
 
 
 

MATHEMATISCH-NATURWISSENSCHAFTLICHE FAKULTÄT I 

INSTITUT FÜR BIOLOGIE 
 

Bachelorarbeit 

 

ZUM ERWERB DES AKADEMISCHEN GRADES 

BACHELOR OF SCIENCE 

 

„Theoretische und computergeschützte Analyse  negativer Rückkopplungsmechanismen 

sowie der Dosis-Wirkungs-Beziehung im Pheromon Signalweg in der Bäckerhefe 

Saccharomyces cerevisiae“ 

 

„Theoretical and computational analysis of negative feedback mechanisms and the 

 dose-response alignment in the  pheromone signalling pathway of the yeast  

Saccharomyces cerevisiae “ 

 

 

vorgelegt von 

Adriana Supady 

geb. am 25.07.1987 in Olsztyn (Polen) 

 

angefertigt in der Arbeitsgruppe Theoretische Biophysik 

am Institut für Biologie 

 

Berlin, im September 2009 



 2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 3 

Abstract 
 

In order to transmit information about the presence of the pheromone and to 

respond distinguishably to different pheromone concentrations the yeast 

Saccharomyces cerevisiae uses a cell signalling system.  The MAP Kinase Fus3 

mediates a negative feedback that improves the accuracy of the information 

transmission. In this thesis four possible models with different incorporated 

feedbacks are proposed and analysed. Furthermore, the results of parameter 

estimations and the predictions of the models are discussed.  

 
 
 
 
 
 

Zusammenfassung 
 
Die Bäckerhefe Saccharomyces cerevisiae benutzt einen zellulären Signalweg um die 

Information über die Existenz von Pheromonen weiterzuleiten und um 

differenzierbar  auf verschiedene Pheromonkonzentrationen zu reagieren. Die 

MAP-Kinase Fus3 vermittelt eine negative Rückkopplung, die für die Genauigkeit 

der  Informationsweiterleitung verantwortlich ist. Insgesamt werden in dieser 

Arbeit vier ausführbare Modelle mit verschiedenen Rückkopplungsmechanismen 

vorgeschlagen und analysiert. Weiterhin werden die Resultate der 

Parameterschätzung und die Vorhersagen der Modelle diskutiert.  
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1  Introduction 
 

1.1 Objective 
 

The objective of this thesis is to propose a simplified model of a negative feedback 

mechanism in pheromone signalling pathway in yeast as well as to discuss the 

existence of dose-response alignments in the system.  

The dose-response alignment is a proportional relationship between receptor 

occupancy and downstream response of the signalling pathway. It was revealed 

that the dose-response alignment is a result of a negative feedback mediated by 

mitogen-activated protein kinase Fus3 [Yu et al.  2008]. Active Fus3 negatively 

regulates one of the functions of Sst2, one of the principal regulators of mating 

pheromone signalling in yeast. It was also suggested that the negative feedback 

could be a mechanism responsible for the fidelity of information transmission also 

in other biological systems [Yu et al. 2008]. 

1.2 Signalling pathways in Saccharomyces cerevisiae  
 

Signal transduction pathways enable cells to respond to external stimuli through 

sensing and transmission of the signals within the cell, as well as through 

initializing changes in the cell. The accurate functioning of these pathways is 

required for adaption and survival of the cells under various conditions [Klipp & 

Liebermeister  2006]. Although there are many kinds of signalling pathways, they 

possess similar building modules (receptors, G-protein cycles, mitogen activated 

protein kinase (MAPK) cascades). There exist many interactions between the 

pathways (crosstalk) that lead to forming a network. The Yeast Saccharomyces 

cerevisiae possess several signalling pathways, e.g.: HOG pathway, pheromone 

pathway, pseudohyphal growth pathway and glucose sensing pathway (Figure 

1.1). The high osmolarity glycerol (HOG) pathway is activated by osmotic shock 

(an increase in environmental osmolarity) and results in the production of 
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glycerol concentration to prevent the dehydration of the cell [Hayashi & Maeda 

2006]. The pheromone signalling pathway is activated by the binding of 

extracellular pheromone to the receptor and can result in a polarized cell growth, 

transcription of new genes and arrest of the cell cycle in order to prepare to cell 

fusion and diploid formation [Shao et al. 2006]. The pseudehyphal growth 

pathway is activated in case of nitrogen starvation and results in dimorphic 

transition of the cells known as pseudohyphal differentiation [Lorenz & Heitman 

1997]. The glucose sensing pathway is activated in the presence of extracellular 

glucose and results in various changes of cellular metabolism in the yeast cells 

[Nazarko et al. 2007].  

 

  

 
Figure 1.1: Overview of signalling pathways in yeast 

[Klipp & Liebermeister 2006] 
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1.3 Pheromone signalling pathway in Saccharomyces cerevisiae 
 

The yeast pheromone pathway is one of the best understood and described 

pathways in eukaryotes [Drogen van et al.  2001, Kofahl & Klipp 2004, Wang & 

Dohlman 2004, Qi & Elion 2005, Klipp & Liebermeister 2006, Schaber et al. 2006, 

Shao et al.  2006]. This pheromone signalling system can be divided into three 

modules: G-protein cycle activation, the MAPK cascade and the downstream 

effects of activated Fus3.  

 

1.3.1 G protein cycle activation 
 

There are two types of haploid cells in budding yeast Saccharomyces cerevisiae: 

MATα cells which secrete α-factor and MATa cells which secrete a-factor. These 

factors are mating signals, small peptide pheromones responsible for binding to a 

cell surface receptor Ste2 (in MATa cells; Ste3 in MATα cells) and cause its 

activation. The activated receptor can be deactivated, internalized or interact with 

the subunit Gα of G-protein. The G-protein is a heterotrimer consisting of three 

subunits: Gα, Gβ and Gγ. The interaction of Gα with the activated receptor leads 

to conformational changes that result in a release of GDP and binding to GTP by 

the Gα subunit and in a dissociation of the G protein into GαGTP subunit and a 

heterodimer Gβγ. The GαGTP subunit can be hydrolized and return into initial 

state GαGDP. As a consequence, GαGDP can reassociate with Gβγ into the 

heterotrimer and close the cycle. Regulators of G protein signalling (RGS proteins) 

can accelerate the hydrolization of GαGTP. The principal regulator is Sst2 that 

interacts with GαGTP and increase its GTPase activity [Chasse et al.  2006, Hao et 

al.  2003].  
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1.3.2 The scaffold-dependent MAPK pathway 
 

During the G protein cycle, the released heterodimer Gβγ can bind and activate 

other components of the pathway. The most essential step in the pheromone 

signal transmission is the ability of Gβγ to bind to the scaffold protein Ste5. The 

function of a scaffold protein is to localise and tether all required components in 

one particular area in the cell as well as to coordinate the feedbacks [Shaw & 

Filbert 2009]. Afterwards Ste5 recruits Ste11 to the plasma membrane and 

activates the MAPK cascade. The first step in the cascade is the phosporylation of 

the serine and threonine residues in the N-terminal kinase region of MAPKKK 

Ste11 by a membrane-associated kinase Ste20 resulting in Ste11 activation. The 

activated Ste11 phosporylates the MAPKK Ste7 and activates it in this way. 

Analogically, the activated Ste7 activates two other MAPKs: Fus3 and Kss1. More 

relevant for the mating process is the Fus3, while Kss1 is responsible for the 

invasive growth of the cell and is also dependent on osmotic stress. The Ste7-

dependent activation of Fus3 takes place by phosporylation of threonine and 

tyrosine residues in the activating loop. After double-phosporylation, activated 

Fus3 rapidly dissociates from the scaffold protein Ste5. The Ste5 remains tethered 

to the plasma membrane acting as platform and enables phosporylation of many 

Fus3 molecules.   

 

1.3.3 Downstream effects of activated Fus3  
 

The double phospohorylated MAPK Fus3 is responsible for phosporylation of 

various proteins: Far1 (bifunctional scaffold protein, responsible for 

morphological changes and the arrest of the cell cycle), Ste12 (transcriptional 

activator responsible for the expression of pheromone-induced genes), Dig1/Rst1 

& Dig2/Rst2 (repressors acting by binding to the Ste12) and Sst2 (RGS protein, 
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responsible for the acceleration of the GαGTP hydrolization). The most crucial for 

this model is the phosporylation of Sst2.  

In this thesis only the downstream effects that take place within first 15 minutes 

are considered. 

  

1.4 Initial dynamics of the system 
 

The initial system dynamics are presented with the help of experimental data. The 

data were presented in [Yu et al.  2008].  System outputs were measured after 

stimulating cells with 100 nM pheromone. 
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Figure 1.2: All system responses (a,b,c). 

Data values are scaled to the corresponding maximum. 

The signal that represents the dynamics of G-protein dissociation (Figure 1.2a) 

peaks rapidly in the first minute and declined to the plateau. The dynamics of 
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Ste5 (Figure 1.2b) membrane recruitment seems to be nearly similar to the 

dynamics of G-protein dissociation: the signal peaks rapidly in the first minute 

and decline to a plateau.  The level of phosphorylated Fus3 (Figure 1.2c) increases 

quickly within the first 2 minutes and declines to a plateau after reaching the 

maximal value, forming a “Fus3-overshoot”.  

All measurements represent a similar signal dynamics after pheromone 

stimulation: “peak and decline”. This fact indicates a possible existence of a 

negative feedback that may be also responsible for existence of the dose-response 

alignment [Yu et al. 2008]. 

 

1.5 Dose-response alignment 
 
 
In wild type cells, the dose-response curves of receptor occupancy and pathway 

output align closely (Figure 1.3). The dose-response alignment (Figure 1.4) can be 

defined as proportional relationship (proportionality constant k≈1) between 

receptor occupancy and downstream system response, for example the amount of 

phospohorylated Fus3.  
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Figure 1.3: Dose responses of receptor occupancy and pathway output align closely 
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Figure 1.4: Dose-response alignment 

 
In case of dose-response alignment changes in receptor occupancy correspond to 

the changes in pathway output that improves the fidelity of information 

transmission [Yu et al. 2008].   

In a case when the pathway output is more sensitive than in the wild type, the 

dose-responses curves do not align closely anymore (Figure 1.5). The proportional 

relationship disappears (Figure 1.6).   
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Figure 1.5: Dose responses of receptor occupancy and pathway output do not align 
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Figure 1.6: Dose-response misalignment  

 
By misalignment even a slight noise in the receptor occupancy can result in a 

destruction of the fidelity of information transmission. 
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2 Theoretical background & methods 
 

2.1 Mathematical modelling of reaction networks with ODE 
systems.  

 

One of the most common methods to describe the rates of temporal concentration 

changes in a biological reaction system is the use of a set of ordinary differential 

equations (ODEs). In a system with n metabolites with concentration ci (i=1,2,…, 

n), m reactions with rates vj (j=1,2,…m) and stoichiometric coefficients nij,  the 

dynamics of concentrations changes can be described by the following equations 

[Kofahl & Klipp 2006]:  
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The simulation of the dynamics of the models has been created with the software 

COPASI (Hoops, S., Sahle, S., Gauges, R., Lee, C., Pahle, J., Simus, N., Singhal, M., 

Xu, L., Mendes, P., and Kummer, U., 2006). The ODEs were solved by the LSODA 

method. LSODA (Petzold L. and Hindmarsh A., 1983) solves ODEs using stiff and 

non-stiff methods, begins with the non-stiff method and dynamically monitors 

data in order to optimize the results.  

2.2 Parameter estimation  
 

The goal of parameter estimation is to find a particular set of parameters in order 

to fit simulated data curves to the given experimental data with the most 

accuracy. There are given n experimental data points (xi, yi) and fitted data points 

(xi, f(x1)) with: 

ii yxf ˆ)(   

and  

iii yy  ˆ . 

The fitting function describes the data with the best accuracy when the value of 

RSS (sum of squared residuals) is minimized.  

 
n

i
ii

n

i
i yyRSS min)ˆ( 22  

All parameters in this thesis were estimated with the method Evolutionary 

Programming. This technique mimics evolution and is based on two main rules: 

reproduction and selection [Hoops et al.  2006]. The Evolutionary programming 

algorithm contains a number of individuals that reproduce and compete. They 

reproduce asexually by creating a copy of itself exactly the same as the parent. 

During this process the child undergoes a slight mutation.  Each of the 

individuals is a possible solution of the estimation and can be described in a form 

of a “genome”. The genome consists of genes that correspond to the searched 

parameters. At the end of the generation, the number of individuals has doubled. 

Then all of the individuals are compared and ranked. The individuals with the 
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worse fitness (quantification of the optimality of the fit) are eliminated and so the 

population size is reduced.  

There are three parameter options which values have to be chosen in order to use 

this method: 

 Number of generations – for the time course simulations of the model a 

value from the range [200, 600] has been set;  

 Population size – number of individuals at the beginning and the number 

of individuals that survive after the end of each generation as well. For the 

model, the population size was set from the range [20,40]: 

 Seed- parameter that contains the information for the random number 

generator. The chosen value is 0 and is interpreted by COPASI as 

instruction to select always a random value.  

 

2.3 Model selection and Akaike’s Information Criterion (AIC) 
 
The selection of a suitable model among many considered models is a basic 

problem in statistical modelling. Especially for models containing many 

parameters it is difficult to find the one that fits well the data and is not 

overparameterized.  To find the best approximating model that represents a given 

data set among many competing models containing different number of 

parameters a simple criterion is needed [Bozdogan 1987]. The Akaike’s 

Information Criterion (AIC) is an entropy-based information criterion developed 

by  Hirotsugu Akaike in 1971 and can be calculated with the following formula: 

)]/[ln(2 nRSSnkAIC  , 

where: 
2

1

^

i

n

i
RSS 



    . 

Here: 

 RSS is the residual sum of squares of the fitted model;  
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 n is the number of observations; 

 k is the number of parameters. 

The AIC takes into account two attributes: the accuracy of measurement and the 

complexity of the model. The best model should have the least possible 

complexity as well as contain the most information about the data. A single value 

of AIC is useless unless it is compared with computed values for all considered 

models [Burnahm 2004].  The model with the smallest AIC value over all models 

is the best approximating model. 

  

2.4 Parameter Sensitivity Analysis  
 
Parameter sensitivity analysis is used to find out how the perturbations of the 

input parameters determine the changes in the output of the model 

[Kamrunnahar et al.  2004]. This analysis is helpful in searching for the parameters 

that have the most impact on the output of the system. The sensitivity is defined 

as the change in output (∆O) to the change in the parameter (∆P) value 

normalized with the factor P/O that makes it independent of the units and of the 

magnitude of P and O [Klipp et al.  2005]: 

O
P

P
OS 




 . 

 

To calculate the sensitivity values the tool COPASI was used. As the subtask 

method Time series was set, as function Non-Constant Concentrations of Species 

was chosen and as values all parameters were set.  

COPASI calculate sensitivities using a slight different formula: 






P
OSCOPASI  

 

COPASI uses numerical differentiation with finite differences to calculate the 

sensitivities of the model.  
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There are two parameter options for the sensitivities calculation: 

 Delta factor – multiplied with an absolute value of the concentration of the 

species return the value of delta. If it is smaller than delta minimum, the 

value of delta minimum is used instead. As delta factor a default value of 

10-6 has been set.  

 Delta minimum - represent the minimal delta, has been set to 10-12. 
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3 Data 
 

3.1 Data plots  
 
The data used for the parameter estimation were provided by Richard Yu  from 

The Molecular Science Institute, Berkley, USA, published as well as discussed in 

[Yu et al.  2008].  

Data values are scaled to the peak signal value in cells which where simulated 

only with pheromone.  

Indications: 

 P -  cells stimulated with 100nM pheromone; 

 P+I – cells stimulated with 100 nM pheromone and 10 μM 1-NM-PPI (4-

amino-1-(tetr-butyl)-3-(1’-naphthylmethyl)-pyrazolo[3,4-d] pyramidine) –

inhibitor; 

 U – untreated cells. 
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Figure 3.1: Fus3 phosphorylation (fus3-as2) 
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Figure 3.2: Fus3 phosphorylation (kss1-as2) 
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Figure 3.3: Ste5 membrane recruitment (fus3-as2) 
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Figure 3.4: G-protein dissociation (fus3-as2) 
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Figure 3.5: Ste5 membrane recruitment (fus3-as2 ∆sst2) 
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            Ste5 membrane recruitment            fus3-as2 sst2(T134A)

-20

0

20

40

60

80

100

120

0 200 400 600 800 1000

Time [s]

St
e5

 m
em

br
an

e 
re

cr
ui

tm
en

t (
co

rr
ec

te
d 

re
la

tiv
e 

%
 m

ax
.)

P+I
P
U

 
Figure 3.6: Ste5 membrane recruitment (fus3-as2 sst2 T134A) 

 
Diverse techniques were used to follow the dynamics of these processes. To 

measure the G-protein dissociation the loss of fluorescence resonance energy 

transfer FRET between Gα subunit and protein Ste18 was measured. The Ste5 

membrane recruitment was quantified by measuring the transfer of yellow 

fluorescent protein (YFP) tagged Ste5 from the nucleus and cytosol to the 

membrane. The dynamics of Fus3 phoshorylation was measured using 

quantitative immunoblotting.   

 

3.2 Discussion of the data  
 
Many previous references have already suggested the existence of a negative 

feedback in the pheromone signalling cascade in yeast [Shao et al. 2006, Colman-

Lerner et al. 2005]. The presented data give not only a clear answer to the question 

which of the MAPKs, Fus3 or Kss1 mediate this feedback, but also explain 

partially the mechanism of this regulation. Figures 3.1 and 3.2 compare the levels 

of Fus3 phosphorylation in two mutant cells: fus3-as2 and kss1-as2. The cells fus3-



 23 

as2 and kss1-as2 contain mutant kinases that are active during the pheromone (P) 

stimulation, but their activity is inhibited during the pheromone + inhibitor (P+I) 

stimulation. As a result, the Fus3 phosporylation level in fus3-as2 cells does not 

decline to a plateau during the inhibition, but remains nearly constant after 

reaching the peak (Figure 3.1). There is no change in the dynamics of Fus3 

phosporylation in the kss1-as2 cells (Figure 3.2) that indicates that the MAPK Fus3 

is involved in the mechanism of the negative feedback in the system [Yu et al. 

2008].   

The next problem to solve was to identify the place, where the Fus3 mediated 

feedback acts. The dynamics of two processes was considered: G-protein 

dissociation and Ste5 recruitment. The inhibition of Fus3 kinase activity does not 

cause changes in the G-protein dissociation dynamics (Figure 3.4), but has a 

visible influence on the Ste5 membrane recruitment (Figure 3.3) and modifies the 

default dynamic of this process. It indicates that the Fus3-mediated feedback acts 

on or upstream of Ste5 recruitment to the membrane and downstream of G-

protein dissociation.  

In order to explain the mechanism of the Fus3-mediated negative feedback, the 

Ste5 membrane recruitment was measured in cells without Sst2.  After deleting 

Sst2, the inhibition of Fus3 kinase activity has no effect on the dynamics of Ste5 

membrane recruitment (Figure 3.5). In this case Ste5 recruitment (with and 

without the inhibitor) looks similar to one in the cells with Sst2, that were 

stimulated with pheromone. This finding confirms that the ‘peak and decline’ 

behaviour is the default behaviour in absence of Sst2. Taking this and previous 

findings into account, it is likely that Sst2 regulates positively the Ste5 membrane 

recruitment and that this regulation is negatively regulated by Fus3.  

A different crucial finding for the understanding of the negative feedback 

mechanism is the fact that the dynamics of Ste5 membrane recruitment in mutant 

strain sst2(T134A) is similar to the dynamics in ∆sst2 (Figure 3.5 & Figure 3.6). 

This fact allows to claim that the T134A (Fus3 phosphorylation site in DEP1 
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domain of Sst2) mutation responsible for the disruption of the positive feedback 

of Sst2 on Ste5 membrane recruitment.  
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4 Model construction 
 
The aim of this work was to propose a molecular mechanism of the feedback that 

explains the experimental data satisfying. The task was to combine the previous 

knowledge about the mechanism of the pheromone pathway [e.g. Kofahl & Klipp 

2004, Shao et al. 2006] with the new concepts [Yu et al.   2008]. More than 50 

different variants of model had been tested that vary in complexity, number and 

kinds of feedback as well as in reaction kinetics. To give an overview, four of 

them had been chosen and are presented in detail.    

The following part of the model structure (Figure 4.1) is common in all selected 

and discussed model structures (Model 0):  

 

 
 

Figure 4.1: The common part of all model structures -   Model 0 
 
This structure, Model 0 (Figure 4.1) is a simplification and does not contain all 

species and modifiers. However, it still describes sufficiently the mechanism of 

the pheromone pathway. The receptor Ste2 is activated (v1) in the presence of 
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pheromone. The activated receptor Ste2 causes the G-protein dissociation (v3) into 

GαGTP and Gβγ or can be deactivated (v2) as well as degraded (v12). The G 

protein subunits can the reassociate (v4, v5 ) or the subunit Gβγ can bind (v6) to the 

scaffold protein (C) building a complex (D) that  activates the MAPK cascade that 

leads to the activation of Fus3 (v8). Activated Fus3 may activate Sst2 by 

phosporylation (v10), as well as be deactivated (v9). Activated Sst2 may also be 

deactivated (v11) that is a constitutive step for the mechanism.  

In the chosen model structures, the repetitive components are supplemented with 

different feedbacks as well as delays.   

4.1 Model A 

 
 

Figure 4.2: The structure of Model A 
 
In case of Model A (Figure 4.2), Model 0 is supplemented with an extra feedback 

mediated by Sst2* that promotes the dissociation of complex D into Gβγ and the 

scaffold complex and therefore can be interpreted as a negative feedback of Fus3* 

on scaffold protein recruitment.  
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4.2 Model B 
 

 
 

Figure 4.3: The structure of Model B 
 
The difference between Model 0 and Model B (Figure 4.3) is the existence of 3 

feedbacks. One of them is mediated by Sst2* (as in Model A) and other two are 

mediated by Sst2. Although the experimental data suggest that there is no 

feedback on the reassociation of G-protein, an extra feedback of Sst2 promoting 

the reassociation is included in this model due to suggestions in previous models 

[e.g. Klipp & Kofahl 2004].  
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4.3 Model C 
 

 
 

Figure 4.4: The structure of Model C 
 
Model C (Figure 4.4) is based directly on Model B with one exception: there is an 

extra delay in activation of Sst2 by Fus3*. This additional step depends on 

activation and deactivation of a protein X where the activation is mediated by 

Fus3*. The activated form of X, X* activates then the Sst2.  
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4.4 Model D 
 

 
 

Figure 4.5: The structure of Model D 
 
Model D (Figure 4.5) is also directly based on Model B with two additional 

autoregulation feedbacks. The Fus3* and the D positively mediate their own 

activation and production, respectively.  

 

Values of initial concentrations of components as well as equations that describe 

the dynamics of the models can be found in the appendix.  
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5 Results 
 

5.1 Results of parameter estimation 
 
For each of chosen model structures parameters have been estimated with the tool 

COPASI (method described in 2.2). All estimations are based on 6 data sets (3 

experiments in two options each, a total of 214 observations):  

 Fus3 phosporylation in fus-as2 cells stimulated with only pheromone; 

 Fus3 phosporylation in fus-as2 cells stimulated with pheromone and 

inhibitor; 

 Ste5 membrane recruitment in fus-as2 cells stimulated with only 

pheromone; 

 Ste5 membrane recruitment in fus-as2 cells stimulated with  pheromone 

and inhibitor; 

 G-protein dissociation  in fus-as2 cells stimulated with only pheromone; 

 G-protein dissociation in fus-as2 cells stimulated with pheromone and 

inhibitor. 

 

The results are presented in form of graphs that show the experimental data with 

the corresponding fits. The fits are the results from the parameter estimation and 

represent the system response in each case. For the stimulation with both 

pheromone and inhibitor, the kinase activity of Fus3* has been blocked in the way 

that the constant k10 (reaction v10) has been set to 0 while estimating. The 

behaviour of the system in first 15 minutes (900s) after pheromone stimulation 

was simulated.  

The simulated values have been scaled in the way that the maximum value while 

stimulating with only pheromone corresponds to 50% of the initial concentration.  
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5.1.1 Model A 
 

Model A: Fus3 phosphorylation
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Model A: Ste5 membrane recruitment
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Model A: G-protein dissociation 
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Figure 5.1: Results of parameter estimation: Model A   

Data values are scaled to the peak signal measured during the stimulation with only pheromone. Indications: 
P - stimulation with only pheromone (experimental data); P+I - stimulated with pheromone and inhibitor 
(experimental data); P_fit -response of the model, stimulated with pheromone, P+I_fit – response of the 

model, stimulated with pheromone and inhibitor.  
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5.1.2 Model B 
Model B: Fus3 phosphorylation
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Model B: Ste5 membrane recruitment

0

20

40

60

80

100

120

140

160

180

0 200 400 600 800 1000

Time [s]

St
e5

 m
em

br
an

e 
re

cr
ui

tm
en

t 
(c

or
re

ct
ed

 re
la

tiv
e 

%
 m

ax
.)

P
P_fit
P+I
P+I_fit

 
Model B: G-protein dissociation
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Figure 5.2: Results of parameter estimation: Model B 

Data values are scaled to the peak signal measured during the stimulation with only pheromone. Indications: 
P - stimulation with only pheromone (experimental data); P+I - stimulated with pheromone and inhibitor 
(experimental data); P_fit -response of the model, stimulated with pheromone, P+I_fit – response of the 

model, stimulated with pheromone and inhibitor. 
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5.1.3 Model C  

Model C: Fus3 phosphotylation
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Model C: Ste5 membrane recruitment
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Model C: G-protein dissociation
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Figure 5.3: Results of parameter estimation: Model C 

Data values are scaled to the peak signal measured during the stimulation with only pheromone. Indications: 
P - stimulation with only pheromone (experimental data); P+I - stimulated with pheromone and inhibitor 
(experimental data); P_fit -response of the model, stimulated with pheromone, P+I_fit – response of the 

model, stimulated with pheromone and inhibitor. 
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5.1.4 Model D 

Model D: Fus3 phosphotylation
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Model D: Ste5 membrane recruitment
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Model D: G-protein dissociation

0

20

40

60

80

100

120

140

0 200 400 600 800 1000

Time [s]

G
-p

ro
te

in
 d

is
so

ci
at

io
n

  (
co

rr
ec

te
d 

re
la

tiv
e 

%
 m

ax
.)

P
P_fit
P+I
P+I_fit

 
Figure 5.4: Results of parameter estimation: Model D  

Data values are scaled to the peak signal measured during the stimulation with only pheromone. Indications: 
P - stimulation with only pheromone (experimental data); P+I - stimulated with pheromone and inhibitor 
(experimental data); P_fit -response of the model, stimulated with pheromone, P+I_fit – response of the 

model, stimulated with pheromone and inhibitor. 
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5.1.5 Results of parameter estimation – summary 
 
Unfortunately, none of the model variants is able to produce such a response that 

perfectly reproduces all experimental data that have been taken into 

consideration. However, the results are still acceptable and can be evaluated.  

The dynamics of Fus3 phosporylation with and without an inhibitor is described 

with the best fitness in model D. However, the fits in other models also relatively 

accurate.  

The results of parameter estimation for Ste5 membrane recruitment are rather 

unsatisfying in all models. Although the requested behaviour “peak and decline” 

while stimulating with only pheromone and a “constant after reaching a peak” 

behaviour while stimulating with pheromone and inhibitor can be observed, there 

is no consistency in the peak value. In all models, the system dynamics reach a 

higher maximal value of recruited Ste5 to the membrane than in the reality.  The 

experimental data are fitted best in model B, then in model C and model D. 

All models well represent the data for the G-protein dissociation.  

These results give no clear answer which of the models is the best model. The 

only conclusion that can be drawn from these results is the refusal of model A as a 

possible best model. 

All values of estimated parameters can be found in the appendix.  
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5.2 Model selection  
 
In order to find the most plausible model the values of AIC have been calculated 

and ranked. The number of observations has the same value (214) in all model 

options.  

 

Model RSS 
 (objective value) 

k   
(number of parameters) 

AIC 

B 123590,4 15 1390,77296 

D 144799,3 17 1428,6654 

C 176817,0 15 1467,41542 

A 533690,1 13 1699,82126 
Table 5.1: The calculated values of AIC 

 

The minimal value of AIC has been calculated for model B. However, AIC values 

for model D and model C are not importantly higher (2,7% in case of model D 

and 5,5% in model C). The AIC value for model A is more than 22% higher that 

the AIC value for model B. These results supplement the results of parameter 

estimation with the conclusion that model B describes the dynamics of the 

processes with the most accuracy.   

 

5.3 Predictions of the model: dose -response alignment 

It was revealed that the negative feedback mediated by Fus3* is responsible for 

the dose-response alignment in the pheromone pathway, a proportional 

relationship between receptor occupancy and downstream response [Yu et al. 

2008]. The altering pheromone concentration has been used as a simplified 

quantitative description of receptor occupancy.  There are many alternative 

definitions of the downstream response. Here, the concentration of phosporylated 

Fus3 after 900 s has been used. The tool Mathematica (ver. 6.0) has been applied to 

calculate the final concentration of Fus3* for different pheromone concentrations 
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for all models. Both variants, with Fus3 not inhibited and inhibited, have been 

taken into consideration and additionally a sigmoid fit has been calculated. 

All fitted curves are described with the following formula (Hill function): 

hh

h

SK
Sa

 , 

where S is the substrate (here the pheromone concentration) and a, K, h are 

constants.  

To compare the results for all models the values of EC50 (the concentration 

required for a half-maximum response) for both Fus3 not inhibited and not 

inhibited have been calculated. Afterwards, it has been calculated how much the 

Fus3 inhibition reduces the EC50 value for each model.  

 

Model Reduction of EC50 

C 10,1-fold 

A 7,5-fold 

B 2,2-fold 

D 2,2-fold 

Table 5.2: Calculated values of reduction of EC50. 
 

The experimental data suggest that Fus3 inhibition reduces the EC50 value by ca. 

20-fold. None of the model results in such a reduction, but the highest value has 

been calculated for model C. The predictions (predicted data points with 

corresponding Hill-fits) of model B, which has been chosen as the best model, and 

model C, which has the highest value of reduction of EC50, are presented and 

compared. There is well-defined shift between the curves in model C (Figure 5.6) 

and a weak, but still recognizable shift between the curves in model B (Figure 5.5). 

The existence of the shift between the curves indicates that the inhibiton of Fus3 

activity disrupts the dose responce alignment.  
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Predicitions of the Model B

0

20

40

60

80

100

120

-13 -12 -11 -10 -9 -8 -7

Log pheromone concentration (M)

Fu
s3

 p
ho

sp
or

yl
at

io
n 

(re
al

tiv
e 

%
 m

ax
.) Fus3 not inhibited 

Fus3 not inhibited Fit

Fus3 inhibited

Fus3 inhibited Fit

 
Figure 5.5: Model B: the disruption of the dose-response alignment  

Data values are scaled to the maximal value.  
 

Predicitions of the Model C
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Figure 5.6: Model C: the disruption of the dose-response alignment 

Data values are scaled to the maximal value.  

Next, the fitted Hill functions that represent the predictions of the model have 

been compared with the experimental values from [Yu et al. 2008]. In order to find 

out which model predicts the experimental data with the most accuracy, the 

correlation coefficients has been calculated and compared. 
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 Correlation coefficients 

Model Fus3 not inhibited Fus3 inhibited 

A 
0,97 0,79 

B 
0,96 0,78 

C 
0,98 0,95 

D 
0,96 0,79 

Table 5.3: Calculated values of correlation coefficients. 
 
The correlation coefficients of model C have the highest value and therefore the 

predictions of model C reproduce the experimental data best. Figure 5.7 & 5.8 

compare of the predictions of model B and model C with the experimental data.    

 

Predictions of the model - Model B 
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Figure 5.7: Predictions of the Model B compared with experimental data 

Data values are scaled to the maximal value 

Predictions of the model - Model C 

0

20

40

60

80

100

120

-13 -12 -11 -10 -9 -8 -7
Log pheromone concentration

Fu
s3

 p
ho

sp
or

yl
at

io
n 

(r
el

at
iv

e 
%

. m
ax

)

Fus3 not inhibitied_exp

Fus3 inhibited_exp

Prediction of the model    
Fus3 not inhibited

Prediction of the model    
Fus3 inihibited

 
Figure 5.8: Predictions of the Model C compared with experimental data 

Data values are scaled to the maximal value. 
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The predictions of model C are significantly better than the predictions of model 

B. However, these predictions only consider the final concentrations of Fus3 after 

900 seconds.  The changes in the dynamics of Fus3 phosphorylation depending on 

the change in pheromone concentration have been disregarded and not discussed.  

  

5.4 Parameter sensitivity analysis 
 

In order to find out how much the concentration of the output (Fus3* after 900s) 

changes when a particular kinetic parameter varies, the values of sensitivities 

have been calculated for all models and discussed for models B and model C. The 

values of the sensitivities reveal also which of the parameter have the biggest 

impact on the concentration of the output. 

Calculated sensitivities:  

[Fus3*][900] Parameter 

Model B Model C 

k1 -0,018 -0,031 

k2 0,012 -0,00001 

k3 0,084 0,237 

k4 -0,00003 -0,085 

k41 0,00033 0,004 

k5 -0,194 -0,131 

k6 0,334 0,444 

k61 --- --- 

k7 -0,079 -0,049 

k71 -0,262 0,367 

k8 0,495 0,601 

k81 --- --- 

k9 -0,0000007 0,001 

k91 -0,502 -0,651 

k10 -0,232 -0,357 

k11 0,232 0,373 

k12 -0,100 -0,400 

k13 --- -0,357 

k14 --- 0,373 

Table 5.4: Calculated sensitivities 
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Positive (negative) values of calculated sensitivities indicate that the final 

concentration of Fus3* increase (decrease) with the increase of the parameter 

value.  

The highest absolute value (-0,502 in model B and -0,651 in model C) has been 

calculated for parameter k91 that represents the positive feedback of Sst2 acting on 

the deactivation of Fus3*.  Another parameter that has a great impact on the final 

concentration of the output is k8 that represents the activation of Fus3. In model B, 

the final concentration of Fus3* is insensitive to the changes in parameter values: 

k4 (hydrolisation of GαGTP into GαGDP), k41 (hydrolisation of GαGTP into 

GαGDP driven by Sst2*) and k9 (deactivation of Fus3*). In model C, the final 

concentration of Fus3* is insensitive to the changes in parameter values: k2 

(deactivation of Ste2*), k41 and k9. 

All values of calculated sensitivities can be found in the appendix.  
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6 Discussion  
 
The objective of the thesis was to suggest a model structure that is able to 

reproduce the experimental data from [Yu et al. 2008] and to explain the 

mechanism of the negative feedback. On the basis of previous knowledge about 

the mechanism of pheromone signalling system and taking into account the 

existence of a negative feedback of Fus3, many possible model structures were 

constructed.  With the help of tool COPASI, parameters for all models were 

estimated on the base of experimental data. Four model structures were selected 

and presented in detail to give an overview. The results of parameter estimation 

were compared and discussed. On the base of AIC criterion, one model was 

chosen. The predictions of the selected model were presented as well as the 

parameter sensitivities were calculated. The following subsections discuss the 

results of this thesis.  

 

6.1 Parameter estimation 
 
It has already been mentioned in section 5.1.5 that the results of parameter 

estimation are not satisfying enough to ascertain that one of the proposed model 

structures give a clear answer how the negative feedback should look like in 

order to observe  requested system dynamics at all considered levels of the 

pathway: “peak and decline” behaviour for Fus3 phosporylation, Ste5 membrane 

recruitment and G-protein dissociation while stimulation with only pheromone as 

well as a “constant after reaching a peak” behaviour for Fus3 phosporylation and 

Ste5 membrane recruitment and no change in the dynamics in the G-protein 

dissociation while stimulation  with an additional inhibitor.  

A possible reason of this situation could be an inadequate model structure. 

Although all models describe sufficiently the mechanism in wild type cells, they 

fail in describing the system dynamics in mutant cells during the stimulation with 

pheromone and inhibitor. It is not out of the question that the models are not 
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complex enough to provide an indisputable solution for the problem. Also some 

presumed initial concentrations may be misleading. 

Another difficulty in evaluation of the results of the parameter estimation is the 

choice of the features that a certain fit has to possess so that it can be described as 

adequate and satisfying. It is hard to decide what is more important: the time 

when the peak occurs, the value of the steady state or the form of the curve. It is 

difficult to answer the question if a fit could be interpreted as an acceptable one if 

it has the right form and peak take places by the exact time, but it reaches a higher 

value of a steady state that expected what could be a result for an incorrect choice 

of the initial concentrations. Possibly, it would be useful to try different initial 

concentrations values.   

 

6.2 Model selection 
 
Model B has the minimal value of AIC that means that model B describes the 

dynamics of the processes with the most parsimony among all considered 

models.  However, the AIC values for model D and model C are not significantly 

higher than the AIC value for model B.   

 

6.3 Predictions of the model 
 
The experimental data for the final concentration of not inhibited Fus3* as well as 

of inhibited Fus3* revealed that the inhibition of Fus3* evidently disrupts the 

dose-response alignment and reduces the sensitivity of the dose response. The 

calculated value of EC50 was reduced by about 20-fold in the given set of 

experimental data. The predictions of previously chosen model B do not 

correspond to the experimental results. Surprisingly, the predictions of model C 

are significantly better than the predictions of model B.   The reason for this could 

be fact, that the predictions take only the final concentration of Fus3* for different 

pheromone concentrations into consideration and do not consider how the 
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dynamics of the discussed processes changes when the pheromone concentration 

vary.  Therefore it would be misleading to ascertain that model C explains better 

the mechanism of negative feedback than model B. 

 

6.4 Conclusion 
 
Model B describes the dynamics of the system with the best accuracy and 

parsimony. This model contains three feedbacks. Sst2* promotes the dissociation 

of the complex into scaffold protein and Gβγ subunit. Sst2 mediates two different 

feedbacks. On of them promotes the hydrolisation of GαGTP into GαGDP and the 

second one promotes the deactivation of Fus3*.  

There are three are conclusions that that can be drawn from this thesis and the 

whole project (in the thesis only the results of four models have been discussed, 

but more that 50 others have been tested and regarded). Firstly, Sst2* promotes 

the dissociation of the complex D instead of inhibiting the association of scaffold 

protein and Gβγ subunit. As next, the mechanism of the hydrolisation of GαGTP 

into GαGDP is less important because the output is insensitive to changes in 

parameters of this process. Lastly, the mechanism of the requested negative 

feedback is complex and consists of many feedback and, possibly, delays. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 45 

7 Outlook  
 
 
There is an unquestionable need for further studies of the mechanism of the 

negative feedback in the pheromone pathway in yeast. A model that satisfactory 

reproduces the experimental data and generates correct predictions has still not 

been found. Many possible model structures with different complexity, different 

number and art of feedbacks have not been tested because of limited time for this 

project.  

The finding of the exact mechanism of the Fus3-mediated feedback will 

supplement the previous knowledge about the pheromone signalling in yeast.   
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Initial concentrations of the components 
 

Component Initial Concentration [μM] 
Ste2 1.667 
Ste2* 0 
Gαβγ 1.667 
GαGTP 0 
GαGDP 0 
Gβγ 0 
C 0.036 
D 0 
Fus3 0.686 
Fus3* 0 
Sst2 0.505 
Sst2* 0 
X  (only Model C) 0.1 
X* (only Model C) 0 

 
Estimated parameter values 
 

Parameter Model A Model B Model C Model D 

k1 0,011 0,071 0,020 0,01 

k2 0,057 2,457 0 0,045 

k3 0,157 0,724 0,174 0,148 

k4 0,165 1,259 0,34 0,147 

k41 ---- 1,124 0 0,003 

k5 0,029 0,002 0,510 0,034 

k6 0,034 0,021 0,215 0,046 

k61 --- --- --- 0,025 

k7 0,003 0,004 0,037 0,009 

k71 0,042 0,261 1,573 0,755 

k8 0,501 0,818 0,268 0,477 

k81 --- --- --- 0,120 

k9 0,013 0 0 0,001 

k91 --- 0,017 0,005 0,011 

k10 192,589 0,342 0,064 0,004 

k11 0,229 0,643 0,010 0,007 

k12 0,022 1,199 0,002 0,018 

k13 --- --- 0,064 --- 

k14 --- --- 0,010 --- 
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Calculated parameter sensitivities for all models  
 

Parameter Model A Model B Model C Model D 

k1 -0.438 -0,018 -0,031 -0,171 

k2 0.099 0,012 -0,00001 0,123 

k3 0.190 0,084 0,237 0,163 

k4 -0.281 -0,00003 -0,085 -0,014 

k41 ---- 0,00033 0,004 -0,0001 

k5 -0,441 -0,194 -0,131 -0,162 

k6 0,126 0,334 0,444 0,373 

k61 --- --- --- 0,002 

k7 -0,312 -0,079 -0,049 -0,067 

k71 -0,374 -0,262 0,367 -0,312 

k8 0,634 0,495 0,601 0,490 

k81 --- --- --- 0,265 

k9 -0,937 -0,0000007 0,001 -0,014 

k91 --- -0,502 -0,651 -0,523 

k10 -0,270 -0,232 -0,357 -0,275 

k11 -0,009 0,232 0,373 0,289 

k12 -0,587 -0,100 -0,400 -0,314 

k13 --- --- -0,357 --- 

k14 --- --- 0,373 --- 
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