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Abstract

English version:In recent years biofilms have become one of the most exciting
fields of research in biology, in particular microbiology and evolutionary biology.
A deeper understanding of this community life can lead to important findings in
the investigation of bacterial infections as biofilms are known to be more resilient to
antibiotics. Furthermore, general evolutionary processes that contribute to the for-
mulation of different survival strategies and the spreading of species, can be studied
as if in a time lapse (generation time, for example, E.coli = 20 minutes, human =
25 years). Experiments of selected papers , whose research results describe essential
aspects of a biofilm, are recreated in this study with my own modeling approach,
which was developed and independently programmed ( in Python language). The
main focus is on qualitative reproducibility of the described phenomena. The follow-
ing models were adapted in this modeling approach: (i) intercellular communication,
by using a cellular automata model based on reaction-diffusion (RD) equations, (ii)
modeling each individual cell in the computational domain as an object using a
modeling approach refereed to as individual-based modeling.
Because these models are defined in a general way, a very large application area for
this program is possible. It is used in this work to describe, for example, a survival
competition between three different strains of E.coli in a cell culture or a simplified
version of the mating processe of Baker’s yeast Saccharomyces cerevisiae.

Deutsche Version:
In den letzten 15 Jahren hat sich die Biofilmerforschung zu einem der spannend-

sten Wissenschaftsgebiet in der Biologie, ins besondere der Mikrobiologie und der
Evolutionsbiologie, entwickelt.
Ein tieferes Verständnis dieses Gemeindelebens kann zu wichtigen Erkenntnissen in
der Erforschung von bakteriellen Krankheiten führen, denn Biofilme sind bekannt für
ihre Antibiotikaresistenz. Des weiteren können grundlegende evolutionäre Prozesse,
die zur Herausbildung verschiedener Überlebensstrategien und Verbreitung von Arten
führen, wie im Zeitraffer untersucht werden (Generationszeit z.b E.coli≈ 20Minuten,
Mensch≈ 25Jahre). Ausgesuchte Paper, deren Forschungsergebnisse wesentliche
Aspekte der bakteriellen Gemeinschaft, die den Biofilm ausmachen, beschreiben,
werden mit meinem, im Rahmen dieser Studie erarbeiteten und selbstständig pro-
grammierten ( in Python), Modelierungsansatz nochmals untersucht. Dabei liegt das
Hauptaugenmerk auf eine qualitative Reproduzierbarkeit der beschrieben Phänomene.
Folgende Modelle wurden in diesem Modelierungsansatz dazu verbunden : (i) unter
Verwendung von zellulären Automaten mit Hilfe von Reaktions-Diffusions Gleichun-
gen wurde interzelluläre Kommunikation modelliert, (ii) Modelierung jeder einzelnen
Zelle in der Rechenumgebung als räumliches Objekt mithilfe des sogenannten “in-
dividual based modeling”-Ansatzes.
Dadurch dass diese verbunden Modelle sehr allgemein verfasst sind, ergibt sich
ein sehr großer Anwendungsbereich fr das Programm. Mein Modelierungsansatz
wird in dieser Studie z.B einem Überlebenskampf zwischen drei unterschiedlichen
E.coli Strängen in einer Zellkultur beschreiben oder eine vereinfachte Version des
Paarungsprozess von Hefezelle Saccharomyces cerevisiae.
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1 Introduction

In natural habitats, bacteria often occur in multicellular community referred to
as biofilms. After attachment to a surface, bacteria can adapt to life by forming
a biofilm. Two properties are often associated with surface-attached bacteria: in-
creased synthesis of extracellular matrix and the development of antibiotic resistance
[1]. The robust extracellular matrix consists of proteins, amyloid fibres, exopolysac-
charides and extracellular DNA [1], [2], [3].
Therefore biofilms show pronounced stress resistance including a resilience against
antibiotics that can cause serious medical problems [1], [2], [3]. These bacteria com-
munities may also develop other properties, including increased resistance to UV
light, increased rates of genetic exchange, altered biodegradative capabilities, and
increased secondary metabolite production[1].
The bacterial activity is determined by various stress responses which are in return a
response to gradients of nutrients, oxygen, waste products and signalling compounds
that build up in growing biofilms [2]( bacteria can either grow and proliferate or en-
ter into a stationary phase and use their remaining resources for survival).
As a consequence, biofilms can differentiate into at least two distinct layers of vegeta-
tively growing or stationary phase cells that exhibit very different cellular physiology
[2]. This includes layering of matrix production which has an impact on microscopic
architecture, biophysical properties and visible morphology of the macrocolony [2].
Using selected recent studies as inspiration, this bachelor thesis describes current
knowledge about the underlying networks – prominently cell-cell communication due
to concentration gradients and second messengers[4]– that play a key role in spatial
separation and growth [5], [6], [7], [8].
By simulating different social phenotypes/motifs of interaction that have been cre-
ated by genetic manipulation of bacteria or yeast strains, I will demonstrate the
versatility of my program and the underlying modeling approach. For this approach
I adapted the conceptual framework for cell-cell communication proposed by Maire
and Youk in 2015 [9] and connected it to an agent-based modeling approach proposed
by a group at the Delft University in 2005 [10].

Maire and Youk framework They developed a conceptual framework for un-
derstanding the unicellular and multicellular control of gene expression for a ubiq-
uitous class of cells that communicate through secreting and sensing a signaling
molecule (see below Figure 1.1). Maire and Youk use geometric means to quantify
the amounts of autonomy and collectivity of cells. Their conceptual framework ties
together diverse systems, including tissues and microbes, with common principles.
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Figure 1.1: Their bottom-up approach for the framework: from molecules to popu-
lations of cells.(A) Secrete-and-sense cell. (B) Secrete-and-sense cell signal to itself
(self-signaling) and signal to its neighboring cells (neighbor signaling). (C) Outline
of the bottom-up approach. Image taken from [9].

The schematic overview
in Figure 1.2 depicts the
social phenotypes that
will be simulated and
their influence on the
spatial structure of the
biofilm starting from an
initially well-mixed pop-
ulation. a| Antagonistic
phenotypes, which for
example secrete of
toxins, can eliminate
sensitive cells in the
vicinity. b | Mutualistic
cell strains tend to
become entangled as
their growth rates are
proportional to their
neighbor. This can
result in spatial mixing
of the cell strains and
exclusion of cheating or
non-interacting strains.
c | Cells that secrete
public goods prefer-
entially benefit from
nearby clonemates,
which proliferate more
rapidly than neighbor-
ing strains and thus
cut other lineages off
from the frontier of the
biofilm.

Figure 1.2: Schematic overview of social phenotypes and
their influence on the spatial structure of the biofilm start-
ing from an initially well-mixed population. a| Antagonis-
tic phenotypes can eliminate sensitive cells in the vicin-
ity. b | Mutualistic cell strains can become entangled. c |
Cells that secrete public goods preferentially benefit from
nearby clonemates. Image from [8].



2 Theoretical Foundations

This chapter is dedicated to the driving principles and equations that are the basis
for my model.

2.1 Diffusion
In the paper of Maire and Youk in 2015 [9] a key element of cell-cell communication
is diffusion of a signal molecule S, which the cells themselves produce, secrete and
sense. This particular paper is more focused on building a conceptual framework in
which a theoretical approach is build that links secrete-and sense cells genetic circuits
to multicellar behavior. There are also other instances in which cells with similar
attributes are artificially built [6] or observed in nature [3]e.g. quorum sensing in
E.coli [4].
For my program I started from a very basic diffusion equation for the concentration S
with diffusion constant D, degradation constant γ and radial symmetric properties,
as cells are postulated to be spheres in 3-D or circles in 2-D, while the secretion is
a uniform flux J over the cell‘s border:

∂S

∂t
= 1
r2 ·

∂

∂r

(
D · r2 · ∂S

∂r

)
︸ ︷︷ ︸

diffusion

− γ · S︸ ︷︷ ︸
degradation

(2.1)

Defining source flux J :

J = −D · ∇S (2.2)

= −D · ∂S
∂r

(2.3)

Boundary condition on the border of the cell with radius R:

J = −D · ∂S
∂r
|r=R (2.4)

Cells frequently measure the possibly varying outside concentration of S over a long
time, averages these measurements, and the average concentration S̃ regulates its
genes (so the production of said molecule in the simplest scenario). Since the con-
centration usually reaches a steady-state much faster than the time taken for this
averaging [11], one only needs to look at the steady-state concentration for a cell‘s
regulation [9]. To explain this assumption I refer the Stokes-Einstein-relation:

D = kBT

6πηr , (2.5)
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with D = Diffusioncoefficient, kB = Boltzmannconstant, T = absolute temperature,
η = dynamic viscosity of the solute and particle radius r. It is generally assumed
that r scales with the molecular weight M as r ∼ M

1
3 , a change by the factor of

1000 in the molecular weight causes the diffusion coefficient to only change by a
factor of 10 [12]. So the dominant part that governs the diffusion coefficient is the
viscosity η of the extracellular medium. Therefore the solving approach for equation
(2.1) with λ =

√
D
γ
, as typical traveling distance of molecule S before decay, is:

S(r) = Sr ·R
r
· e−

r−R
λ (2.6)

∂S

∂r
= −Sr ·R

r2 · e−
r−R
λ − Sr ·R

rλ
· e−

r−R
λ (2.7)

= −Sr ·R
r
· e−

r−R
λ ·

(1
r

+ 1
λ

)
J = −D∂S

∂r
|R = D · SR ·

(1
r

+ 1
λ

)
⇒ SR = J

D
(

1
r

+ 1
λ

) (2.8)

with : λ =
√
D

γ

⇒ SR = J ·R
R
√
Dγ +D

(2.9)

SR is the secreted concentration level, which is dependent on flux J and in a straight-
forward manner on the cell radius R (2.9). While cell‘s radius will be further dis-
cussed in section Growth, flux J still is of importance.
If the secretion rate is chosen to be relative to the surface → J = const and (2.9)
would describe SR fully else if the secretion rate should be relative to the volume Vi
of cell ci, flux J scales too:

J =
[
molecules

time · area

]
⇒ J · 4πR2 =

[
molecules

time

]
(2.10)

with a new production constant per volume P :

P · 4
3πR

3 =
[
molecules

time

]
(2.11)

⇒ J · 4πR2 = P · 4
3πR

3

⇒ J = P ·R
3

⇒ SR = 1
3 ·

P ·R2

R
√
Dγ +D

(2.12)

For the framework a scaling secretion rate with a constant particle number is put
in place as none of the reference suggest otherwise [9], [10],[8].
So P is a settable parameter of my model. In [9] a similar approach was chosen for
SR:

∂S

∂t
= 1
r2 ·

∂

∂r

(
D · r2 · ∂S

∂r

)
︸ ︷︷ ︸

diffusion

− γ · S︸ ︷︷ ︸
degradation

(2.13)
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But a different source term was defined:
η

4πR2 δ(r −R) (2.14)

with δ as Dirac delta function and δ(r −R) = 1 when r = R
using the solving approach (2.6):

⇒ η

4πR2
1
γλ
· 1

1 + λ
R

(2.15)

with η as constant secretion rate.

= η

4πR2 ·
1√
Dγ
· 1

1 + λ
R

(2.16)

= η

4πR2 ·
1√
Dγ
· 1

1 +

√
D
γ

R

(2.17)

SR = η

4πR2 ·
R

R
√
Dγ +D

(2.18)

As one can see both solutions are very similar and by choosing J = η
4πR2 they are

equal. With this one further understands the cell-cell communication (production
and secretion).

2.1.1 State-decisions
The concentration level is the deciding factor for a cell‘s behavior and cell-cell com-
munication. As mentioned above (see 2.1 Diffusion) , the assumption is made that
a cell‘s measurements, and then regulating it’s gene expression takes longer time,
than the signal molecule S needs to reach a steady-state-level [9].
Therefore by assuming a simple motive in which the signal molecule S only regulates
its own gene expression we have two states the cell can be in, "on" if producing or
"off" if not, so two secretion levels and two concentration levels on the surface S̃on
and S̃off . These two states are divided by a threshold concentration K.
Needless to say if one looks at only one cell ci or if D � γ the sensed concentration
is only cell ci’s own so S̃ = Si.
To make significant comparisons, all concentration terms are divided by S̃off [9]:

K = K̃
S̃off

Son = ˜Son
S̃off

Soff = 1
(2.19)

From Equation (2.19) we see that Son and K are freely adjustable parameters of
the cell and thus of the model. By comparing its sensed concentration Si to K cell
ci then would decide its next state. In [9] the concentration plus the feedback of
the gene expression (positive → more production by turning cells "on" or negative
feedback → less production by turning cells "off") determine cell ci’s next state.
So for positive feedback if Si > K then ci’s state is set "on", and for any other
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instance "off", while for negative feedback it is the exact opposite.
Now the not trivial case when there are N cells and diffusion is noteworthy. Si is
the sum of the concentration of the signal molecule that ci secretes(denoted SR) and
the concentration of the molecule S secreted by all the other cells(denoted Sneighbors)
[9]. This is calculated with equation (2.6):

Si = SR︸︷︷︸
due to self

+
N−1∑
j=1

SR,j ·
Rj

rj
· exp(−rj −Rj

λ
)

︸ ︷︷ ︸
due to neighbors

(2.20)

One can see that the neighbors influence is determined by how far they are from cell
ci and λ =

√
D
γ
, which means by the set constants for diffusion D and degradation

γ. Higher values of D in comparison to γ lead to further diffusion so to a stronger
influence of the neighbors (term gets bigger in (2.20)), higher values of γ lead to
quicker degradation so weaker influence of neighboring cells(smaller term in (2.20)).
These observations are in line with one’s expectations and intuition, and give us a
tool for adjusting cell-cell communication.
Here an illustration of what cell ci could sense:

Figure 2.3: Representation of cell-cell communication. Picking any cell ci. Si is then
the concentration of the signal molecule on cell ci calculated after equation (2.20)
with increasing D neighboring cells also increase their influence on cell ci. Image
taken from [9].

The neighbors’ influence is of interest because the bigger the influence is the
more the cells lose their autonomy[9]. This means that single cells form a multicellar
compound in which the compound as a whole influences the individual’s state e.g.
quorum sensing in bacteria[7],[1],[13]. In numbers expressed this means even if
Son < K if all the neighbors "pitch in" Si can be > K and therefore a different state
is set than would be without the neighbors’ influence. With this understanding of
cell-cell communication we have a very sensibly definable, quantifiable and tunable
system implemented to reproduce multicellar behavior which is not only of interest
for bacteria but also might give new insight in other fields where secrete- and sense
cells are of interest like breast cancer[14].
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2.2 Cells as Spheres
As mentioned in 2.1 Diffusion the cells are implemented as spheres. The frame-
work follows the individual-based modeling approach [10], therefore every cell ci is
modeled as an individual object Oi with starting radius Ri = R0 and coordinates
(xi, yi, zi), so it occupies space. What is of interest in this section are the conse-
quences of cell division and cell growth (this will be further explained in section
Growth), which means movement of the cells.

2.2.1 Movement
In this model there are basically three reasons a cell is being moved:

1.Growth
2.Division
3.Gravity

(1): cells get so big that they press against each other;
(2): a new cell is created which needs space so pushing for it;
(3): an important piece of reality and biological relevance1.
When reading "push", "press" and gravity one immediately thinks to describe this
with force-vectors and in [15] a solid solution is presented, which I also implemented
for this framework. The new position xi,new = xi − δxi, where xi is the coordinate
of the current cell c (i.e., x1 = x, x2 = y, and x3 = z). The three components of the
displacement(force) vector are δxi:

δx
(c)
i =

∑
N

x
(n)
i − x

(c)
i

d(n)

[
k · (R(n) +R(c))− d(n)

]
, (2.21)

where R(c) is the radius of the current cell, R(n) is the radius of a neighboring cell,
x

(n)
i is the coordinate of an overlapping neighboring cell, and d(n) is the distance

between cells:

d(n) =

√√√√ 3∑
i=1

(x(n)
j − x

(p)
i )2 (2.22)

The parameter k should be understood as the shove radius, so a multiplier of the
cell radius with which one adjusts how close cells can be.

k < 1: overlapping of cells allowed with 1− k percent
k ≥ 1: no overlapping k · distance in between

For the realization of the gravitational pull a term Fg is always added to the height
coordinate y.
Gravitational Term Fg for cell ci:

Fg = −Vi · g (2.23)
1let’s keep the feet on the ground
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Figure 2.4: Schematic 2-dimensional example how displacement vector is calculated.

There is no directed self-movement of the cells implemented because a biofilm
attaches itself to a surface[1] and cells are connected to each other by extracellular
fibers(flagella, amyloid curly fibers)[2] which consequently nearly arrests single cell
movement or at least renders negligible for my biofilm modeling approach.

2.2.2 Border Control
The computational domain is limited. In the model the cells will reach set compu-
tational domain boundaries ( usally cuboid [0, LX ]x[0, LY ]x[0, LZ ]). Now I present
ideas how one can implement these domain boundaries:
In [15] periodic or wrapped-around boundaries in the directions parallel to the sur-
face is chosen (directions x and z) If the cell extends into the surface (the cell’s
center is at y < R), then the cell is shifted to y = R. Furthermore, undesired edge
effects can be avoided by not having edges. This means, for instance, that in the x
direction, cells close to the domain boundary at x = LX can also have particles as
neighbors at the boundary opposite, x = 0. Consequently, particles shoved out at
x = LX + δx reenter the computational domain at x = δx, and those pushed out to
x = −δx are resited at x = LX − δx.
While this is an elegant way to avoid undesired edge effects, but poses problems in
the implementation so instead I chose reflecting boundaries. The shifting condition
is than different for any directions, it is:
e.g. x direction:

max(min(x+ δx, LX −R), R) (2.24)

If the cell would be shifted outside, instead it will be placed as close to the border
as possible given the cells radius R. In my opinion the undesired edge effects might
be something worth studying 2, but is not the focus of this bachelor’s thesis.

2.3 Growth
The cell‘s growth rate is governed by a simple function. The cell radius is growing
by a certain set growth rate grate so Rnew = Rold + grate. As for the decision whether
a cell grows this time-step t is a question of it‘s state and the social scenario the
model is describing (e.g. the cell can only grow if it senses a certain amount of the

2see: Adhesion
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signal molecule S).
In Youk 2015 [9] , the cells’ growth was not of interest, while in the framework of
Delft University[15],[10] growth is implemented using particle/molecule-absorption
and mass-conversion with an ODE approach. In light of the computational power
and duration of a bachelor thesis this more precise but complex method could not
be adapted.

2.3.1 Cell Division
When a cell c1 reaches the critical volume V1 = 2 · V0, with V0 = 4

3 · π · r
3
0 , while r0

is a set starting value of my choosing, cell division is initiated.
Through this division a new cell c2 is generated, while c1 is set back to the starting
value cellradius = r0 and stays at its spatial coordinates.
Though for c2 a random choice function generates its spatial coordinates. The
function picks a random point on the surface of a unit sphere, but it is incorrect
to select spherical coordinates θ and φ from the distributions θ in [0, 2π] and φ in
[0, π], because the area element dΩ = sinφdθdφ is a function of φ, so the poles than
a have slight positive bias in being selected.

Figure 2.5: 3-dimensional representation of spherical distribution. Left side with
spherical coordinates, right side intended distribution [16].

One way to achieve this intended distribution was proposed by Muller 1959 [17].
Accordingly one generates three Gaussian random numbers x, y and z:

S = x2 + y2 + z2 (2.25)

with: 
x√
S
y√
S
z√
S

 (2.26)

so that cell c2 coordinates are: x2
y2
z2

 =r0 ·


x√
S
y√
S
z√
S

+

 x1
y1
z1

 (2.27)



3 Results and Discussion

This chapter is dedicated to the results produced by my model.

3.1 Computational Parameters
As in Chapter 2.Theoretical Foundations already mentioned the framework has sev-
eral parameters that need to be set before running the model:

Table 3.1: Parameters of the model

Parameters Description Values
Son set concentration if state "on" 18 in arbitrary unit
K threshold concentration for state-decision 10 in arbitrary unit
feedback positive/negative see state-decision positive
R0 starting value for cell radius 1 µm
D diffusion constant 7 µm2

s

γ degradation constant 7 µm2

s

LX , LY , LZ length of computational domain in µm
k shove factor 1 in arbitrary unit
grate growth rate 0,2 µm
placement probability of cell being placed for initial setup 100%
stategamble probability of cell being setup with "on" state 50%
xgrid sets aid-lattice size 10

Most of the parameters in Table (3.1) have been introduced in Chapter 2.Theo-
retical Foundations except the last three.
Stategamble is the probability for any new cell to be setup with the initial state
"on", setting cell state occurs while initiation and cell division.
Placement and xgrid are auxiliary parameters important for the experimental do-
main set-up. These two can be categorized as initial cell-density setting parameters:
xgrid divides LX , LY and LZ in xgrid-equal pieces in which only one cell with the
probability placement one cell can be placed. An 1-dimensional example: xgrid = 5,
LX = 100.0 possible placement sites are at: 0.0|20.0|40.0|....
After the program starts to run these two parameters have no influence on the
model.

10
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Here an illustration:

Figure 3.6: Schematic 2-dimensional samples of one panel of the lattice set by two
different xgrid, so xgrid,1 < xgrid,2 but R0,1 = R0,2 = R0

3.2 Foundation
Here I present the core implementation based on the chapter Theoretical Founda-
tions. The following sections describe derivatives of this program. Slight changes in
the code are introduced for specifications of different motives. Nevertheless all core
equations remain intact so a general overview is beneficial.

Figure 3.7: 3-dimensional representation of model data. Biofilm with D = 7, Son =
10.0, K = 18.0, γ = 7 at t = 12. LX = 10.0, LY = 10.0 and LZ = 10.0 set
lengths of computational domain. On the left cells represented as spheres with radii
r ∈ [1, 1.4]. On the right concentration levels of signal molecule S of points in
the cube for visualization purposes. These concentration levels only schematically
represent what the cells measure. Visualization program Paraview.
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(a) Colony at t = 0 (b) Colony at t = 5

(c) Colony at t = 15 (d) Colony at t = 19

Figure 3.8: Same colony as in figure 3.7 with D = 7, Son = 10.0, K = 18.0 and
γ = 7 at different time steps t.

Figures 3.7 and 3.8 are a small scaled example of the computational domain at
different time-steps t. Son = 10.0, K = 18.0 and the diffusion constant D is set
= γ so in the beginning turned the cell-cell communication is off. Diffusion constant
D and degradation constant γ can not be = 0 as they are part of denominator in
equation 2.9 and because λ =

√
D
γ
in equation 2.20, due to this only cells with the

default state set "on" can grow. Until the concentration levels of S rise enough to
turn on the other cells. In the Figures 3.7 and 3.8 it is the red zone of the right
figure.
For the right side of the figures the whole cube was divided into smaller sub-cubes
and the concentration in the sub-cubes is calculated by summing up all cells con-
centration through Equation (2.20) and their distance to the middle point of the
sub-cube. This means sub-cubes can be inside of a cell and if this case happens the
concentration Si is added in equation (2.20) as if it is measured on the surface of
the cell ci. With the visualization program Paraview the cube was sliced at z = 4.
Neighbors have influence on each other because are so close that they are touching.

3.3 Prisoner’s Dilemma
The focus of this section is a revised version of the so-called prisoner’s dilemma, PD
[8], [6], [18]. It is a standard example of game theory (started in 1944) [19], [20] and
has a wide range of application(Economics, Psychology, Social-science, Evolutionary
Biology).
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Table 3.2: Example of the payoff-matrix for the original prisoner’s dilemma

Prisoner B: cooperates Prisoner B: defects

Prisoner A: cooperates each serves 1 year A: 3 years prison
B : goes free

Prisoner A: defects A: goes free
B: 3 years prison Each serves 2 years

Table 3.2 is the basic example of the PD [20]. Both prisoners cannot communi-
cate and have no loyalty to each other. They are separated in two individual rooms.
The game is explained to them and they will have no opportunity for revenge or
reward outside the game. Cooperation means staying silent while defection means
turning on the other. B can either cooperate or defect
If B cooperates, A should defect, because going free is better than serving 1 year.
If B defects, A should also defect, because serving 2 years is better than serving 3
years.
Either way, A should defect. Parallel reasoning will show that B should defect.
Therefore regardless of what the other decides, each prisoner gets a better result
by betraying the other ("defecting"). The game shows cooperation is not beneficial
for anyone and results in a social dilemma (as defecting is the logical answer but
societies require cooperation).
The game was revised to apply to a broader range of examples (e.g Evolutionary
Biology) by introducing a different payoff-matrix [18]. This means that the reward is
now a benefit b and it introduces a cost of cooperation c, for instance by producing a
extracellular molecule (invertase in budding yeast Saccharomyces cerevisiae[6],[21]),
which benefits cooperators (producers) and defectors(non-producers).

Table 3.3: Evolutionary biologies payoff-matrix of the prisoner’s dilemma

other cooperates other defects
payoff to cooperator b - c -c
payoff to defector b 0

Even though defecting still is the dominant strategy for an individual, it can
be shown in spatial PD games that spatial separation occurs and small islands of
cooperators persist, but only if b > c [18]. A spatial PD game should be understood
as a lattice of individuals that can only interact(play the game) with a small sub-
population, for example, only their direct neighbors.
With this revised PD in the paper of Van Dyken et al. (2013) [6], it was shown
that 2-dimensional spatial population expansion can promote the evolution of co-
operation for b > c. They segregated the expansion process in two phases: Phase I
(genetic demixing) and Phase II (“survival of the fastest”). These phases’ interaction
creates a force promoting high productivity strategies such as cooperation.
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Figure 3.9: Population expanding in two spatial dimensions, with each site at coordi-
nate (x,y)representing a subpopulation connected to nearest neighbors by dispersal
according to Kimura’s stepping stone model [22]. A mixed homeland will eventu-
ally demix upon expansion into subpopulations. Cooperators (red) and defectors
(green).

Spite and selfishness(defectors) actually cause a reduction in total reproductive
output as these traits sweep to fixation[6]. This is known as the “Tragedy of the
Commons”. However, at the frontier, expansion speed is determined by absolute fit-
ness, generating a force of selection promoting genotypes that increase productivity.
Because subpopulations with cooperators expand faster (they increase productiv-
ity) than subpopulations of defectors, cooperators become enriched at the frontier
by overtaking neighboring defector’s placement.
The paper builds an experimental setup to test the effect of spatial expansion on
defector/cooperator dynamics by using cooperative sucrose metabolism in haploid,
vegetatively growing strains of the budding yeast Saccharomyces cerevisiae.
They genetically engineered two strains with different characteristics: one that pro-
duces invertase and one that does not. Yeast uses invertase in order to digest
disaccharide sucrose, which can not easily be imported into the cell, by forming
monosaccharides that are readily imported. In their strains [6], sucrose cannot be
imported at all due to manipulation of the genes MAL12 and MAL22. Because di-
gestion occurs externally, invertase producers (“cooperators”) create a public good
that is exploitable by non-producers (“defectors”), who gain a relative fitness ad-
vantage by not paying the fitness cost of production.
The defector strains still could grow in the absence of cooperators on the solid
medium (YEP + 2% sucrose +2% agar). The group assumes by consuming amino
acids available in YEP, although growth is slower than for/with cooperators.
Next, the defector strain was engineered to be resistant to cycloheximide, a translation-
inhibiting drug that limits growth by binding to ribosomal subunit Cyh2. This cre-
ated a system that experimentally could impose a tunable “cost of cooperation” by
varying the level of cycloheximide in the growth medium. Specifically, increasing the
cycloheximide concentration slows the growth of cooperators but not the resistant
defectors, leading to an increased “cost of cooperation”.
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Figure 3.10: Growth of colony. Cooperators fluorescently labeled in red, defectors
in green. Picture taken from [6]

Using my program I reimplemented the experimental setup by introducing two
cell-types “cooperator”(c) and “defector” (d) and different growth-rates grate,d1 ,
grate,d2 and grate,c, with grate,d1 < grate,c < grate,d2 . My cost of cooperation is de-
fined as c = grate,c

grate,d2
. Instead of a concentric growing colony like in the experiment I

chose a rectangular approach. Therefore the“homeland” from Figure 3.9 is now the
initial randomly placed cells at the bottom of the figures.
The cell environment has been simplified by assuming that cell-colonies grow prefer-
ably in width before in height [1], [4]. This means every cell has perfect access to
nutrients: O2 from above, disaccharide/YEP from the medium below. The assump-
tion fits as long the experimental duration-time t is set smaller then the cells need
to spread over the whole flat area of the computational domain. If cells far from
the edge divide, internal pressure builds up that will promote a upward force that
pushes cells higher.
The signal molecule S is now the concentration of invertase and the “defector” strain
does not add anything to the calculation of equation (2.20), which means if a defec-
tor is too far away from cooperators it will grow with grate,d1 . Because invertase is
a “public good”, a positive feedback is set.
Due to my assumption for the cell environment, interesting parameters for varia-
tion of the behavior of my model are in equation (2.20) so D, γ, Son and K. As
mentioned in 2.Theoretical Foundations γ and D basically counteract each other,
therefore varying one gives a good impression of their influence. For K and Son the
same reasoning applies.

(a) Colony with K = 19.0. (b) Colony with K = 10.0.

Figure 3.11: Colonies with D = 7, Son = 18.0, γ = 7 and Lx = 100 but different K,
at time t = 30. Cost of cooperation = 0.5. Cooperators labeled in red, defectors in
green.

In Figure 3.11a, one can clearly see that my model can reproduce the spatial
separation for cells growing on a flat medium. Note that the right side with a higher
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concentration of cooperators grows faster and expands further than the left side with
a high concentration of defectors which is consistent with the findings in [6]. My
rectangular growth approach can be seen as small cut out section of a concentric
growing culture.
For comparison in Figure 3.11b K is significantly smaller than Son meaning cells
stay more easily “on” and the expansion is faster but no genetic demixing emerges.
This experiment has its faults because varying only K might give cooperators an
advantage. Defectors will always be turned “off” if K > Son and the neighbors’
influence is weaker. A single active cooperator cell will also turn “off”, which makes
little sense in this scenario because each individual cell strives to survive. Therefore
varying γ and with it the typical travel distance of the invertase because λ =

√
D
γ

is more appropriate.

(a) Colony with γ = 1 (b) Colony with γ = 4

(c) Colony with γ = 7 (d) Colony with γ = 10

Figure 3.12: Colonies with D = 7, Son = 18.0, Lx = 100 and K = 18.0 but different
γ, at time t = 30. Cost of cooperation = 0.5. Cooperators labeled in red, defectors
in green.

In Figure 3.12 γ was variated while Son = K. This crucially changes the setting
since having one active cooperator benefits it’s surrounding close neighbors. This
sole cooperator now stays “on”, because there is no reason for an individual to stop
producing an essential molecule that it needs for survival.
One can see that even though the cooperators grow half as fast as the defectors,
they start to dominate the cell colony for higher values of γ. This can be explained
with the aforementioned effect that cooperators provide high productivity and this
promotes them to be enriched at the frontier.
From Equation (2.20) one knows the bigger γ becomes the neighbors’ influence on
the cells’ state-decision reduces. By comparing Figures 3.12(a-d) one can see this
effect clearly for the defectors since they do not produce invertase: the higher γ is
the defectors’ Si reduces and they are more likely grow with grate,d1 so they lose in
expansion speed and become less dense and more scattered between cooperators,
which grow with grate,c (with the exception of the right side in Figure 3.12d but that
results from the stochastic nature of the initial cell-placement).
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3.3.1 Discussion
It is important to note that two different simulation approaches come to a similar
conclusion. My program runs with a realistic approach: concentration-gradients
which the cell senses and then the internal regulatory mechanisms decide.
PD simulations are more general and simplify the problem by decision patterning3,
which means every cell plays the game in every time-step with its neighbors and
following set rules a cells decision is made(cooperate or not) and it reaps the accom-
panied benefit.
Using PD is useful to qualitatively show that, under the condition b > c, coopera-
tion promotes spatial separation of non-cooperators and cooperators. For such cases
PD simulation is better than my model because less computational power and time
is needed for the simulations, but at a cost of losing information of the underlying
complexity of the bacterial colony.
Next is the question of what would happen if the experiment duration t is bigger
than the spreading time to occupy the whole flat area of the computational domain.
A biofilm is bound to grow upward [1] and a concentration gradient will start to
develop [2] e.g for O2 from above and nutrients below: the highest cells have a high
O2- and low nutrient-concentration while the lowest cells have high nutrient- but low
O2-concentration. This can cause a response of the biofilm by cells physiologically
differentiating depending of their spatial location[2] and will be further discussed in
Chapter 4.Outlook.
To conclude, my program is consistent with the findings in VanDyek et al. 2013 [6].
It also shows that the diffusion distance of the public good molecule (so availability)
is an important factor for spatial separation.

3.3.2 Growth Model Idea
This experimental set-up can also be reinterpreted for the growth of biofilms.
Biofilms are a multicellular community characterized by a robust extracellular ma-
trix of proteins, amyloid fibres, exopolysaccharides and extracellular DNA (here
abbreviated to ExMat). This matrix has two interesting characteristics for compe-
tition between different strains and the growth of a biofilm. First the volume of
ExMat that one cell can produce is bigger than if the cell grows and divides, but at
a cost of cooperation (in my model it is implemented with a slower growing rate).
This means the producing strain can advance even faster in space as their volume
grows faster.
Secondly the ExMat of one strain can possibly kill cells of other strains [24].
Autoinducers are recognized as molecules that bacteria use for communication [4],[13]
and their concentration level is known to play a key role in regulating the production
of the extracellular matrix [1], [2].
The concentration level of autoinducers indicate to bacteria cells the current cell
density of its’ surroundings. Changes in cell density can result in regulation of gene
expression in response to it, a phenomenon defining quorum sensing [13]. Instead of
assuming the signal molecule is a public good like invertase, it is now an autoinducer
for the bacterial “cooperator” strain.
This changes the experiment. In the beginning I now have two planktonic bacterial
strains that are attached to a surface (one that produces an autoinducer and if the

3for more and detailed information on this subject with biological reference [18],[23]



18

condition is right ExMat and one that does not). The non-producer strain has a
growth rate grate,non while the producing strain has two. One for being it the “off”
state denoted grate,off and one for begin “on” denoted (grate,on). If the producing
strain is “on” it produces the ExMat which has a negative effect on the growth rate.
The relationship for the rates is as follows: grate,non ≈ grate,off = 2 · grate,on. ExMat
production is implemented by adding a sphere of the radius r = 0.4 to the system
at a random location next to the producing cell. The biofilm grows in height so
gravitational pull is added in the force calculation.

(a) Colony with Son = 14 (b) Colony with Son = 10

Figure 3.13: Simulation of growth model with different Son. Yellow the ExMat, blue
non-producers and red ExMat producing cells

In Figure 3.13 simulations with different Son are shown producing ExMat seems to
give the cells a spatial advantage because of their larger volume. By comparing
the simulations it seems that a reasonable low Son concentration (qualitative testing
showed not lower than Son = 10) leads to even better results in spatial occupancy .
This agrees with my intuition because when the producing cells are more dense
before producing ExMat it becomes more probable that cells of the same strain are
pushed towards the growing frontier.
The experiment was done in a similar fashion by Xavier et al. in 2007 [24] using
their model from 2005 [10]. They show that with an O2-gradient ExMat-producing
cells have a competitive advantage for nutrient-access similar to plants competition
for optimal light exposure.

Figure 3.14: Colony with O2-gradient after t= 20 days. Yellow the ExMat, blue
non-producers and red ExMat producing cells.

Previously mentioned in 3.3.1 Discussion and now clearly shown in Figure 3.14
concentration gradients for nutrients and O2 have a major impact on the biofilm
growth and spatial expansion. By comparing Figure 3.13 to Figure 3.14 one clearly
sees the current limit of my program and its possible predictions. I could not im-
plement a satisfying method for the calculation of molecule gradients other than for
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the signal molecule S. This will be further discussed in in Chapter 4. Conclusions
and Outlook.

3.4 Mutualism

Mutualism can be understood as interspecies cooperation
[8], [7], [25]. This means that species A produces some-
thing or has a waste product that benefits species B and
vice versa. In the paper of Momeni et al. from 2012 [7]
they show both theoretically and experimentally, using the
colony expansion of non-mating but cross-feeding strains
of budding yeast Saccharomyces cerevisiae (the strains
exchange amino acids) as a model system, that through
strong mutualism genetic demixing of the strains does not
occur in the spatial expansion process. The cross-feeding
is genetically engineered so that strain Lys+A− overpro-
duces lysine (L+) and leaks it into the medium, but can-
not produce adenine (A−) and its partner strain Lys−A+.
There is also a non-cooperative wild-typ for comparison.

Figure 3.15: Social
phenotype of Mutu-
alism

overproduces and leaks adenine (A+) but cannot produce lysine (Lys−).
To recreate such behavior a new parameter is introduced in my model called mutu-
alfactor µ. If j is a mutualist it is multiplied in Equation (2.20) to the added term.
In my simulation the mutualists are “cooperator” strains for themselves but also
benefit from the concentration level of the other strains’ production to the extend
of µ ∈ [0, 1].

(a) Colony with µ = 0.0 (b) Colony with µ = 0.25

(c) Colony with µ = 0.5 (d) Colony with µ = 0.75

(e) Colony with µ = 1.0 (f) Experimental data for strong mutualism [7].
Yellow and blue cells are mutualists. Image
taken from [8].

Figure 3.16: Simulations with different mutualfactor µ and the cell ratio R =1:1:1.
Simulations at t = 19 with parameters D = 7, Son = 16.0, K = 18.0, γ = 7.
Red and blue colored cells are mutualists, while green cells are non-mutualists(“lone
wolfs”).
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Figures 3.16 (a-e) show my simulations for the two mutualist strains plus a
cell lineage of non-producers. One strain (Lys+A−) senses the concentration of A
multiplied with the factor µ and its own concentration, while other strain (Lys−A+)
senses the concentration of Lys multiplied with the factor µ and its own.
One can see in these figures how varying µ changes the spatial structure of the
biofilm. The bigger the value of µ becomes the colony of the mutualists becomes
more intermixed, while the non-cooperator strain is excluded.
Weak mutualism is negligible relative to competition between the strains and genetic
demixing happens with resulting spatial separation (see Figures 3.15(a,b)). My
model is able to depict by straying from the experiment because the mutualist strains
are implemented as cooperators for themselves, even though the overproduction of
one amino and not producing another is not increasing productivity of the strain
overall.
Figure 3.16(f) shows experimental data for strong mutualism (image taken from the
paper of Momeni et al. in 2012 [7]). The simulations in Figure 3.16(d,e) have a
striking resemblance to the experimental data.

3.4.1 Discussion
The population in Figure 3.15e only looks like to be smaller than Figure 3.15d.
There is a scaling problem caused not only by my lack of picture manipulation
skills, but also comes from the force calculation method.
For every time step the force calculation calculates the next position of each cell
individually, and ideally places the cell shove radius distanced from all the neigh-
boring cells.
This is the source of the problem because running the method just once will not
result in perfectly distanced cells4. In order to solve this general problem of my
implementation I used the explicit Euler method.

It is a numeric solution for initial value problem
of simple ODEs:
y′(t) = f(t, y(t)), y(t0) = y0.
Choose a value h for the size of every step and set
tn = t0 + nh.
Now, one step of the Euler method from tn to
tn+1 = tn + h is
yn+1 = yn + hf(tn, yn). The calculated value of
yn is an approximation of the exact solution to
the ODE at time tn: yn ≈ y(tn). The smaller the
step size h is chosen, one needs more calculation
time but the approximated values are closer to
the exact solution. In Figure 3.17 one can see a
simple example.

Figure 3.17: Euler method in red
for unknown blue curve.

Even though I am not solving an actual ODE, this approximation method can
be used.

4when one cell is moved at a time then all the others have to be moved accordingly to it, and
then the next cell is moved and changes the arrangement so that the cell from before should also
be moved again and so on...
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(1) yn is one of the spatial coordinates (x,y,z).
(2 )f(tn, yn) is the force calculated for this axis as a distance the coordinate has to
be displaced respectively denoted fx, fy, fz.
(3) h is factor to make the step size smaller h = 1

10·max(fx,fy ,fz) .
Now by iteration the force calculation method and then changing the spatial co-
ordinates of the cells in this manner will approximate the ideal solution of shove
radius distanced cells (more iterations y smaller step size y closer to exact solution
but the program takes longer). Therefore this calculation is actually the most time
consuming method in my program. Normally I have my program set to 40 iterations
per actual time step. There is only a slight difference in the how stacked the cells are
if the iteration number is greater than 40, but the runtime is getting higher (with
40 iterations a simulation took 40 minutes; with 100 iterations 2 hours). While the
runtime for simulations with a low iteration number take mere seconds, it is hard
to make any meaningful observations from the visualization of the simulated biofilm
because all the cells are so stacked.

The observed simulations with high µ values have striking resemblance to the ex-
perimental data of the group [7]. The group also observed genetic demixing if the
mutualism is tuned down like in my model with low µ values. Both observations
can be explained with the same reasoning as discussed in Section 3.3 Prisoner’s
Dilemma.
High productivity is favored in the growing frontier so the non-cooperators are ex-
cluded. Depending on the µ value cells from the other strain become either excluded
(0 ≈ µ� 1) or included (0.5 . µ ≈ 1) in the growing frontier.
The lower the µ-factor becomes the strains seem to be more like non-cooperators
or competition and a clear boundary between the cells becomes visible(see Figure
3.16(a,b)).
More testing is needed for a quantitative estimation range of values for the specific
social phenotype(cooperate and intermixed or demixed and competitors) and the
influence of other parameters should be tested because in the simulation for µ = 1
the different mutualist cell strains are treated identical.
To conclude this section my model qualitatively can recreate existing experimental
and theoretical predictions [25], [7] for mutualism.

3.5 Chemical Warfare
Biofilms are characterized by a complex community structure, which is shaped by
competition between strains for resources such as nutrients and space [4],[8], differ-
ent forms of mutualism, cooperation and cheating [4], and interference/antagonism
through the production of toxins [5], [26]. This section is about toxins in microbial
colonies and biofilms.
In the paper of Weber et al. 2014 [5] three E.coli strains (toxin sensitive(denoted by
S), toxin resistant(denoted by R) and toxin producing strain (denoted by T)) were
genetically engineered to determine if longterm coexistence is possible and what pa-
rameters influence this coexistence.
They designed three different ecological scenarios by altering strain growth rates
through the expression of the fluorescent protein mCherry. A cyclic scenario with
grate,S > grate,R > grate,T , a hierarchical scenario with grate,R > grate,S ≥ grate,T and a
intermediate scenario with grate,S ≈ grate,R > grate,T . The ratio of the strains is also
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altered. These changes together try to depict different survival strategies that exist
in microbial colonies.
The grow rate relations of the scenarios and cell types are easily translated into my
program. The toxin becomes now the signal molecule and it is set to a deadly toxic
range of rtox = 2 ∗ Rtoxic Cell [5] so that means if a sensitive cell (S) is exposed to
that concentration level it dies.

(a) Colony in cyclic sce-
nario (S/R/T)

(b) Colony in cyclic scenario (S/R/T)

(c) Colony in hierarchi-
cal scenario (S/R/T)

(d) Colony in hierarchical scenario (S/R/T)

(e) Colony in intermedi-
ate scenario (S/R/T)

(f) Colony in intermediate scenario (S/R/T)

Figure 3.18: The three different scenarios with and the ratio R =(S/R/T)=1:1:1.
Left side experimental data from Weber et al. 2014 [5]. Right side simulations at
t = 19 with D = 7, Son = 10.0, γ = 7 and deadly toxin range rtox = 2 ∗Rtoxic Cell.

In Figure 3.18 the ratio of the different E.coli strains is the same. The com-
putational domain is viewed from above that means the colony advances on flat
ground. Therefore no gravitational force is added in the force calculation. This re-
sults in Figure 3.18(b) right side where two sensitive cells remain to this time step.
On the right one sees the experimental data of the Weber group [5] obtained after
48h incubation time, in all three scenarios the sensitive strain becomes extinct. By
comparing the figures for the different scenarios one can assume that strains with a
higher growth rate are able to expand quicker and occupy more space.
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Figure 3.19: The three different scenarios with ratio R=(S/R/T)=1:1:0.1. Left side
experimental data from Weber et al. 2014 [5]. Right side simulations at t = 19 with
D = 7, Son = 10.0, γ = 7 and deadly toxin range rtox = 2 ∗Rtoxic Cell.

In the second part of the experiment the ratio of the cells is changed to
(S/R/T)=(1:1:0.1). In Figure 3.19 one can see the resulting structure of the colonies.
By reducing the number of toxic cells the probability of death caused by the toxin
also lowers therefore it is possible for the sensitive strain to expand(see Figure 3.19).
By comparing the scenarios differences in the colony structure are evident. As the
only growth rates differ between the scenarios it is reasonable to assume that growths
rates have an substantial impact on the forming of a colony structure.
The R strain clearly dominates in more hierarchical scenarios ( Figure 3.18 and
3.19(c-f)). Therefore, toxin resistance seems to be a more effective survival strategy
than either rapid growth or toxin production in case of a hierarchical competition
network.

3.5.1 Discussion
The Weber group also did a modeling approach that is consistent with their experi-
mental findings [5]. It is a coarse-grain model that did not treat individual bacterial
cells as agents. Instead, each agent was a colonized lattice site which then repre-
sented the bacterial strain that locally dominated this area (patch) of the colony.
Therefore their model can be seen as a mesoscopic description of the bacterial ex-
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pansion process, while my modeling approach is more microscopic. For a big cell
population size the coarse-grain model is the better choice as it depicts a simplified
representation of the colony but as general aspects are conserved, they can be stud-
ied on a larger scale.
Whether a bacterial strain manages to survive a range expansion and to populate
the colony ’s expanding front seems to depend on two aspects: first, on its ability
to form initial clusters from which outward expansion may emerge; second, on the
stability of the arising sectors of high cell strain number to the annihilation of neigh-
boring cells (see the differences in the S strain population). Both of these aspects
are subjected to random genetic drift and may prevent the establishment of stable
cell strain compartments in a simulation (see the S strain in Figure 3.18).
One can see not only strength of numbers, the growth rate differences, or competi-
tion strategy alone determine the success of a cell strains long term survival. The
right balance between these factors has to be struck. Therefore modeling approaches
that can recreate current knowledge and than possibly make predictions for on still
unknown factors are of importance.
To conclude, my program’s output is consistent with the experimental and modeling
data from Weber et al. [5] even though the modeling approaches are on different
scales.
In Appendex A one can see a simulation with t ∈ [0, 19].



4 Conclusions and Outlook

In this work, I presented the versatility of my program. It can qualitatively recreate
many of the current findings in the field of microbial community life.
With slight changes and a creative mind this modeling approach can serve as a
handy tool in ones first steps to analyze new social phenotypes in biofilms or other
macrocolonies.
Regrettably there was no time to implement an adequate method to build concen-
tration gradients for environmental molecules (like O2 or nutrient uptake). This
would not change my current findings but consequently narrows down the range of
conclusions and predictions one can make with my model.
For the future of my program there are two possible steps.
The first step is finding more natural instances of cell-cell communication which my
current program can possibly tackle e.g. a simplified version yeast mating process.
The second step is to thoroughly recreate the natural habitat of biofilms. As al-
ready mentioned in Section 3.3 concentration gradients of essential environmental
molecules are missing from my program and these have a significant influence on
the biofilm structure [2] , competition [24] and the growth [24].

Mating yeast: Wolfgang Giese suggested the idea to implement the mating pro-
cess of budding yeast Saccharomyces cerevisiae [27]. Now follows a basic description
of the mating process and yeast life cycle:
Yeast cells can be found in nature in a diploid as well as a haploid life cycle. Nor-
mally in their diploid phase, one diploid yeast cells can form into four haploid spores
by meiosis when nutrients are limited (in the beginning encased by a solid and pro-
tected structure called ascus).
In the haploid phase two mating types (MATa or MATα) exist, which can either
grow and divide or enter the sexual life cycle. These mating types communicate
via pheromones that are secreted into the extracellular medium. The pheromones
can be sensed by cell-surface receptors of the complementary mating type. In order
to mate, yeast cells arrest their cell cycle if the concentration level of the comple-
mentary mating factor is big enough, then typically cells grow towards the mating
partner, since yeast can not actively move. Due to this growth the cell shape changes
during mating. The shape is commonly referred to as a shmoo. These mating part-
ners of opposite type can form a zygote and this zygote enters the diploid life cycle
again.
The mating process is precisely coordinated and involves complex signaling and
communication principles that have been conserved throughout the evolution of eu-
karyotic cells.
I implemented a simplified version of this mating process. By assigning two cell
types which decide if they enter the sexual life cycle (state “on”) or stay haploid
(state“off”). This decision is made by comparing the concentration level of the com-
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plementary mating types’ pheromone, at the cells spatial coordinates, to a threshold
K. The two states have distinct characteristics. In the “on” state cells do not grow
anymore and the program checks if a complementary cell type which is also “on” is
close enough for them to fuse (the fusion range is set to 1.2 · RCell (simplified idea
for shmooing)). In the “off” state cells grow and divide.

Figure 4.20: Simulation of yeast mating at t = 19 with K = Son ≈ 0.27, Da ≈ Dα =
360µm2

s
and γ � D. Diploid cells black, haploid MATa-cells in green and haploid

MATα-cells in red

In Figure 4.20 one can see the current output of my implementation. Diploid as
well as haploid yeast cells are capable of mitosis, giving rise to two new cells in a
process called budding. Both(diploid and haploid) cells exhibit a preferred budding
direction. Usually, diploid cells follow a bipolar(the bud creation site changes e.g.
once on the right side than on the left side) and haploid cells an axial budding
pattern(e.g. keep building the bud on the right side). This is not implemented up
to date but is the next step along the way. After this the introduction of Bar1 might
follow. Bar1 is a molecule produced by MATa cells that cleaves the α-factor [28]
and that Bar1 promotes higher growth rates in subpopulations of only MATa cells
[27].
The significance of mating yeast is that it is a well orchestrated process. It exhibits
a lot of different elements of communication and signal-transmission processes which
are also important for both unicellular organisms and cell tissues. So therefore better
understanding and describing this process may contribute to solving fundamental
questions of cell biology.

Implement environment: To implement an environment my program needs a
solid method that can calculate the concentration of these environmental molecules
for every time step at every position or at least for every cell. This method will
basically depict the consumption of the cells. Based on the concentration levels dif-
ferent stress is on each cell and this can lead to differentiation of the cells’ physiology
caused by its spatial location in the biofilm [2].
To solve such diffusion equations, most groups [7],[10] use a finite difference time–domain
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method (Crank, 1979 [29]) with no-flow ( ∂S
∂y
) boundary conditions applied to the

bottom surfaces of the simulation domain, a constant influx from above and periodic
boundary conditions applied to the vertical sides of the domain. For implementa-
tion of this approach the time given for my bachelor thesis was too short. I have to
point out that Equation 2.20 for the signal molecule S is a simplified version of this
method.

It is of importance to me to mention that in all the presented papers the bacteria
or yeast strains are genetically altered to fit certain assumptions, of course this is
needed to be actually able to validate ones hypotheses and prove the theoretical
approach but makes the experiment artificial.
The future of the field I see in more complex experimental setups with a mix of the
wildtypes of bacteria which then possibly make up the inner workings of a human
mouth or the digestive tract. A bacteria Helicobacter pylori infection for instance
is known to increase the risk of gastric carcinoma [30]. Begin able to model the
interactions would possibly help prevent the infection all together or give a better
insight.
All in all my view on bacteria as single celled organisms has changed. The complex
structure and multicellular behavior bacteria can exhibit in biofilms and the new
properties (like resistances) they gain is material enough for research to continue for
decades.
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Appendix A

Methods: For Visualization I used Paraview Version 4.4 and the python library
of VTK-tools. The library turns lists into data sets that Paraview can interpret.
The code is written in python language 2.7.
I will build a repository on GitHub. There one can find the programs newest imple-
mentation and all the different implementations used for the simulations. The link
will be https://github.com/Nexia23/Bachelor.
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(a) Simulation at t = 0 (b) Simulation at t = 1

(c) Simulation at t = 2 (d) Simulation at t = 3

(e) Simulation at t = 4 (f) Simulation at t = 5

(g) Simulation at t = 6 (h) Simulation at t = 7

(i) Simulation at t = 8 (j) Simulation at t = 9

(k) Simulation at t = 10 (l) Simulation at t = 11

(m) Simulation at t = 12 (n) Simulation at t = 13

(o) Simulation at t = 14 (p) Simulation at t = 15

(q) Simulation at t = 16 (r) Simulation at t = 17

(s) Simulation at t = 18 (t) Simulation at t = 19

Figure 21: Simulation of cyclic scenario with ratio R =(S/R/T)=(1:1:1). With
parameters D = 7, Son = 10.0, γ = 7 and deadly toxin range rtox = 2 ∗Rtoxic Cell.
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