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Abstract

In this thesis different dimension reduction algorithms for linear, time-
invariant systems are applied to biochemical network models. A general
framework for the linearization of biochemical network models from the lit-
erature is shown and a way to export reduced order, linear systems to the
format Systems Biology Markup Language is developed. The well known
dimension reduction algorithms balanced truncation, singular perturbation
approximation and matrix-Padé-via-Lanczos are described and compared
for their computational cost and for the behaviour of their output models in
the time domain. Finally an open-source program for dimension reduction
of biochemical network models in the SBML format is introduced.

Inhalt

In dieser Arbeit werden verschiedene Dimensionsreduktionsalgorithmen für
lineare, zeitinvariante System auf mathematische Modell biochemischer Reak-
tionsnetzwerke angewendet. Es wird eine bekannte, generelle Möglichkeit
zur Linearisierung von Reaktionsnetzwerken erläutert und verschiedene Di-
mensionsreduktionsalgorithmen (Balanced Truncation, Singular Perturba-
tion Approximation und Matrix-Padé-via-Lanczos) werden aus der Literatur
aufgegriffen. Außerdem werden verschiedene Wege zum Export von dimen-
sionsreduzierten Systemen in das Format SBML gegeben. Die Reduktionsal-
gorithmen werden hinsichtlich ihrer Effizienz und Akkuranz bei biochemis-
chen Netzwerken verglichen. Schließlich wird ein quelloffenes Programm zur
automatischen Dimensionsreduktion für biochemische Reaktionsnetzwerke
diskutiert.
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Abbreviations

Abbreviation Name

SBML Systems Biology Markup Language
LTI system Linear, time-invariant system
SISO single-input-single-output
MIMO multiple-input-multiple-output
TFM Transfer-function matrix
BT Balanced truncation
SPA Singular perturbation approximation
AWE Asymptotic waveform evaluation
PVL Padé-via-Lanczos
MPVL Matrix Padé-via-Lanczos
AORGA Adaptive-order rational global Arnoldi
HSV Hankel singular value
SVD Singular value decomposition
flop Floating point operation
MSE Mean square error

Symbols

Symbol Name Definition

N Stoichiometric matrix
c Vector of metabolite amounts
v Vector of reaction velocities
c1 Vector of amounts of metabolites from class 1
c Vector of amounts of metabolites in steady state
∆c Difference from a concentration to its steady state value c− c

N1−2
3−4 Part of the stoichiometric matrix denoting the

influence of reaction from the classes 3 and 4
on metabolites from the classes 1 or 2

ε Substrate elasticities
Π Parameter elasticities
eM Matrix exponential of the square matrix M

∑∞
k=0

Mk

k!
M∗ Conjugate transpose of a matrix M
M−T The transpose of the inverse of the matrix M (M−1)T

 Imaginary number
√
−1
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Chapter 1

Introduction

As nowadays more and more kinetic information becomes available, bio-
chemical network models produced by system biologists get larger in number
and size. Building these models includes numerically demanding parameter
estimation (with tools like SBML-PET [1]) to fit a model to given experimen-
tal results. Usually, to lower the effort in parameter estimation, the small
model whose parameters are unknown is embedded into an environment
where peripheral substances of the model are kept at a fixed concentration.
Making this assumption, the parameter estimation procedure becomes fast.
Though, certain impacts that the rest of a cell’s metabolism might have on
the small model are neglected.

Since databases for both qualitative (e.g. KEGG [2], Reactome [3])
and quantitative (e.g. BioModels [4], JWS [5]) network models are being
constructed, information given by them can be integrated into model build-
ing processes. Models from these databases can be combined with a given
model (e.g. with SBMLmerge [6]) to gain a broader description of a cell’s
metabolism, but for the resulting big model parameter estimation might
become unfeasible.

A tradeoff between the needs for computational efficiency and accuracy of
the estimated parameters in a built small model is to add an environment of
models from databases to this model, reduce the dimension of the state space
of this environment, and estimate parameters in the small model afterwards.
The resulting model could be both, efficient in the parameter estimation
process and accurate in the description of effects the environment can have
on the small model.

A framework for the dimension reduction of biochemical network models
has been given in [7]. In this approach, a given big model that consists of
an inner model and an environment, is first divided into four classes as
shown in figure 1.1. Then, a steady state for the whole model is computed,
and the differential equations of all substances in the environment (classes
3 and 4) are linearized around this steady state. Afterwards, the linearized
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Figure 1.1: An artificial model in which the reaction network is divided into
an inner model, which should be preserved during the dimension reduction
process, and an environment that should be reduced. The diagram shows
a division into so-called location classes. Substances or reactions from the
inner model which are connected to elements from the environment are
sorted into class 2 (the border of the inner model) and analogously elements
from the environment connected to elements in the inner model into class
3. This classification is needed for the following treatment of biochemical
network models.

environment is reformulated into the standard form for linear, time-invariant
systems and reduced by the algorithm balanced truncation [8]. Thereby the
reactions and substances from class 3 are preserved as an interface to the
inner model.

This thesis uses a similar approach with fewer underlying assumptions.
Also further model reduction algorithms (singular perturbation approxima-
tion [9], and matrix Padé-via-Lanczos [10, 11]) are tested in this framework
on different models and compared for their efficiency and accuracy. One ma-
jor goal of this thesis is to create an open-source program named PyLESS
(Python MOdell REduction), which is able to perform model reduction on
different types of input models given in SBML format or in matrix form.
The implementation has been done in Python [12] in order to be able to
interact with a modeling tool developed at the Max Planck Institute for
Molecular Genetics (PyBioS [13]).

The algorithm PyLESS proceeds as described in figure 1.2, analogue to
the framework presented in [7]. Different methods of how the reduced order
models produced by the dimension reduction algorithms can be exported
to SBML are given in this thesis. SBML has been chosen as a format for
input and output models because it is likely to become one of the main
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SPAMPVLBT

SBML

Linearization

Steady state analysis

SBML

Figure 1.2: Flowchart of PyLESS: Input SBML files are linearized around
a steady state, then this system can be reduced by the algorithms bal-
anced truncation, singular perturbation approximation, or matrix Padé-via-
Lanczos to the desired order, and finally they are converted back to SBML
again.

standards in the description of biochemical network models. In this format,
which is useable for both, structural and mathematical descriptions of a
biochemical reaction network, the topology and the underlying differential
equations are stored in terms of substances (species) and reactions. These
reactions are used to describe ”real chemical reactions” and their kinetics.
Furthermore it is also possible to describe parameters and mathematical
equations that cannot be expressed in form of reactions (differential and
algebraic, via rate and assignment rules) in SBML. Additional features such
as compartments for the structuring of a model’s topology and conditional
expressions (events) are less important in this context.

This thesis is organized as follows: In section 2 the linearization of
metabolic network models is described. It mainly follows the ideas pre-
sented in [7] and describes ways to convert reduced order models into the
SBML format. Descriptions of the algorithms used, are summarized from
the literature in section 3. A comparison of different results of the model
reduction algorithms is given in section 4 and discussed in section 5. Refer-
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ences to the software that is used in PyLESS and parts of the Python code
are presented in the appendix.
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Chapter 2

Linearization of Biochemical
System Models

2.1 Linear, Time-invariant Systems

Figure 2.1: Linear, time-invariant system

A linear, time-invariant (LTI) system as illustrated in figure 2.1 can be
formulated in the standardized way

ẋ(t) = Ax(t) + Bu(t), t > 0, x(0) = 0,

y(t) = Cx(t) + Du(t), x ∈ Rn, u ∈ Rm, y ∈ Rp, (2.1)

where A ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n, and D ∈ Rp×m [14]. This represents
a system of n internal state variables x, which have an impact on themselves
through the matrix A, and are influenced by a vector of m external input-
variables u throught the matrix B. The vector y of external output-variables
is determined by x via the matrix C and additionally by u via the matrix
D. Such a system is called linear, because the rate of change of the internal
variables and the values of the external output-variables depend linearly on
x and u, which results in a proportionality between the input signal and the
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steady state of the output signal. Additionally, it is called time-invariant
because the matrices A,B, C, and D do not change in time.

This is often referred to as the state space representation in which one
interprets the vector x as a point in an n dimensional space. Simulating the
model over time can then be seen as observing the vector x moving through
that space. That is why this representation is also called the time domain
approach.

2.2 Metabolic Network Models

Metabolic reaction network models are very different to LTI systems. Gen-
erally, there are two ways of describing these models. The first description
declares the topology of the network in terms of a directed graph on the
chemical substances of a model, which are connected through reactions. An
example for such a topology is given in figure 1.1. The second way of describ-
ing a model is a mathematical approach. The concentrations or amounts of
the substances in a reaction network are represented by a vector c and the
system is now described as a vector of initial substance concentrations c(0)
and a differential equation that has an impact on the vector c in changing
the concentrations of the substances within in the system over time.

These two approaches can be combined into a single description of the
system. Again, the concentrations are regarded as a vector c having an initial
state c(0). Then, a vector of functions v(·) is introduced which represents the
reaction velocities of the reactions described in the topological view on the
system. Differential equations for the elements of the vector c can be seen
as linear combinations of these reaction velocities. Thereby the coefficients
in this linear combinations describe whether a certain substrate participates
in a reaction or not. It is negative if it is a reactant to this reaction, positive
if it is a product to this reaction, or 0. If this coefficient is non-zero, then
its absolute value also denotes in which stoichiometry it participates in this
reaction. For example a model with one single reaction O2 + 2H2 → 2H2O
with reaction velocity v1 has the system of differential equations

Ȯ2 = −v1

Ḣ2 = −2v1

˙H2O = 2v1.

(2.2)

These coefficients can be aranged into a matrix N , which is from now on
called stoichiometric matrix, so the system can be formulated in matrix form Ȯ2

Ḣ2
˙H2O

 =

 −1
−2
2

 · v1. (2.3)
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Usually the reaction velocities of a system are not constant. They depend
on parameters p and on current substrate concentration, which themselves
might also be affected by parameters. With respect to this, the standard
form of biochemical network models is denoted by

ċ = N · v(c(p), p). (2.4)

For analysis of the system it is usually observed in its steady state. The
steady state is a set of concentrations c under which the rate of change for
all concentrations equals zero

0 = N · v(c(p), p). (2.5)

The major difference between LTI systems and metabolic network mod-
els is that the reaction velocities are not neccessarily linear. As a matter of
fact in most cases they are highly non-linear as for example in the case of a
Michaelis-Menten kinetic

V =
VmaxC

C + Km
. (2.6)

To make use of the dimension reduction algorithms described in this thesis,
the non-linear metabolic network model has to be approximated by a model
in linear form. Prior to the presentation of this approximation/transformation
method, a few definitions have to be introduced.

2.3 Metabolic Control Analysis in Model Lineariza-
tion

As already pointed out, the reaction velocities of a metabolic network model
may be highly non-linear in terms of parameters and substrate concentra-
tions as shown in picture 2.2. Linearizing a reaction velocity means to
replace the original function, by an approximative function that is linear
in its input variables. For example a function, which only depends on one
substrate concentration and no parameter v(c), would be approximated by
the first order function

vlin(c) = v(c(0)) + v′(c(0)) · (c− c(0)), (2.7)

where c(0) is the substrate concentration at which the original function
should be approximated by a tangent and v′(c(0)) is the derivate of v at
c(0).

To approximate the reaction velocities of a metabolic network, two im-
portant questions have to be asked. (i) At which value of the variables the
linearized function should be a tangent to the original function? (ii) How
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Figure 2.2: Reaction velocity dependent on one parameter that is ap-
proximated by a linear function at a certain parameter value. While the
linear function estimates the original function well in a region around this
parameter value, the estimation gets worse further away from it.

to find the derivate of this non-linear reaction velocities with respect to a
certain variable?

The first question can be answered easily. In order to approximate the
behaviour of the original system in steady state, the reaction velocities are
linearized around the steady state values of the variables. To answer the
second question, two important measures from metabolic control analysis
[15, 16] have to be explained.

Definition 2.3.1 Substrate elasticities [15, 16]
Substrate elasticities at a certain point in concentration state space denote
the sensitivity of a certain reaction vk to a small change in the concentration
of a certain substance ci. So they define a derivate of a reaction velocity with
respect to a certain variable.

εk
i =

∂vk

∂ci
(2.8)

The derivates of all reaction velocities with respect to all substrate concen-
trations can be written in matrix form

ε =

 ε1
1 ε1

2 . . .
ε2
1 ε2

2
...

. . .

 (2.9)
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Definition 2.3.2 Parameter elasticities [15, 16]
Parameter elasticities are defined analogously to the substrate elasticities.
They denote the derivate of a certain reaction with respect to a certain pa-
rameter:

Πk
i =

∂vk

∂pi
(2.10)

The derivates of all reaction velocities with respect to all substrate concen-
trations can be written in matrix form

Π =

 Π1
1 Π1

2 . . .
Π2

1 Π2
2

...
. . .

 (2.11)

Making use of these two matrices, the linearization of a complete network
model can be defined as follows:

ċ = N · vlin(c(p), p), (2.12)

where

vlin(c(p), p) = v + ε · (c(p)− c(p)) + Π · (p− p). (2.13)

2.4 Linearization of Metabolic Networks of Model
Reduction

In this section the environment, which denotes the part of the complete
model that is to be reduced, is linearized and brought to the form of an LTI
system. This is required for all dimension reduction algotihms described in
this thesis. To simplify these steps, this is first done for the case in which
the reaction velocities do not depend on additional parameters.

For a linearization of only the ”to be reduced” part of the model a
reordering of the system’s equation

ċ = Nv(c) (2.14)

is done prior to this step (at this point we forget about the parameter de-
pendence). Here c and v are reordered according to their location classes
(as seen in the introduction):

c =


c1

c2

c3

c4

 v =


v1

v2

v3

v4

 . (2.15)
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Due to this reordering, it is possible two write the stoichiometric matrix as

N =


N1

1 N1
2 0 0

N2
1 N2

2 N2
3 0

0 N3
2 N3

3 N3
4

0 0 N4
3 N4

4

 , (2.16)

where N1
2 denotes the stoichiometry in which the substances from location

class 1 participate in reactions from class 2.

2.4.1 Parameter Independent Linearization

Using this reordering the differential equations for the concentrations of the
substances can be rewritten to

ċ1 = N1
1 v1(c1, c2) + N1

2 v2(c1, c2, c3)

ċ2 = N2
1 v1(c1, c2) + N2

2 v2(c1, c2, c3) + N2
3 v3(c2, c3, c4)

ċ3 = N3
2 v2(c1, c2, c3) + N3

3 v3(c2, c3, c4) + N3
4 v4(c3, c4)

ċ4 = N4
3 v3(c2, c3, c4) + N4

4 v4(c3, c4)

(2.17)

and partially linearized to

v3 ≈ v3 + ε3∆c

= v3 + ε3
2∆c2 + ε3

3∆c3 + ε3
4∆c4

v4 ≈ v4 + ε4
3∆c3 + ε4

4∆c4,

(2.18)

where ∆c = c − c. The restating of these equations to the standard LTI
form proceeds now as follows: At first one inserts

x =
(

∆c3

∆c4

)
, y =

(
∆c3

∆v3

)
and u =

(
∆c2

∆v2

)
(2.19)
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into equation (2.1) and then rewrites the system with the equations given
in (2.17):

ẋ(t) =
( ˙∆c3

˙∆c4

)
=
(

N3
2 ∆v2 + N3

3 ∆v3 + N3
4 ∆v4

N4
3 ∆v3 + N4

4 ∆v4

)
≈
(

N3
2 ∆v2 + N3

3 (ε3
2∆c2 + ε3

3∆c3 + ε3
4∆c4) + N3

4 (ε4
3∆c3 + ε4

4∆c4)
N4

3 (ε3
2∆c2 + ε3

3∆c3 + ε3
4∆c4) + N4

4 (ε4
3∆c3 + ε4

4∆c4)

)
=
(

N3
3 ε3

3 + N3
4 ε4

3 N3
3 ε3

4 + N3
4 ε4

4

N4
3 ε3

3 + N4
4 ε4

3 N4
3 ε3

4 + N4
4 ε4

4

)
·
(

∆c3

∆c4

)
+
(

N3
3 ε3

2 N3
2

N4
3 ε3

2 0

)
·
(

∆c2

∆v2

)
=
(
N3−4

3−4 · ε
3−4
3−4

)
· x +

(
N3

3 ε3
2 N3

2

N4
3 ε3

2 0

)
· u

y(t) =
(

∆c3

∆v3

)
≈
(

∆c3

ε3
2∆c2 + ε3

3∆c3 + ε3
4∆c4

)
=
(

I 0
ε3
3 ε3

4

)
·
(

∆c3

∆c4

)
+
(

0 0
ε3
2 0

)
·
(

∆c2

∆v2

)
=
(

I 0
ε3
3 ε3

4

)
· x +

(
0 0
ε3
2 0

)
· u

(2.20)

Restated in such a way, the part of the input model, which is to be
reduced, is in the standard form of LTI systems. The gained matrices can
now be used in model reduction.

2.4.2 Parameter Dependent Linearization

In case we want the kinetic parameters included into our linear system, we
have to rewrite the differential equations to

ċ1 = N1
1 v1(c1, c2, p) + N1

2 v2(c1, c2, c3, p)

ċ2 = N2
1 v1(c1, c2, p) + N2

2 v2(c1, c2, c3, p) + N2
3 v3(c2, c3, c4, p)

ċ3 = N3
2 v2(c1, c2, c3, p) + N3

3 v3(c2, c3, c4, p) + N3
4 v4(c3, c4, p)

ċ4 = N4
3 v3(c2, c3, c4, p) + N4

4 v4(c3, c4, p)

(2.21)

Linearization:

v3 ≈ v3 + ε3∆c + Π3∆p

= v3 + ε3
2∆c2 + ε3

3∆c3 + ε3
4∆c4 + Π3∆p

v4 ≈ v4 + ε4
3∆c3 + ε4

4∆c4 + Π4∆p

(2.22)
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The linearization is similar to the parameter independent linearization. At
first one inserts

x =
(

∆c3

∆c4

)
, y =

(
∆c3

∆v3

)
and u =

 ∆c2

∆v2

∆p

 (2.23)

into equation (2.1) and then rewrites the system with the equations given
in (2.21):

ẋ(t) =
( ˙∆c3

˙∆c4

)
=
(

N3
2 ∆v2 + N3

3 ∆v3 + N3
4 ∆v4

N4
3 ∆v3 + N4

4 ∆v4

)
≈
(

N3
2 ∆v2 + N3

3 (ε3
2∆c2 + ε3

3∆c3 + ε3
4∆c4 + Π3∆p) + N3

4 (ε4
3∆c3 + ε4

4∆c4 + Π4∆p)
N4

3 (ε3
2∆c2 + ε3

3∆c3 + ε3
4∆c4 + Π3∆p) + N4

4 (ε4
3∆c3 + ε4

4∆c4 + Π4∆p)

)
=
(

N3
3 ε3

3 + N3
4 ε4

3 N3
3 ε3

4 + N3
4 ε4

4

N4
3 ε3

3 + N4
4 ε4

3 N4
3 ε3

4 + N4
4 ε4

4

)
·
(

∆c3

∆c4

)

+
(

N3
3 ε3

2 N3
2 N3

3 Π3 + N3
4 Π4

N4
3 ε3

2 0 N4
3 Π3 + N4

4 Π4

)
·

 ∆c2

∆v2

∆p


=
(
N3−4

3−4 · ε
3−4
3−4

)
· x +

(
N3

3 ε3
2 N3

2 N3
3−4Π

3−4

N4
3 ε3

2 0 N4
3−4Π

3−4

)
· u

y(t) =
(

∆c3

∆v3

)
≈
(

∆c3

ε3
2∆c2 + ε3

3∆c3 + ε3
4∆c4 + Π3∆p

)

=
(

I 0
ε3
3 ε3

4

)
·
(

∆c3

∆c4

)
+
(

0 0 0
ε3
2 0 Π3

)
·

 ∆c2

∆v2

∆p


=
(

I 0
ε3
3 ε3

4

)
· x +

(
0 0 0
ε3
2 0 Π3

)
· u

(2.24)

Via these steps the part of the parameter dependent model, which is
to be reduced, can be brought to the form of standard LTI systems. In
the program PyLESS this model restatement is used to prepare the model
for reduction. The complete model with the linearized part (that is to be
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reduced in the following steps) is given by

ċ1 = N1
1 v1(c1, c2, p) + N1

2 v2(c1, c2, c3, p)

ċ2 = N2
1 v1(c1, c2, p) + N2

2 v2(c1, c2, c3, p) + N2
3 v3

ẋ =
(
N3−4

3−4 · ε
3−4
3−4

)
· x +

(
N3

3 ε3
2 N3

2 N3
3−4Π

3−4

N4
3 ε3

2 0 N4
3−4Π

3−4

)
·

 c2 − c2

v2(c1, c2, c3, p)− v2

p− p


(

c3

v3

)
=
(

c3

v3

)
+
(

I 0
ε3
3 ε3

4

)
· x +

(
0 0 0
ε3
2 0 Π3

)
·

 c2 − c2

v2(c1, c2, c3, p)− v2

p− p

 .

(2.25)

Two important facts about this equation system should be denoted. At
first, it contains as many differential equations as the original model plus
additional algebraic equations. Therefore this model might be computa-
tionally harder to simulate. And second, at first glance in the last equation
c3 seems to be dependent of c3. In the current form of the system this is
not a problem since the c3 vanishes from the formula as it is multiplied by
zero. But during model reduction this matrix (later referred to as D) might
change and the dependency would arise. This has to be kept in mind in
later steps.

2.5 The Reduced Order Model

After a reduction step from the next chapter that produces the matrices
Tl and Td, which define the environment reduction of the matrices (A,B, C
and D) from the LTI system (2.1) via a projection into a lower dimensional
space

xr = Tlx

Ar = TlATd

Br = TlB

Cr = CTd

Dr = D,

(2.26)
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one obtains a model of the reduced environment via implementation of the
following differential and assignment equations

ẋr = Arxr + Br

 ∆c2

∆v2

∆p

 = Arx + Br

 c2 − c2

v2(c1, c2, c3, p)− v2

p− p


(

∆c3

∆v3

)
= Crxr + Dr

 c2 − c2

v2(c1, c2, c3, p)− v2

p− p


(

c3

v3

)
=
(

c3 + ∆c3

v3 + ∆v3

)
(2.27)

with its starting values taken from the input model and determined by

xr(0) = Tl

(
c3(0)− c3

c4(0)− c4

)
(2.28)

As already pointed out, the assigments made in the equation system (2.25)
are problematic, because the variables in the vector c3 are determined by
the variables of the vector v2, which themselves depend on the variable in
the c3 vector.

c3 = c3 +
(

I 0
)
· x +

(
0 0 0

)
·

 c2 − c2

v2(c1, c2, c3, p)− v2

p− p

 . (2.29)

If a model reduction algorithm changes the matrix which is later referred
to as D, the zero matrix in this equation changes and a dependence might
arise.

A possible solution to this problem is to introduce another vector c∗3 that
is set by the assignment

(
c∗3
v3

)
=
(

c3

v3

)
+ Crxr + Dr

 c2 − c2

v2(c1, c2, c3, p)− v2

p− p

 . (2.30)

This vector is afterwards used to determine the real c3 by ”pulling” it after
itself

ċ3 = α · (c∗3 − c3), (2.31)

where α denotes a positive, real, big value. By this trick one avoids the
direct dependency of c3 on itself. After applying this trick, the final model
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reads

ẋr = Arx + Br

 c2 − c2

v2(c1, c2, c3, p)− v2

p− p


(

c∗3
v3

)
=
(

c3

v3

)
+ Crxr + Dr

 c2 − c2

v2(c1, c2, c3, p)− v2

p− p


ċ3 = α · (c∗3 − c3)

ċ1 = N1
1 v1(c1, c2, p) + N1

2 v2(c1, c2, c3, p)

ċ2 = N2
1 v1(c1, c2, p) + N2

2 v2(c1, c2, c3, p) + N2
3 v3.

(2.32)

A different idea is to solve equation (2.29) explicitly for c3 by linearizing
v2 around the steady state with the partition

Cr =:
(

C
(c3)
r

C
(v3)
r

)
Dr =:

(
D

(c3,c2)
r D

(c3,v2)
r D

(c3,p)
r

Dv3
r

)
,

(2.33)

(D(c3,c2)
r is here the part of Dr through which c2 acts on c3) in this equation

c3 =: c3 + C(c3)
r · x +

(
D

(c3,c2)
r D

(c3,v2)
r D

(c3,p)
r

)
·

 c2 − c2

v2(c1, c2, c3, p)− v2

p− p


≈ c3 + C(c3)

r · x + D(c3,c2)
r c2 −D(c3,c2)

r c2

+ D(c3,v2)
r

[
ε2
1c1 + ε2

2c2 + ε2
3c3 + Π2p

]
−D(c3,v2)

r v2 + D(c3,p)
r p−D(c3,p)

r p,

(2.34)

which would yield the following equations

c3 −D(c3,v2)
r ε2

3c3 = c3 + C(c3)
r · x + D(c3,c2)

r c2 −D(c3,c2)
r c2

+ D(c3,v2)
r

[
ε2
1c1 + ε2

2c2 + Π2p
]
−D(c3,v2)

r v2 + D(c3,p)
r p−D(c3,p)

r p

⇔ c3 = (I −D(c3,v2)
r ε2

3)
−1 · [c3 + C(c3)

r · x + D(c3,c2)
r c2 −D(c3,c2)

r c2

+ D(c3,v2)
r

[
ε2
1c1 + ε2

2c2 + Π2p
]
−D(c3,v2)

r v2 + D(c3,p)
r p−D(c3,p)

r p]
(2.35)

This solution might be more prone to additional errors, because of the lin-
earization of v2 in equation (2.29). But on the other hand it is not introduc-
ing additional differential equations. Since the aim of the whole procedure
is to reduce the number of differential equations, this solution should be
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favored. Applying this solution the final model reads

ẋr = Arx + Br

 c2 − c2

v2(c1, c2, c3, p)− v2

p− p


c3 = (I −D(c3,v2)

r ε2
3)
−1 · [c3 + C(c3)

r · x + D(c3,c2)
r c2 −D(c3,c2)

r c2

+ D(c3,v2)
r

[
ε2
1c1 + ε2

2c2 + Π2p
]
−D(c3,v2)

r v2 + D(c3,p)
r p−D(c3,p)

r p]

v3 = v3 + Cv3
r xr + Dv3

r

 c2 − c2

v2(c1, c2, c3, p)− v2

p− p


ċ1 = N1

1 v1(c1, c2, p) + N1
2 v2(c1, c2, c3, p)

ċ2 = N2
1 v1(c1, c2, p) + N2

2 v2(c1, c2, c3, p) + N2
3 v3.

(2.36)

2.6 Building a Reduced SBML Model

Converting a reduced model of the form (2.36) into SBML format is fairly
simple. At first it should be explained for the idea with the additional c∗3
variables and afterwards for the second idea of how a reduced order model
can be constructed.

In the beginning a new, artificial compartment with volume 1 is created.
This has to be done since all SBML species, which are the variables that
denote the amount of a modeled substance, have to be assigned a physical
space. It is assigned this artificial value since compartments from input
models are ignored by PyLESS. This is done as they are not part of the
matrix-form-input it is also supposed to handle. Then SBML species for
all the substances from the classes 1, 2, and 3 are created with the initial
amounts given in the input to the algorithm. The last SBML species to
be created are the variables given in the vector x. Since these variables
represent linear combinations of the variables given in the vectors ∆c3 and
∆c4, their initial amounts have to be derived from the formula (2.28).

As pointed out in section 2.5, the values of the variables in the c3 vector
cannot be set directly by an assignment. That is why additional SBML
parameters c∗3 are created for each variable in the vector c3. Since the values
for these parameters are later defined by assignments, their initial values
can be set to zero. Also all parameters from the input model are transfered
to the output model.

A feature for possibly shortening the size of the resulting SBML model is
the declaration of additional parameters v∗3. They are supposed to denote the
reaction velocities of the reactions from class 3. The values for these variables
can easily be set by equation (2.30). Storing the reaction velocities for the
reactions v3 in a vector allows us the definition of SBML reactions for the
reactions v3 with a value from the v∗3 vector as reaction velocity. Otherwise
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additional declarations of modifiers, which are SBML species that appear
in the reaction velocity term would have to be made. Applying this trick,
one does not have to extract SBML modifiers from v3 reaction velocities.
This saves computational costs in building the model and storage space for
left-out modifier declarations.

In a third step SBML rules are created. The SBML language provides
different types of rules, from which assignment rules (determining the value
of a variable) and rate rules (determining the derivate of a variable) are used
in this context. First, assignment rules for the values of the parameters in
the vectors c∗3 and v∗3 are created. The assigned values are lines from the
matrix equations for the vectors from (2.36). Second, rate rules for the
change of the amounts of the substances in the vector x are created. For
each amount the rate of change is again a line from the matrix equation for
the vector x from (2.36). In a third step, equation (2.31) has to be realized
by a set of rate rules for the substance amounts from the vector c3. In doing
so one has to set a value for the parameter α explicitly.

A heuristically determined order of magnitude for α is the time step size
of the plotting that is later used to compare resulting time courses. If the
solver would use the explicit Euler algorithm [17] with a fixed step size, this
would lead to exact results for the values in the c3 vector. But since the
solver should use neither explicit Euler nor fixed step sizes, this value is only
an approximation.

In the final step, the differential equations for the variables in the vec-
tors c1 and c2 are realized by SBML reactions. SBML reactions represent
chemical reactions and contain a list of all reactants and products with their
stoichiometry, an equation denoting the velocity of this reaction, a list of lo-
cal parameters, and a list of modifiers, which are substances that influence
the reaction’s velocity. Implementing the differential equations in SBML
reactions has the advantages that the inner model of the resulting SBML
file can be visualized and can be simulated easier. The assembling of the
SBML reactions can be done as follows: For all reaction velocities from the
vectors v1, v2, and v3 create a new SBML reaction with this velocity. Then
take the corresponding column from the stoichiometric matrix and extract
all non-zero entries. For each negative entry of the column create a new
reactant for the current reaction and set its stoichiometry to the absolute
value of the entry. For each positive entry of the column create a product
the same way.
To this simple scheme two exceptions have to be made. In case the algo-
rithm creates a reaction from the location class 3 , its velocity has to be set
to the corresponding parameter from the vector v∗3 (since the reaction ve-
locity has already been computed). In case the algorithm adds a substance
from class 3 as a reactant or product to a reaction, it has to add it as a
modifier instead. The reactions created must not modify substances from
the c3 vector, since these are already modified by SBML rate rules.
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Implementing the conversion to SBML for the second idea of how a
reduced order model can be created is a little more simple. No parameters
for the c∗3 and no differential equations for the lagging c3 have to be created.
Instead of assigning a value to the c∗3 parameters, the c3 are assigned values
by the equation given in (2.35).

With this simple scheme a reduced order SBML model can be created.
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Chapter 3

Dimension Reduction
Algorithms

3.1 General Model Reduction

In every model reduction algorithm following we try to approximate the
behaviour of an LTI system of order n (2.1) by a system

ẋr = Arxr + Bru, xr ∈ Rm

ỹ = Crxr + Du
(3.1)

of order m � n. This approximation is supposed to minimize an error be-
tween the transfer-function matrices (TFM) of the original and the reduced-
order model, where the TFM G of an LTI system is defined as follows [18, 19]:
By applying the Laplace transformation to (2.1) one obtains the system

sx(s) = Ax(s) + Bu(s)
y(s) = Cx(s) + Du(s), s ∈ C+, s = σ + ω

(3.2)

which can be rewritten to

y(s) = (C(sI −A)−1B + D)u(s) =: G(s) u(s). (3.3)

Via this operation the LTI system is transferred into the frequency domain.
This new function is interesting for input values ω, where ω > 0 denotes
the frequency of an input signal in the time domain under which the system
is observed.

The way the error between G and Gr (the TFM of the reduced order
model) is defined, is different among model reduction algorithms. Absolute
error model reduction algorithms (e.g. balanced truncation, adaptive-order
rational global Arnoldi) try to minimize

||G−Gr||∞ , (3.4)
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where

||G||∞ := sup
ω∈R

σmax(G(ω)), (3.5)

with σmax denoting the maximum singular value of G(ω). This leads to a
minimization of the total output error

||y − yr||2 ≤ ||G−Gr||∞ ||u||2 , (3.6)

where

||y||2 :=
(∫ ∞

−∞
y∗(t)y(t)dt

) 1
2

(3.7)

[20]. Relative error (e.g. balanced stochastic truncation [21]) and frequency-
weighted methods (e.g. frequency-weighted balanced truncation [22]) mini-
mize a weighted error

||Wo(G−Gr)Wi||∞ , (3.8)

where Wo and Wi are weighting TFMs. The latter methods are advanta-
geous if one needs a good approximation of the model over the complete
frequency range, because absolute error methods ”spend” much approxima-
tion accuracy on error peaks [23].

All the used error measures are defined in the frequency domain, but
the error bounds also hold for the time domain due to the Paley-Wiener
theorem, which is an analogue of the Parseval’s formula for the Laplace
transformation. For further information on this topic see [24].

An interesting property of the TFM representation of an LTI system
is, that it has an infinite number of representations in the time domain.
For example further dimensions can be added to an existing state space
representation of a system by expanding the matrices A,B, and C. As long
as the matrix C is only added zero vectors, these additional dimensions
do not affect the output y at all, which means that G remains unchanged.
Instead of using the state space vector x in the LTI system one can also use
a vector of linear-independent linear combinations from the variables in x
as a new vector. If one now changes the matrices A, B, and C with respect
to this linear combination, the input-output-behaviour of the system is not
altered. Because of this property the state space can be transformed with a
square matrix T of full rank

x→ Tx

A→ TAT−1

B → TB

C → CT−1

D → D

(3.9)

23



without affecting the TFM as proved by the following equation.

Gtransformed = CT−1T (Ts− TAT−1T )−1TB + D

= C(T (sI −A))−1TB + D

= C(sI −A)B + D

(3.10)

This invariance of the TFM will be used in all model reduction algorithms.
A further property of a TFM is the unique minimal number of dimensions

the state space representation has to have to produce the matrix G. This
number of dimensions is called the McMillan degree of a system. Reducing
the state space representation to this McMillan degree can be regarded as
removing redundant states and should always be the first step in model
reduction. As this reduction is part of balanced truncation, using BT as a
prior step before other reduction algorithms is favorable.

Model reduction can now be regarded as finding a state space trans-
formation into a lower dimensional space. So the aim of model reduction
algorithms is to find such an appropriate transformation. It should be noted,
that these transformations cannot use a matrix T−1 since T is no square ma-
trix. That is why in the following two matrices have to be determined for
the transformation as already seen in equation (2.26).

3.2 Balanced Truncation

Balanced truncation (BT) is one of the most prominent model reduction
methods. The idea behind it is to find a transformation for the state space
so that states, which are less affected by the input u do also contribute less
to the output y. These states are then removed from the system.
For a mathematical definition of how the transformation matrix T of equa-
tion (3.9) for BT can be constructed, at first a few definitions have to be
made.

Definition 3.2.1 (Controllable) A pair of (time and state space) start-
ing points (t0, x0) for an LTI system 2.1 is called controllable if a stepwise
continuous input function can be given, which moves the system into the
state x1 at time t1. A system is called controllable if for every starting point
(t0, x0) the system can be moved to every end point (t1, x1) where t1 > t0
[14].

Definition 3.2.2 (Observable) An LTI system 2.1 is called observable if
for every time point t1 after the starting time point t0 the system’s initial
state x0 can be deduced from the system’s state at that time point (x1) and
the input and the output function on the interval [t0, t1] [18].
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Definition 3.2.3 (Controllability and observability gramians) By ob-
serving an LTI system with Dirac’s delta-function

δ(t− t0) = lim
T→0

1
T

[u(t− t0)− u(t− t0 − T )]

with u(t− t0) =


1 for t > t0
1
2 for t = t0
0 for t < t0

(3.11)

[25] as an input for every component of the vector u, one gets the output
h(t) = CeAtB. This output can be factorized into a function for the state
variables x(t) = eAtB (for x(t0) = 0) and a function for the state to output
conversion η(t) = CeAt. The latter function would determine the output of
a system completely for the case of a zero-input. In this case the system
output is y(t) = η(t)x0. The controllability and the observability gramians
of the system are given by

Wc =
∑

t x(t)x(t)∗ =
∫ ∞

0
eAtBB∗eA∗tdt, (3.12)

Wo =
∑

t η∗(t)η(t) =
∫ ∞

0
eA∗tC∗CeAtdt. (3.13)

[26] It should be outlined that the Laplace domain response of the LTI system
under the delta-function is exactly the TFM of the system.

If one defines a controllability measure

Ec(p) = max
{
|pXf |2

}
(3.14)

where f denotes an input of limited energy (||f ||2 ≤ 1) that moves the
system’s states from x(−∞) = 0 to x(0) = Xf , X is a projection from
the function space to the state space (also called analysis operator [27])
and p denotes a row vector that produced a linear combination of the state
variables, this formula can be rewritten to

Ec(p) =
∫ ∞

0

∣∣peAtB
∣∣2 dt = pWcp

T . (3.15)

So Wc is a measure of control the input function has on the state of a system.
If one defines the output energy of a system by

Eo =
∫ ∞

0
|y(t)|2 dt, (3.16)

the observability gramian defines the relation of state starting point x0 to
the output energy for a system without an additional input u

Eo(x0) = xT
0 Wox0. (3.17)
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So Wo denotes a measure of observability for each dimension in the state
space. [28]

When a system is controllable and observable, it is also minimal (ac-
cording to the McMillan degree) and all eigenvalues of the product WcWo

are positive real numbers. The square roots of these eigenvalues are called
Hankel singular values (HSV) of a system. Since the HSV are invariants of
a system, they do not change under state space transformations. The idea is
now to find a transformation under which both gramians become equal and
diagonal and therefore have the HSVs on the diagonal. Such a realization
of the system is called balanced.

Theorem 3.2.1 The transfer matrix T for balancing of a stable, minimal
system can be gained from the equation

T = Σ
1
2 UT R−T (3.18)

where RT R = Wc is a Cholesky factorization of the gramian and UΣ2UT =
RWoR

T is a singular value decomposition of a symmetric matrix. Σ is here
equal to the balanced gramians.

Proof 3.2.1 [29]

TWcT
T = (Σ

1
2 UT R−T )(RT R)(R−1UΣ

1
2 ) = Σ (3.19)

T−T WoT
−1 = ((Σ−

1
2 )T UT R)Wo(RT UΣ−

1
2 ) = Σ (3.20)

�

It has been shown that also non-minimal systems can be reduced by
balanced truncation via the following reduction matrices [30, 31]. Instead
of using a Cholesky factorisation of the gramian, also full rank factors can
be used, which significantly reduces the dimensions of the matrices the al-
gorithm works with, since in most cases the gramians have a very low rank
[32]. In this case the projection matrices from equation (2.26) are denoted
by

Tl = Σ
1
2 V T R

Td = ST UΣ
1
2

(3.21)

If one now uses only the first r rows of the matrix Tl and the first r
columns of Td as a projection matrix for the model reduction from equation
(2.26), one removes states from the balanced system, which are ”difficult
to reach”, because of their small corresponding HSV in the controllability
gramian, and ”difficult to observe”, because of their small corresponding
HSV in the observability gramian. The system is then reduced to an order
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of r. For an implementation of BT making use of the sign function method
for solving both Lyapunov equations at once, see the appendix.

The advantages of BT are the preservation of stability [33] and the ex-
istence of the global error bound

||G−Gr||∞ ≤ 2
nm∑

k=r+1

σk, (3.22)

where nm is the McMillan degree of the system and σk is the kth Hankel
singular value in descending order [34]. For a proof on the error bound see
[28].

3.2.1 Computation of the Gramians via the Sign Function
Method

The computationally demanding part in BT is the computation of the grami-
ans, which can be derived from the Lyapunov equations

AWc + WcA
T + BBT = 0 (3.23)

AT Wo + WoA + CCT = 0. (3.24)

A fast method for the computation of the solutions to this equations is the
sign function method [35].

Definition 3.2.4 Sign function
Let

Z = S−1

(
J−l 0
0 J+

n−l

)
S (3.25)

denote the Jordan decomposition of a square real matrix Z, where J−l has
only eigenvalues with a negative real part and J+

n−l having all eigenvalues in
the right open complex half-plane. The sign function is defined as

sign(Z) := S−1

(
−Il 0
0 In−l

)
S (3.26)

[36]

The sign function has two interesting properties

• (sign(Z))2 = I, which is why the Newton iteration can be applied to
Z2 = I and

• sign(T−1ZT ) = T−1sign(Z)T for a square, regular, real matrix T .
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Theorem 3.2.2 Defining

Z :=
(

A W
0 −AT

)
,

T :=
(

I X
0 I

)
,

T−1ZT =
(

A AX + XAT + W
0 −AT

) (3.27)

one can find the unique solution to the equation AX + XAT + W = 0 for a
stable matrix A via the solution of the sign function

sign(Z) =
(
−I 2X
0 I

)
. (3.28)

Proof 3.2.2 By the definition of T and Z it is clear that

sign(Z) = sign
(

T

(
A 0
0 −AT

)
T−1

)
= T sign

((
A 0
0 −AT

))
T−1.

(3.29)

Since A is stable, all of its eigenvalues have a negative real part. Therefore,
−AT has all of its eigenvalues in the right open complex half-plane. That is
why the following equation is a Jordan decomposition(

A 0
0 −AT

)
= I

(
A 0
0 −AT

)
I, (3.30)

and

sign
((

A 0
0 −AT

))
=
(
−I 0
0 I

)
. (3.31)

So

sign(Z) = T

(
−I 0
0 I

)
T−1

=
(
−I 2X
0 I

) (3.32)

[36] �

Computationally this is done via the Newton iteration

Zk+1 ←
1
2
(Zk + Z−1

k ), (3.33)
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which converges against the solution to the sign function. [24]
A faster convergence can be achieved by scaling Zk in each step. Various
factors for this scaling have been suggested, but the most frequently used
are norm scaling, which generally results in the fastest convergence and
approximate norm scaling whose computation can be parallelized [37].

This computation via the sign function method is computationally ex-
pensive, because it requires the computation of the inverse of A in every
iteration step. Luckily the number of iteration steps is independent of the
dimension (n) of A, but still the required time of this algorithm is O(n3)
if A has no special structure, which can be exploited in the inversion step.
The other steps in the BT algorithm do not contribute that much to the
computational cost. Singular value decomposition also requires O(n3) flops
(floating point operations), but is only computed once for the product of
the full rank gramian factors.

3.3 Singular Perturbation Approximation

A further popular model reduction algorithm is singular perturbation ap-
proximation (SPA) [9]. It is very similar to BT, but has different interesting
properties. While BT produces a reduced order model, which approximates
the behaviour of the original model under an input function of a high fre-
quency (G(∞)−Gr(∞) = 0), SPA approximates the model at frequency 0
(G(0)−Gr(0) = 0). This means for our system that the steady state error
of the state space representation is minimized. Thereby the error bound for
BT (3.22) remains also valid for a model reduced by SPA to the identical
order [38].

SPA works as follows: At first, the system is balanced via BT without
any truncation but the reduction to its McMillan degree (its minimal realiza-
tion). Secondly, the resulting balanced state space matrices (Abal, Bbal, Cbal)
are partitioned

Abal =
(

Abal
11 Abal

12

Abal
21 Abal

22

)
Bbal =

(
Bbal

1

Bbal
2

)
Cbal =

(
Cbal

1 Cbal
2

)
(3.34)

and joined to the reduced order model

Ar = Abal
11 + Abal

12 (Abal
22 )−1Abal

21

Br = Bbal
1 + Abal

12 (Abal
22 )−1Bbal

2

Cr = Cbal
1 + Cbal

2 (Abal
22 )−1Abal

21

Dr = D + Cbal
2 (Abal

22 )−1Bbal
2

(3.35)
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[39].

3.4 Padé via Lanczos

During this section the idea behind the implicit moment matching via the
Lanczos algorithm is pointed out. For simplicity the idea is first described
for the single-input-single-output (SISO) case (an LTI system with one in-
put and one output variable) and afterwards extended to multiple-input-
multiple-output (MIMO) cases.

A SISO LTI system

ẋ = Ax + bu

y = cx + du,
(3.36)

where A is an n×n matrix, b is a column vector, c is a row vector and d, u,
and y are numbers, has the transfer function

h(s) = c(sI −A)−1b + d. (3.37)

This transfer function has a Taylor expansion

h(s) = d + cb(s− s0) + c(sI −A)−1b(s− s0)2 + c(sI −A)−2b(s− s0)3 + ...

:= d + m0(s− s0) + m1(s− s0)2 + m2(s− s0)3 + ...

(3.38)

around s0, where the mz(s0) are called moments. Hankel has shown, that
from the first 2n moments of a minimal system, A, b, and c can uniquely
be derived [40]. (On non-minimal systems a minimal realization of degree
nmm could be derived from the first 2nmm moments, where nmm denotes
the McMillan degree of the system.) The idea of the Padé approximation is
now to produce a reduced order transfer function hr of dimension nr � n
only from the first 2nr moments at a given frequency s0.

hr(s) =
αnr−1s

nr−1 + ... + α1s + α0

βnrs
nr + ... + β1s + 1

(3.39)

where the α and the β can be computed via
m0 m1 · · · mnr−1

m1 m2 · · · mnr

...
...

...
mnr−1 mnr · · · m2nr−2




βnr

βnr−1
...

β1

 =


mnr

mnr+1
...

m2nr−1

 (3.40)

and 
α0

α1
...

αnr−1

 =


0 · · · 0 m0
... m0 m1

0
...

m0 m1
... mnr−1




βnr−1
...

β1

1

 . (3.41)
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This explicit moment matching is done in the asymptotic waveform eval-
uation (AWE) algorithm [41], which usually suffers from the numerically
ill-conditioned moment-matrix from equation (3.40), which is also often re-
ferred to as Hankel matrix. AWE is not explained in this context in detail,
but it should be mentioned that the resulting reduced order LTI system

(Ar, br, cr) in the form
[

0 cr

br Ar

]
has a tridiagonal structure and is there-

fore cheap in computation.

3.4.1 Implicit Moment Matching

A solution to this problem is given by the Padé-via-Lanczos (PVL) algo-
rithm, which computes a Padé approximation of a given system, without
computing the Hankel matrix. Therefore it (and other similar algorithms)
are often referred to as implicit moment matching algorithms.

Definition 3.4.1 Krylov space
A right Krylov space of order n defined by a matrix A and a given column
vector r is the space spanned by the vectors r, Ar, A2r, ..., An−1r, which are
called Krylov sequence.

Kn(A, r) = span
{
r, Ar, A2r, ..., An−1

}
(3.42)

A left Krylov space is defined analogously as the space spanned by the
vectors l, lA, lA2, ..., lAn−1, where l is a row vector.

Theorem 3.4.1 The vector spanning the Krylov space and the systems mo-
ments are connected.

Proof 3.4.1

m2z = c(A− s0I)−2zb

= c(A− s0I)−z(A− s0I)−(z−1)(A− s0I)−1b

=
[
((A− s0I)−z)T · cT

]T · [(A− s0I)−(z−1) · ((A− s0I)−1b)
]

m2z+1 = c(A− s0I)−(2z+1)b

= c(A− s0I)−z(A− s0I)−z(A− s0I)−1b

=
[
((A− s0I)−z)T · cT

]T · [(A− s0I)−z · ((A− s0I)−1b)
]
.

(3.43)

The right hand sides of these equations are nothing else but a product of
the zth vector spanning the left Krylov space induced by ((A − s0I)−T , cT )
and the zth ((z − 1)th) vector spanning the right Krylov space induced by
((A− s0I)−1, ((A− s0I)−1b)) [42].

�
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The idea is now to use a Krylov space projector Πnr = Π2
nr

= VnrW
T
nr

to
produce a reduced order model, where the columns of the matrix V have to
span the nth

r order right Krylov space of (A− s0I)−1 and (A− s0I)−1b and
the columns of W have to span the nth

r order left Krylov space of (A−s0I)−1

and cT . To obtain the formulas for the reduced order model, one starts with
the LTI system

ẋ = Ax + bu

y = cx + du.
(3.44)

Now the state space vector is approximated by a lower order vector x ≈
Vnrxr and the first equation is left multiplied with the matrix W T

nr
, which

results in a reduced order model

W T
nr

Vnr ẋr = W T
nr

AVnrxr + W T
nr

bu

y = cVnrxr + du.
(3.45)

So the transformation

xr := W T x

Ar := (W T
nr

Vnr)
−1W T

nr
AVnr

br := (W T
nr

Vnr)
−1W T

nr
b

cr := cVnr

dr := d

(3.46)

produces the reduced order approximation of the original LTI system.
Via this operation the matrix A is projected into the right Krylov space

and orthogonally into the left Krylov space. The original and such an re-
duced order system will have common first 2nr moments [43, 44]. That is
why this algorithm produces a Padé approximation of the original model. It
should also be denoted that the matrix W T

nr
AVnr has the same tridiagonal

structure, which is achieved by explicit moment matching.
For the PVL algorithm an inaccurate error bound exists [45], but since

this cannot easily be extended to the MIMO case, it is not shown here.

3.4.2 The Lanczos Algorithm

In the normal case constructing a Krylov space via a Krylov sequence does
not reveal an orthogonal or even near-orthogonal basis. Since such a basis of
the Krylov space is preferred for numerical reasons in further computations,
it is constructed in a different way.

Given a matrix A ∈ Rn×n, two starting column vectors r, l ∈ Rn, and
a desired order nr, the non-symmetric Lanczos algorithm constructs two
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biorthogonal sequences of vectors Vnr = [v1, ..., vnr ] ∈ Rnr×k and Wnr =
[w1, ..., wnr ] ∈ Rnr×k (V T

nr
Wnr = 0), spanning the left and right Krylov

spaces of (AT , l) and (A, r) [46].

Algorithm 1 Non-symmetric Lanczos
v1 = r/β1 and w1 = l/γ1 where β1 = ±γ1 and wT

1 v1 = 1
For j in 1..k:
. αj = wT

j Avj

. rj = Avj − αjvj − γjvj−1

. qj = AT wj − αjwj − βjwj−1

. βj+1 =
√
|rT

j qj |
. γj+1 = signum(rT

j qj)βj+1

. vj+1 = rj/βj+1

. wj+1 = qj/γj+1

[40]

Using the matrices derived via this algorithm results in a numerically better
conditioned model reduction.

3.4.3 Matrix Padé via Lanczos

Matrix Padé via Lanczos (MPVL) is an extension of the PVL algorithm to
MIMO LTI systems [11]. The idea behind it is to construct slightly different
Krylov spaces with respect to the matrices (A−s0I)−1, B and C, which also
contain the first moments of the Taylor approximation of the TFM, that are
denoted by

m0 = D, mz = C(A− s0I)−zB for z ≥ 1 (3.47)

in the MIMO case. Therefore another definition has to be made.

Definition 3.4.2 Block Krylov space
A right block Krylov space of nth

r order induced by the matrices A and R is
the space spanned by the columns of the matrix

[
R AR · · · Anr−1R

]
.

The left block Krylov space is defined analogously.

Analogously to (3.43), one can see that the first 2nr moments of an nth
r order

MIMO system again match the moments of the original system, since these
moments lay in space of the left and the right block Krylov space induced
by ((A − s0I)−1, (A − s0I)−1B) and ((A − s0I)−T , CT ) and are therefore
projected on themselves during reduction.

For the computation of the block Krylov subspace, the Lanczos algorithm
has to be extended. To compute a basis for the matrix that defines the block
Krylov space one can successively add column vectors from this matrix to
the basis and omit those, which are linearly dependent of the current basis.
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This process is from now on referred to as deflation or inexact deflation if not
only linearly dependent but also almost linearly dependent columns are not
taken into the basis. Another problem in the MIMO case is that the starting
matrices for the left and the right block Krylov space can be of different
dimensions. The last problem is a numerically one. During the iteration
two vectors are normalized (divided by their norm), which could result in a
division by zero, if the vectors are (almost) the zero vector. This can be dealt
with by incorporating a method called look-ahead [47], that continues the
Krylov space building process in such a case by constructing different Krylov
spaces, which are not completely biorthogonal anymore. An implementation
of this generalized Lanczos algorithm with deflation but without look-ahead
techniques can be found in the appendix. Due to the time limitation of
this thesis, the better algorithm could not be implemented. The algorithm
without look-ahead might have problems in constructing Krylov spaces of
relative high order, which results in problems when MPVL is supposed to
construct reduced models of a dimension near the McMillan degree.

Applying this algorithm to produce the block Krylov spaces Vnr and
Wnr , one obtains a reduced order approximation of a MIMO LTI system
via the transformation given in (3.46). Although the computation of the
Krylov spaces is quiet cheap (O(n2nr)) as it only includes O(nr) matrix-
vector-multiplications (O(n2)), the complete reduction takes O(n3) flops as
the inverse of the matrix (A − s0I) has to be computed explicitly. But
since this matrix is sparse, the O(n3) bound can in general be broken with
appropriate inversion algorithms. Currently no Python implementations of
such algorithms are known to the author. That is why the implemented
algorithm in the appendix still needs O(n3) flops to compute the reduction
matrices V and W .

3.4.4 Multi Point Padé Approximations

The Padé approximation can also be generalized to produce an reduced
order system, which tries to match moments for different expansion fre-
quencies. A method for producing such an approximation via a modified
Arnoldi algorithm has been developed in [48] and it has been transferred
to the Lanczos algorithm [49]. These methods are referred to as ”rational”
moment matching algorithms.

A newer moment matching algorithm called Adaptive-order rational
global Arnoldi (AORGA) [50] makes use of all aforementioned techniques
and also includes a global error bound, which makes it possible to adapt
the order of the reduced model to match with a given maximum error. It
should be noted that the rational algorithms cannot compute the reduction
matrices in O(n2) and therefore are not assumed to be much faster than
singular value decomposition (SVD) methods.

34



3.5 Decompositions of the A Matrix

3.5.1 Decomposition of A into a Regular and a Singular Part

Since for the model reduction algorithms based on SVD (BT and SPA) the
matrix A is required to be regular, a model with a singular matrix A has
to be decomposed before reduction. If one looks at the construction of the
matrix A in section 2.4, it is easy to see that it can get rank-deficient either
because of a row-rank-deficient N3−4

3−4 or a column-rank-deficient ε3−4
3−4. N can

get rank-deficient because of conservation relations inside the environment
(these do not need to be conservation relations of the complete input model)
and ε can contain columns (and also rows) of zeros if a substance in the
environment does not influence the velocity of a reaction of the environment.
Also other reasons for A becoming singular are possible, but these are the
most prominent ones.

To overcome this problem, a new matrix S is introduced, which decom-
poses the state space representation of a singular LTI system as follows:

A′ = S−1AS where A′ =
(

A′reg 0
0 0

)
B′ =

(
B′

reg

B′
sin

)
= S−1B

C ′ =
(

C ′
reg C ′

sin

)
= CS

x′ =
(

xreg

xsin

)
= S−1x.

(3.48)

Afterwards the regular part of the system (A′reg, B
′
reg, C

′
reg, D, xreg) can be

reduced to (A′r, B
′
r, C

′
r, D

′
r, xr) and combined again with the singular part,

which results in a reduced order model(
ẋr

˙xsin

)
=
(

A′r
0

)
xr +

(
B′

r

B′
sin

)
u

y =
(

C ′
r Csin

)( xr

xsin

)
+ D′

ru.

(3.49)

The needed matrix S can be computed via the following procedure [51]:

• Compute a ”swapped” Schur decomposition [52]

A = Q

(
A1 A2

0 A3

)
Q∗, (3.50)

where A3 contains all zero diagonal entries.

• Solve the Sylvester equation A1X −XA3 + A2 = 0
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• Compute

S = Q

(
I X
0 I

)
(3.51)

PROVE ME!

3.5.2 Decomposition of A into a Stable and an Unstable Part

The algorithms BT and SPA cannot be applied to unstable systems. There-
fore when trying to reduce an unstable system with these algorithms, one
has to employ further methods like modal separation [53, 54], which decom-
poses the systems TFM into a stable and an unstable part G = G− + G+,
reduce the stable system G− to G−

r , and combines the reduced stable and
the unstable part again Gr = G−

r +G+, or coprime factorisation of the TFM
[39, 55]. But since in this context no unstable system shall be treated none
of these methods have been implemented.

3.5.3 Shifting

A more simple idea to make A stable is to construct a matrix Ashift = A−sI,
where s denotes a small, positive, real number, and use this matrix for model
reduction instead of A. By choosing a suitable value for s the matrix Ashift

can be constructed to be regular (but numerically ill-conditioned) and stable.
The value s should be sufficiently large to make A invertible, but it should
be as small as possible since it significantly changes the behaviour of the
”shifted” LTI system.

For the implementation of the model reduction program this simple
method to make A regular has been chosen. A numerically stable imple-
mentation of the algorithm mentioned in 3.5.1 would have been too time
consuming since the needed ”swapping Schur decomposition” is not available
in Python. The ideas mentioned in 3.5.2 also have not been implemented in
PyLESS.
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Chapter 4

Experimental Results

4.1 Different Error Measures

Before the different model reduction algorithms can be compared, a measure
of approximation quality has to be developed. In the introduction of the
ideas behind model reduction algorithms, it has already been pointed out
that a minimization of the error between the original and the reduced order
TFM (via an ∞-norm) leads to a minimization of the error on the output
of the reduced order model (via the 2-norm) (see equation 3.6). Since this
error depends on the input to the reduced order model, the first idea of an
objective approximation error could be

E := ||y − yr||2 / ||u||2 . (4.1)

Defining an error like this would be a good idea if only the reduced order
model would be observed. But if the complete system including the inner
model and the reduced order environment is observed, feedbacks could arise.
The reduced order model’s output might feed back on its input through the
inner model, which could result in a partial cancellation of the error. In
general we would expect the model with the reduced order environment to
be a good estimation if the time courses of the concentrations are similar to
those of the original model.

A different measure of the approximation error, which also takes the
behaviour of the inner model into account, is the mean square error (MSE)
of the concentration time courses in the original and the complete reduced
order model, which is defined as follows

E :=
1

|c| · |t|
∑
ci∈c

tmax∑
ti=0

(ci,orig(ti)− ci,red(ti))2, (4.2)

where |c| is the number of compared substances and |t| is the number of
simulated time points, and is also used in linear regression. Then again, this
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measure is very sensitive to high errors in only a single variable. A more
robust measure with respect to possible outliers is a mean square relative
error (MSRE)

E :=
1

|c| · |t|
∑
ci∈c

tmax∑
ti=0

(
|ci,orig(ti)− ci,red(ti)|

max (|ci,orig(ti)| , |ci,red(ti)|)

)2

. (4.3)

On the one hand, this measure would better qualify the similarity in the time
courses also for low concentrated substances, but on the other hand it does
not quantify the difference in the same way as the MSE error. Especially for
models where the concentrations do not differ by orders of magnitude this
could be preferred. In the model comparison both error measures are used.

4.2 Example Models

Rohwer model of Sucrose Accumulation in Sugar Cane Culm
(Taken from Biomodels) [56]

The model of Rohwer (the topologies of this and the other models mentioned
is shown in the appendix) has been chosen as a first application of the model
reduction algorithms to biochemical network models, because many subsys-
tems of this model are stable. As mentioned before, unstable systems are
not regarded in the context of this thesis as they are harder to handle. But
since most of the models available in databases do not have that many in-
teresting stable subsystems, they have to be modified before this algorithm
can be applied to it. Artificially stabilizing an unstable system can be done
by adding a dilution to the system. So for all non-constant substances in the
model a new degrading reaction with the linear kinetic (vci = kci) is intro-
duced. Therefore all substances have more control over their degradation,
as a higher concentration leads to a faster degradation. So the values on
the diagonal of the system’s Jacobian, which are a measure for the control
of a substance on itself, get more negative. Due to this fact, the eigenval-
ues become more negative. Since a system is stable if all eigenvalues have
negative real parts, the system gains stability through this procedure. By
introducing these dilution reactions with an appopriate k, every model can
be converted to a different, but stable model. This has been done for the
rest of the model with k = 0.5.

The model describes the sucrose accumulation in a developing sugar cane
(Saccharum officinarum) culm tissue and the main anabolic and catabolic
processes sucrose is involved in. Since this model is very small, it has been
investigated for its behaviour if the system is completely reduced. This
is done by defining one single substance as the inner model and the rest
as environment. The behaviour has been observed for different substances
as the inner model, for different algorithms, for different desired orders of
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the reduced environment, and in the case of the algorithm MPVL also for
different expansion frequencies.

Hynne Model of Glycolysis (Taken from JWS) [57]

The Hynne model of the glycolysis has also been observed under dimension
reduction for a small inner model and a large environment. It describes the
glucose uptake, the glycolysis, and the ethanol fermentation, which alto-
gether is known as anaerobic respiration, in Saccharomyces cerevisiae. This
represents the normal way of glucose catabolism in yeast when not enough
oxigen is available for aerobic respiration. As an inner model the two vari-
able glucose concentrations in two different compartments and the transport
connecting them are declared. The rest of the model serves as an environ-
ment. The uptake of glucose in the model has been lowered by a factor of
10 in order to prevent the system from oscillating.

Hoefnagel Model of Glycolysis and Pyruvate Branch (taken
from JWS) [58]

On the model of Hoefnagel the principal idea of reducing an environment
built from modules is tested. The model contains a module for the glycol-
ysis and the pyruvate branch in Lactococcus lactis, where the glycolysis is
treated as the inner model and the rest as the environment. In fact, this
model has a very similar topology to the Hynne model, but it contains more
reactions downstream of pyruvate. This is also the only connection between
the glycolysis and the pyruvate branch, which makes the interface between
the inner model and the environment low-dimensional.

4.3 Comparison of Time Courses

In this section the simulation results of an original models are compared
to its linearized and its reduced order model. The different SBML files
produced by PyLESS have been compared by simulating them over time
using the SBMLodeSolver [59]. Then the results are plotted with GnuPlot
[75] and the mean square errors, that are introduced by the linearization
and the reduction, are computed.

At first it should be shown along time courses, that a computed reduced
order model is able to approximate the behaviour of the original model. In
the figures 4.1, 4.2, and 4.3 three simulations are performed. The pictures
show that the time courses produced by the Hoefnagel model reduced by
SPA to dimension 4 catch the major dynamics of the system. A closer look
at the time courses reveals, that minor movements in the state space are
only approximated.
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Figure 4.1: Original stabilized model of Hoefnagel simulated over time
until it reaches its steady state.

Figure 4.2: Linearized model simulated over the same period of time.
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Figure 4.3: Model reduced by SPA to dimension 4.

Most of the difference between this reduced order model and the original
one results from the linearization. The plot of the linearized model differs
more from the original model than from the reduced order one. This differ-
ence can also be quantified by observing the MSRE (MSE) which is 0.0035
(0.74) compared to the original model and 0.0018 (0.014) compared to the
model reduced by SPA. Having a closer look at the error measures reveals
that this difference is even more clear in the MSE values. This results from
the fact that the curves of the two substances with the highest concentration
differ clearly between the linearized and the original model. In the following
observations the linearization and the reduction error are treated separately
as the linearization error does not change for a certain model.

These figures are thought to convince the reader that reduced order
models perform well in simulation. Such time courses cannot be shown
for the following comparison of the algorithms and the discussion of the
appropriate order and frequency selection. Instead of that MSRE and MSE
are from now on used to quantify the quality of the approximation.
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Figure 4.4: MSRE for the Hoefnagel model reduced with different reduc-
tion algorithms (BT, SPA, and MPVL with expansion frequency 0.00001)
to different dimensions. The additional relative linearization error for this
model is 0.0035.
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Figure 4.5: MSRE for the Rohwer model reduced around fructose with dif-
ferent reduction algorithms to different dimensions. The additional relative
linearization error for this model is 0.0036.
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Figure 4.6: MSRE for the Hynne model reduced by different reduction
algorithms. The additional relative linearization error is here 0.46 and the
absolute one is 1.44.

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 0  2  4  6  8  10  12  14  16

M
ea

n 
sq

ua
re

 r
el

at
iv

e 
er

ro
r

Dimension of reduced order model

Hynne model reduced by different algorithms

BT
SPA

MPVL 0.00001j

Figure 4.7: MSRE for the Hynne model with altered initial conditions
reduced by different reduction algorithms. The initial concentrations for
the glucose (2 variables in two different compartments) has been increased
by two orders of magnitude. This leads to a significantly lower relative
linearization error of 0.18, but a higher absolute one (16.34).
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Figure 4.8: MSE for the Hynne model with altered initial conditions re-
duced by different reduction algorithms. The initial concentrations for the
glucose (2 variables in two different compartments) has been increased by
two orders of magnitude.

4.4 Order Selection

In this section the MSRE and the MSE for different models reduced by differ-
ent algorithms is observed. In the figures 4.4, 4.5, and 4.6 the approximation
error between the linearized and the reduced order model for three different
original models are compared. A trivial observation is that the reduction
error decreases as more dimensions are retained in the environment. In all
of these figures and in almost every test case the author came up with SPA
clearly performed best, while MPVL produced quite bad approximations.
The Rohwer model reduced around sucrose (not shown) can be taken as an
example on which BT produces very good results. Another observation is
that the algorithms did not produce a result in every case. The reason for
that is the SBMLodeSolver encountered problems during the simulation of
these models as probably contained too stiff differential equations. More of-
ten than the other algorithms MPVL failed to produce a result. The reason
for this is that MPVL automatically reduces the desired order of the envi-
ronment in case it encounters problems in constructing the Krylov spaces.
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If such a problem occured, the resulting approximation error is not shown
in the figures.

Comparing the relative linearization error with the MSRE values from
the figure leads to the observation that it has the same order of magnitude
as the reduction error of SPA for very low dimensions. So in most of the
cases the environment can be reduced to a very low dimension without
additionally increasing the approximation error due to the linearization.
Having said that it should also be clear that for most non-linear systems the
linearization error determines the quality of the approximation.

In the figures 4.6 and 4.7 the approximation error for a model with two
different initial conditions is observed. The second condition starts further
away from its steady state than the first one. As already mentioned, the
linearization error gets larger the further the system is draw away from
its steady state. This can be observed by comparing the absolute errors
introduced by the linearization which gets larger for the second conditions.
Surprisingly, the relative linearization error behaves controversially. The
reason for that might be that the linearized model is still able to approximate
the relative fast convergence towards the steady state in the beginning of
the time course. This fast convergence dominates the overall behaviour of
the system and so the relative error under the second conditions gets better.

Keeping this fast convergence towards the steady state in mind one can
explain the difference between the absolute and the relative error shown in
the figures 4.7 and 4.8. The absolute error decreases very fast in the be-
ginning for increasing dimensions of the reduced order model. It is already
very low for dimension 6. The relative error shows a slower decrease up
to dimension 10. This fact can be explained by the way the absolute error
reduction methods are supposed to work. As they try to reduce this kind
of error, for low dimensions the reduced order model approximates the be-
haviour of higher concentrated substances better. For these substances the
absolute error increase significantly already for a small relative error. As
the relative error does not decay as fast as the absolute error in the figures,
this fact is underlined. In case such a behaviour is unwanted, weighted error
methods should be employed for the model reduction.

4.5 Comparison of Different Frequencies as an Ex-
pansion Point for MPVL

For the model reduction algorithm MPVL the expansion frequency is im-
portant for the quality of the approximation. As shown in figure 4.9 the
resulting approximation error differs for a model reduced to identical order
at different expansion frequencies. A way of how to determine a good ex-
pansion frequency is not known in the literature. So, when using MPVL for
model reduction the user has to test the quality of the approximation for
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Figure 4.9: MSRE for the Rohwer model reduced by MPVL around fruc-
tose to different dimensions at various expansion frequencies.

different expansion frequencies by hand.

4.6 Comparison of Computational Efficiency

The following computations were performed on an Apple G4 1.2GHz 512
MB using Python 2.4.2 and SciPy 0.4.9.

As already mentioned before, the computational costs of the algorithms

Reduction algorithms

Model MPVL BT SPA

Rohwer (4 dim) 0.33 0.19 0.21
Hoefnagel (7 dim) 0.49 0.34 0.35
Hynne (20 dim) 0.34 0.61 0.60
Artificial (32 dim) 0.70 3.08 3.09

Table 4.1: Time needed for the reduction of different models to dimension
1 in seconds.
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differ. While the costs of BT and SPA scale cubically in the size of the state
space of the environment model, the costs of MPVL only scale quadratically
(excluding the computation of one inverse which costs again O(n3)). This
fact shows up when comparing the time needed for reduction of different
models by different algorithms (table 4.1). On the one hand, for models
with a high dimensional state space BT and SPA might not be feasible,
while the costs of MPVL could still be acceptable. On the other hand, with
respect to the number and the size of the models currently available in public
databases, the size of the models to be reduced will probably not exceed a
few thousand substances. That is why for relatively huge models the costs
of BT and SPA might still be acceptable.

By the way, in all tests performed by the author the computation of the
steady state took much longer than the reduction procedure, so this might
rather be the computational bottleneck of the whole procedure.

4.7 Comparison of Efficiency in Simulation of Dif-
ferent SBML Exports

Simulation time MSE

Reduced model Orig Exp1 Exp2 Exp1 Exp2

Rohwer (4 dim) 0.78 2.02 1.30 1.90 1.90
Hoefnagel (7 dim) 4.19 301.96 11.96 0.92 0.92
Hynne (20 dim) 3.71 3.64 3.09 3.62 3.65

Table 4.2: Comparison of the simulation time in seconds and the approx-
imation accuracy of SBML models exported via different methods. Exp1
denoted the export with the lagging c3 and Exp2 denotes the export includ-
ing the additional linearization of the class 2 reactions. In both cases the
original model has been reduced by SPA to dimension 1 and the simulation
time until steady state in the SBMLodeSolver [59] has been compared. For
both models the accuracy of the approximation is compared by the mean
square error of their simulated time courses.

On the one hand, during the various simulations of reduced order models
the second method of exporting SBML files has been significantly faster in
simulation of even small models. The reason for that might be, that the first
method introduces stiff differential equations by the rules for the lagging c3.
On the other hand, it looses accuracy by linearizing additional reaction ve-
locities. But due to the heavy performance gain and the observation that the
additional error for the linearization of class 2 reactions is insignificant com-
pared to the general linearization error, the second method is preferred by
the author. A comparison of the export methods in efficiency and accuracy
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is given in table 4.2. Without the use of this method the high-throughput
testing shown in this chapter would probably have been impossible as the
difference in the simulation time is even more remarkable on models reduced
by MPVL.

The reason for this performance gain might be, that the lagging c3 rules
often become quite stiff. This makes the simulation of such a model very
slow as the solver has to use a very small internal step size.
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Chapter 5

Discussion

5.1 Framework

Dimension reduction of metabolic network models is a good way of reducing
the computational costs for its simulation. When working on big network
models with computationally demanding algorithms like parameter estima-
tion, it might be crucial for the procedure to reduce the order of the model’s
state space beforehand. This can be done by making use of the algorithms
and the framework concluded in this thesis and implemented in the open-
source program PyLESS.

The framework developed in [7], which is employed in this thesis, has one
central issue: it needs to linearize the part of the model that is to be reduced.
Making this approximation, one remarkably changes the reaction velocities
of a system. While this approximation is good near the steady state, it gets
worse the further the system is drawn away from it. This issue has also
apppeared during simulation runs under different starting conditions. The
bigger the distance between starting state and steady state is, the bigger gets
the error of the linearization. Because of that potential users of this model
reduction framework should keep in mind that the reduced order model is
only a good approximation for states near the steady state.

Interesting about the framework is also the export to SBML. It has
been shown that both alternatives either suffered from losing accuracy or
efficiency in simulation. All simulations have been performed by the SBML-
odeSolver [59], which is nowadays used in many modeling tools such as
the popular CellDesigner [60]. That is why this solver has been chosen for
comparing the efficiency of the reduced order model in simulation. Though
this solver is optimized for structuring of differential equations in reactions,
and therefore is slower on SBML files stated in terms of rules, the simulation
time for some models could be reduced by dimension reduction (when using
the SBML output optimized for efficiency).

One drawback of the proposed method is that it is only applicable to
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stable metabolic network models. Most of the models in the Biomodels or
the JWS database are not stable and therefore the method cannot be directly
applied to them. Furthermore PyLESS does not support the complete SBML
language. For example events in the input mode are simply ignored. Though
this might make this method inapplicable to further models, it has not been
implemented, because full support of SBML is very complex. Currently only
species and reactions (which are the most common elements) are taken care
of.

5.2 Model Reduction Algorithms

During the comparison of simulation results of reduced artificial models, all
model reduction algorithms had examples on which they performed well.
Though, during the simulation of real biochemical network models, SPA
and BT yielded considerably better results. In most cases SPA performed
a little better than BT on the chosen examples. This is why SPA is in
general preferred by the author. In his opinion, methods based on SVD are
in general more appropriate for the reduction of metabolic network models
than Krylov space methods.

The failure of MPVL to yield a reduced order model that approximates
the concentration time courses is due to its structure. The algorithm tries to
construct a model, which approximates the response of the original system
under a given input function of a certain frequency. In metabolic network
models, the frequencies of the rate of change of either substance concentra-
tions or reaction velocities can in general not be assumed to be constant.
While for small, artificial reaction networks a frequency could be found that
leads to good approximation of the original model by the model reduced by
MPVL, for a bigger network such a frequency cannot be found. This can
be explained by the simple fact that the reactions in a big network usually
have very different reaction velocities and therefore behave very differently.
On the other hand, the implementation of the MPVL algorithm is not the
best known in literature. Various improvements of this algorithm have been
supposed in order to overcome certain problems like bad starting vectors
(look-ahead or implicit restarting [61, 40]). Due to the limited time avail-
able for this thesis not all of them could be implemented. This might also
contribute to the bad approximations produced by the MPVL algorithm in
this context.

Since the Krylov space based methods approximating only a single fre-
quency cannot be employed on metabolic network models it might be in-
teresting to observe the accuracy of models constructed by algorithms like
AORGA. But also these multi-point Padé methods suffer from the problem
of finding good approximation frequencies, which is nowadays in most cases
solved heuristically. So the employment of multi-point methods would def-
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initely require the development of methods to derive good approximation
frequencies for a given model. Another problem of multi-point approxima-
tions is that they are computationally harder to derive. While the costs of
single-point approximations scale quadratically in the order of the original
model’s state space, the multi-point approximations scale cubically like the
SVD based methods. So these methods do not have the advantage that they
are more easy to compute.

The difference in the approximations made by SPA and BT is less re-
markable than the difference to MPVL. Nevertheless, in most cases SPA
produced better results. The reason for that lays in the idea behind SPA
because it tries to approximate the behaviour of the original model at the
zero input-frequency (steady state). For linearized metabolic network mod-
els this seems to fit the dynamic behaviour better than an approximation
made at ∞ frequency. One reason for this might be that regardless of how
far away the starting point is from the steady state, after a short period
of relatively fast movement, the system converges only slowly towards the
steady state. Hence, most of the time under which the system is observed,
it moves relatively slow. This supports the idea of approximating the sys-
tem for small frequencies. As already pointed out, due to the linearization,
the model should be observed near the steady state. The further the sys-
tem is drawn away from this steady state, the worse gets the linearization
approximation. So the approximation of the linearized system under high
frequencies is useless anyways because such frequencies can only be observed
far away from the steady state, a state in which the linearization approxi-
mation is already bad. But despite of the details, the approximations made
by SPA and BT are still quite similar. In fact the difference between them
might in most cases be neglectable compared to the error introduced by the
linearization.

The SVD based methods do also contain a technique to choose the order
of the reduced system automatically, given a maximum relative error. This
has not been made use of, since an appropriate relative error should depend
on the already present linearization error. If the linearization error would
be relatively small, the reduction largely contributes to the final error. So a
higher dimension of the reduced model should be chosen. In case the error
introduced by the linearization is already large, the model could be reduced
to a much smaller dimension. The selection of the order of the reduced
model should always depend on the linearization error and therefore depend
on the degree of linearity of a given input model. Since no further suggestion
for the desired order can be given, it is up to the user to select it carefully.

One drawback of the algorithms used is that none of them is able to
preserve the passivity of a system during reduction. Passivity in electrical
terms means that the energy which comes out of the system, when observed
for a longer time, has to be lower than the input energy. The definition of
passivity, e.g. in [62], cannot so easily be extended to reduced metabolic
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network models. But it should intuitively be clear that a violation of any
property of the original system, even if its meaning in our case cannot be
outlined, could lead to a problematic behaviour of the reduced order model.
An Krylov space based method which preserves this property is PRIMA
(Passive Reduced-order Interconnect Macromodeling Algorithm) [63]. But
in general Krylov based methods have the problem that they trade accuracy
or computational complexity for the preservation of a certain property.

The number of algorithms compared in this thesis is very limited. How-
ever the application of further algorithms in this context might be interest-
ing. For example the already mentioned PRIMA method could be applied.
As other Arnoldi-based algorithms, which make only use of one Krylov space
as opposite to the Lanczos method, it is usually less accurate because only
nr moments are matched instead of 2n. On the other hand, these type of
algorithms is usually numerically more stable and is also able to preserve
stability [64]. One further interesting type of algorithms is the multi-point
approximation type (e.g. AORGA). Algorithms of this type have the ad-
vantage that they are able to approximate a model over a broader frequency
range and that they have a global error bound. From the SVD type al-
gorithms, Optimal Hankel Norm Approximation [65] could be applied to
metabolic network reduction, which usually yields very good approxima-
tions but trades the stability preservation for that. The application of an
SVD type algorithm which preserves the passivity of a system like Positive
Real Balancing [21] could also be investigated, since the other main impor-
tant features (stability preservation, existance of a global error bound) are
already included in most SVD type methods.

Since the absolute error methods employed in this thesis tend to approx-
imate the behaviour of the high concentrated substances better, weighted
error methods should also be taken into account. With such methods the
relative error on all substances, independent of their concentration, could
be reduced. One example of such a method is frequency-weighted balanced
truncation [22].

5.3 Conclusion

Altogether, model reduction has proven to be a good method for reduc-
ing the costs of the simulation of metabolic network models. As shown, the
computational costs of simulating these models are drastically reduced when
using the second method for the SBML export. Although the SVD methods
are relatively time consuming, their computational costs are minimal com-
pared to the costs of estimating parameters in an unreduced model. Hence,
this method makes the use of non-fixed environments in model construction
highly practicable and therefore may, together with the growing databases
for biochemical network models, revolutionize the process of model construc-
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tion.
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Appendix A

Implementation / used
Software

PyLESS heavily makes use of other open-source tools.

• General computation: Python [12], SciPy [66] (Numeric, NumArray,
Numpy), GSL [67], PyGSL [68]

• SBML reading and writing: libSBML [69]

• Conservation relations finding: PySCeS [70]

• Steady state computation: lsode (odepack) [71] (integrator), hybrd
[72] (solver)

• Elasticity computation: DerivVar (ScientificPython) [73]

• Model reduction: Python implementations of different algorithms from
different papers or from a MatLab script from Peter Benner, which has
been published together with an article

• Model comparison: SOSlib [59] using Sundials CVODE [74]

• Visualisation: GnuPlot [75], gnuplot.py [76] , GraphViz [77] , SBMLmerge
[6]
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Appendix B

Topologies of Models from
the Results Section

compartment

species

reaction /
enzyme

is substrate

is product

is modifier
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d-glucose

v2
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Figure B.1: Topology of the Rohwer model. Various substances are chosen
as the inner model. This figure and the following topologies have been drawn
with SBMLmerge.
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Figure B.2: Topology of the Hynne model. Glc and GlcX and the reaction
connecting them are chosen as the inner model.

56



compartment

species

reaction /
enzyme

is substrate

is product

is modifier

reversible

irreversible

phosphoenolpyruvate

v1

v10

alpha-d-glucose 6-phosphate

v2

v26

v27

pyruvate

v11 v12

v17

v20

beta-d-fructose 6-phosphate

v3

atp

v23

v28

v29

beta-d-fructose 1,6-bisphosphate

v4 v25

adp

v7

v19

(2r)-2-hydroxy-3-(phosphonooxy)-propanal

v6

glycerone phosphate

v5

nad+

orthophosphate

v18

2,3-bisphospho-d-glycerate

nadh

v16

v21

v22

v24

P3G

v8

P2G

v9

2-acetolactate

v13 v15

ACET

v14

coa

acetyl-coa

acetyl phosphate

ACAL

Glucin

G1P

BUT ACETOUTCellwall

udpTDP oxygen

ethanol

AC FOR

lactose

alpha-d-glucose

Figure B.3: Topology of the Hoefnagel model. The glycolysis is chosen as
the inner model.
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Appendix C

PyLESS code

The complete code of the program including a documentation can be down-
loaded from http://sysbio.molgen.mpg.de/pyless.

Balanced truncation

Taken from [24].

def duallyap(self,A,B,C):
"""Solve the stable dual Lyapunov equations.

Output: [ S ,R] ( full rank factors of the solutions)."""
# initialize
n = len(A)
iter = 0
tol = 10 * scipy.sqrt( n * self.threshold )
maxstep = 50
S = copy.deepcopy(B.getT())
R = copy.deepcopy( C )
E = scipy.eye(n)
Ac = copy.deepcopy(A)
Err = scipy.linalg.norm(Ac+E)
onemore = 0
convergence = (Err <= tol)
# repeat until convergence
while iter<maxstep and ((not convergence)

or (convergence and (onemore < 3))):
# invert A
[L,U,P] = lup(copy.deepcopy(Ac))
Y = L.getI() * P
Y = U.getI() * Y
# scaling of A for a faster convergence
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if Err > 0.1:
# frobenius norm scaling
d = scipy.sqrt( scipy.linalg.norm(Ac,ord="fro")

/ scipy.linalg.norm(Y,ord="fro") )
else:

d = 1
# Newton iteration step on A
Ac = (Ac/d + d*Y)/scipy.double(2)

# Iteration on the controllability gramian
S = self. super matrix ([[scipy.asmatrix(S)],

[scipy.asmatrix(d*S*(Y.getT()))]])/scipy.sqrt(2*d)
U,T,P = qrpt(copy.deepcopy(S))
U = scipy.matrix(U)
T = scipy.matrix(T)
P = scipy.matrix(P)
p = [line.index(1) for line in P.tolist()]
# computing the rank of T
[svd u, svd s, svd v] = scipy.linalg.svd(T)
r = [scipy.absolute(x) > 1e-13 for x in

scipy.asmatrix(svd s).flatten().tolist()[0]].count(True)
S = T[:r,p]

# Iteration on the observability gramian
R = self. super matrix ([[scipy.asmatrix(R)],

[scipy.asmatrix(d*R*Y)]])/scipy.sqrt(2*d)
U,T,P = qrpt(copy.deepcopy(R))
U = scipy.matrix(U)
T = scipy.matrix(T)
P = scipy.matrix(P)
p = [line.index(1) for line in P.tolist()]
# compute rank of T
[svd u, svd s, svd v] = scipy.linalg.svd(T)
r = [scipy.absolute(x) > 1e-13 for x in

scipy.asmatrix(svd s).flatten().tolist()[0]].count(True)
R = T[:r,p]

# Error computation
Err = scipy.linalg.norm(Ac+E,ord="fro")
iter = iter + 1
convergence = Err <= tol
if convergence:

onemore = onemore + 1
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# return the full rank factors
S = S.getT() / scipy.sqrt( scipy.double(2) )
R = R / scipy.sqrt( scipy.double(2) )
return [S,R]

def balanced truncation(self,A,B,C,D,desired order,tolerance=0):
"""Balanced truncation of a linear, continuous-time system using the
SR implementation based on spectral projection.

Original Matlab script from Peter Benner.
Input: A,B,C are matrices, desired order is the desired order of the
output system, if desired order < 0 , tolerance is absolute error
tolerance for the output model .

Output: Ar,Br,Cr, abserr ( )"""
n = len(A)
# solve Lyapunov equation
[S,R] = self.duallyap(A,B,C)

# compute the error on truncation
[U,hksv,V] = scipy.linalg.svd(S.getT()*R.getT())
V = scipy.asmatrix(V).getT()
s = scipy.minimum(len(S.getT()),len(R))
if desired order<=0:

abserr = 0
desired order = s+1
while abserr < (tolerance / scipy.double(2)) and desired order > 1:

desired order = desired order-1
abserr = abserr + hksv[(desired order-1)]

if desired order > len(hksv):
desired order = len(hksv)

# truncate the matrices
S1 = scipy.asmatrix( scipy.diag( scipy.sqrt( hksv[:desired order] ) ) )
U1 = scipy.asmatrix(U[:,:desired order])
V1 = scipy.asmatrix(V[:,:desired order])

# compute the transfer matrices
if hksv[0] > 0:

self.Tl = S1.getI() * V1.getT() * R
self.Tr = S*U1 * S1.getI()

else:
# the part of the model has no influence on the rest!
self.Tl = scipy.matrix([]).reshape(0,n)
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self.Tr = scipy.matrix([]).reshape(n,0)

# compute the reduced order model
self.Ar = self.Tl * A * self.Tr
self.Br = self.Tl * B
self.Cr = C * self.Tr
self.Dr = copy.deepcopy( D )

MPVL algorithm with deflation but without looka-
head

Taken from [11].

def deorthogonalize(R,L):
"""Resorts R and L so that the first min( len(R),len( L)) vectors are
not orthogonal."""
# check the colvectors to be orthogonal
threshold = scipy.MachAr().eps
Rt = copy.deepcopy(R.getT())
Lt = copy.deepcopy(L.getT())
r length = len(Rt)
l length = len(Lt)
r return = []
l return = []
# remove zero vectors
for i in range(r length-1,-1,-1):

if Rt[i,:]*Rt[i,:].getT() < threshold:
Rt = super matrix ([[Rt[:i,:]],[Rt[i+1:,:]]])
r length = r length - 1

for i in range(l length-1,-1,-1):
if Lt[i,:]*Lt[i,:].getT() < threshold:

Lt = super matrix ([[Lt[:i,:]],[Lt[i+1:,:]]])
l length = l length - 1

if r length == 0 or l length == 0:
print "Krylov space cannot be build due to empty input matrices."
sys.exit()

# determine which is the larger matrix
if l length < r length:

smaller = Lt
smaller return = l return
bigger = Rt
bigger return = r return

else:
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smaller = Rt
smaller return = r return
bigger = Lt
bigger return = l return

# the resorting begins
s remove indices = []
for s index in range(len(smaller)):

# check all smallers against the bigger ones
for b index in range(len(bigger)):

if smaller[s index,:] * bigger[b index,:].getT() > threshold:
# append the orthogonal vectors to the return matrices
smaller return.append( smaller[s index,:].tolist()[0] )
bigger return.append( bigger[b index,:].tolist()[0] )
# remove them from the working matrices
bigger = super matrix ([[bigger[:b index,:]],

[bigger[(b index+1):,:]]])
s remove indices.append(s index)
# removing the vectors from the smaller matrix has to be
# shoved to a different iteration
break

# remove also from the smaller matrix
s remove indices.reverse()
for s index in s remove indices:

smaller = super matrix ([[smaller[:s index,:]],
[smaller[(s index+1):,:]]])

# put the remaining vectors from the working matrices
# into the return matrices
for s index in range(len(smaller)):

if len(smaller[s index,:].tolist()[0]) == 0: continue
smaller return.append( smaller[s index,:].tolist()[0] )

for b index in range(len(bigger)):
if len(bigger[b index].tolist()[0]) == 0: continue
bigger return.append( bigger[b index,:].tolist()[0] )

# make them matrices again
l return = scipy.matrix(l return).getT()
r return = scipy.matrix(r return).getT()
return r return, l return

def matrix lanczos(A,n,R,L):
""" MPVL algorithm.

Input: A <- the matrix from which both
Krylov spaces are contructed
R,L <- matrices of column-vectors
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which induce the right and left
block Krylov space

n <- the desired order of the Krylov
spaces

"""
threshold = scipy.MachAr().eps * len(A)
# for convenience
A = scipy.asmatrix(scipy.double(A))
R = scipy.asmatrix(scipy.double(R))
L = scipy.asmatrix(scipy.double(L))
# preperation against breakdown
R,L = deorthogonalize(R,L)
# initialize
t = {}
ttilde = {}
m = len(R.getT())
p = len(L.getT())
Delta = []
Vdl = {}
Wdl = {}
V = {}
W = {}
mu = -m
sigma = -p
Mu = []
Sigma = []
Iv = []
Iw = []
# iteration
for index in range(n):

while True: # produce the right block Krylov space
mu = mu + 1
if mu == index+1: break
if mu <= 0:

# take from the starting vectors
v = R[:,(mu+m-1)]
iv = 0

else:
# generate new vectors
v = A*V[mu-1]
iv = scipy.maximum(0,Sigma[mu-1])

# biorthogonalize
I = range(iv,index) + [i for i in Iv if i<iv]
for i in I:
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t[i][mu] = W[i].getT()*v / Delta[i]
v = v - (V[i] * t[i][mu])

# deflation
if scipy.linalg.norm(v)<threshold:

if mu > 0 and True in [scipy.absolute(x) > threshold
for x in v.flatten().tolist()[0]]:
Iw = Iw + [mu]
Vdl[mu] = copy.deepcopy(v)
Wdl[mu] = copy.deepcopy(w)

else:
break

while True: # same for the left Krylov space
sigma = sigma + 1
if sigma == index+1: break
if sigma <= 0:

w = L[:,(sigma+p-1)]
iw = 0

else:
w = A.getT()*W[sigma-1]
iw = scipy.maximum(0,Mu[sigma-1])

I = range(iw,index) + [i for i in Iw if i<iw]
for i in I:

ttilde[i][sigma] = (V[i].getT()*w) / Delta[i]

w = w - (W[i] * ttilde[i][sigma])
if scipy.linalg.norm(w)<threshold:

if sigma > 0 and True in [scipy.absolute(x) > threshold
for x in w.flatten().tolist()[0]]:
Iv = Iv + [sigma]
Vdl[sigma] = copy.deepcopy(v)
Wdl[sigma] = copy.deepcopy(w)

else:
break

# update t
if index not in t: t[index] = {}
t[index][mu] = scipy.linalg.norm(v)
if index not in ttilde: ttilde[index] = {}
ttilde[index][sigma] = scipy.linalg.norm(w)

# in case of a breakdown
if t[index][mu] == 0: t[index][mu] = 1
if ttilde[index][sigma] == 0: ttilde[index][sigma] = 1

# generate new vectors
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V[index] = (v/t[index][mu])
W[index] = (w/ttilde[index][sigma])
# add new coefficients
Mu.append(mu)
Sigma.append(sigma)
Delta.append(W[index].getT()*V[index])
if scipy.absolute(Delta[index]) < threshold:

break
# build matrices V and W
keys = [x for x in V.keys() if x >= 0]
keys.sort()
V = scipy.asmatrix(scipy.double( super matrix ([[V[x] for x in keys]])))
keys = [x for x in W.keys() if x >= 0]
keys.sort()
W = scipy.asmatrix(scipy.double( super matrix ([[W[x] for x in keys]])))
return [V,W]
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