike behavior. The influence of 

climate change for example forces animals to reactions, often even before they can 

adapt their behavior accordingly [19]. Influences of temperature, sunshine duration 

and wind velocity can be added to the environmental parameters, such that changes 

of those values could be modelled. Refined data analysis of the recorded fish positions, 

like better thresholds and filters for territory sizes would improve the model. A more 

precise look on the classifications, like sex or original spawning lake (transferred fish 

from other lakes) would give hints, what time foreign fish require to form territories 

and adapt their behavior. 

7 Appendix 

7.1 Discrepancy with reimplementation of encounter rate 

When trying to reproduce the encounter rate from Potts and Giuggioli [1], I first made 

a mistake in centroid calculation. The wrong calculation lies in the fact that the 

centroid is always determined by taking the mean of the last 𝑛 positions occupied by 

the animal (𝑛 is the number of steps which an animal makes on average during 

time 𝑇𝐴𝑆). Because each new position is periodically corrected first and taken into 

account for the mean value afterwards, there is a strong bias for the centroids to 

wander to the center of the mesh (The mean value of random numbers between 0 

and 𝑥 will be 
𝑥

2
). If the centroids are close, the animals will meet very often (see figure 

20 for better understanding). 
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Figure 20: demonstration of wrong centroid calculation. Fish that successively occupy the 
fields 𝟕 − 𝟖 − 𝟗 − 𝟏 − 𝟐 get a value of 𝒄 = 𝟒. 𝟓 as their centroid which is wrong, because the 
centroid needs to be at 𝒄 = 𝟎. 𝟎 on the outer edge of the operating area (𝟖. 𝟎 is excluded and 
jumps to 𝟎. 𝟎 imediatelly). 

 

Figure 21: Comparison of encounter rate with correct (A) and incorrect (B) calculation. 
Encounter rate is normalized to diffusion constant, density, number of steps. The peak 

at 𝜶 = 𝟏𝟎−𝟐 vanishes after fixing the error. The limit for small 𝜶 values remains in both 
cases at just under 𝟐. 𝟎. 

After correcting this mistake the encounter rate curve looks different (figure 21A). 

Figure 21B looks more similar to the one from Potts and Giuggioli (see chapter 3.3.2, 
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figure 5). For both ways to calculate centroids, in figure 22 a utilization plot for 

different 𝛼-values is shown. 

 

Figure 22: Figure with utilization plot for different alpha values and correct and incorrect 

centroid calculation in comparison. A: Wrong centroid calculation, 𝜶 = 𝟏𝟎−𝟐. The wrong 
calculation has huge influence on the high encounter rate because animals are close. B: 

Wrong centroid calculation, 𝜶 = 𝟏𝟎−𝟏. Because of the higher 𝜶 value animal reaction on 
each other is stronger and encounter rate is influenced to a lesser extent. C: Proper centroid 

calculation, 𝜶 = 𝟏𝟎−𝟐. Animals are equally distributed and there is high overlap. No peak is 

to be expected. D: Proper centroid calculation, 𝒂 = 𝟏𝟎−𝟏. There is less overlap than in (C) 
because of the higher 𝜶-value but equal distribution of animals as well.  

In figures 22A and B centroids are calculated in a wrong way. That is why animals 

gather in the middle of the whole area. For 𝛼 = 10−2 (figure 22A) the effect has a 

higher influence because territories are larger and overlap as well as encounter 

probability are higher. Potts and Giuggioli justified this peak with the density being 

higher around this value (see chapter 3.3.2). We are in contact with the authors to find 

the reason for this difference. 

7.2 Python Libraries 

Programing language: Python (version 2.7) 
Plots:    matplotlib.pyplot (version 1.4.3) 
Saving and Loading:  cPickle (version 1.7.1) 
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Calculations:   numpy (version 1.8.2) 
    bisect  
Random numbers:  random 
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