
Development of a mathematical model for the
occupancy of mRNA with ribosomes in

Saccharomyces cerevisiae

Jannis Uhlendorf
Bachelor Thesis

Freie Universität Berlin
Department of Mathematics and Computer Science

Bioinformatics Program

Advisors:
Professor Dr. Edda Klipp

Professor Dr. Per Sunnerhagen

Max Planck Institute for Molecular Genetics
Ihnestraße 63-73

14195 Berlin
Germany

Email: uhlndorf@molgen.mpg.de

June 6th - August 1st 2006





Abstract

This thesis describes the development of a mathematical model for the occupancy of mRNA
with ribosomes in the yeast Saccharomyces cerevisiae. The model is supposed to describe
the change in polysomal association of mRNA, that is found when yeast cells are subjected
to a hyperosmotic shock. A hyperosmotic shock is a rapid increase of the osmolarity of the
surrounding media of a cell. Yeast cells respond with a variety of changes to hyperosmotic shock,
including a down regulation of the translational apparatus. This means that the number of
ribosomes an average mRNA has bound decreases. In this thesis different models to simulate
this behavior are developed, and tested for their properties and their ability to describe the
translational downregulation after osmotic shock.

Inhalt

Diese Arbeit beschreibt die Entwicklung eines mathematischen Modells für die Beladung von
mRNA mit Ribosomen in der Hefe Saccharomyces cerevisiae. Das Modell soll die Änderung
der polysomalen Assoziierung von mRNA beschreiben, wenn Hefezellen einen hyperosmotischen
Schock erfahren. Ein hyperosmotischer Schock ist eine schnelle Zunahme der Osmolarität des
umgebenden Mediums einer Zelle. Hefezellen reagieren mit einer Vielzahl von Änderungen
auf einen hyperosmotischen Schock, unter Anderem mit einer Herabregelung der Translation.
Dies bedeutet, daß die Zahl der Ribosomen, die eine durchschnittliche mRNA gebunden hat
abnimmt. In dieser Arbeit werden verschiedene Modelle entwickelt um dieses Verhalten zu
beschreiben und auf ihre Fähigkeit hin getestet, die osmotische Stressantwort von Hefezellen
zu beschreiben.
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Chapter 1

Introduction

1.1 Objective

The aim of this work has been to develop a mathematical model, that explains the change in

the polysomal association of mRNAs in Saccharomyces cerevisiae when subjected to osmotic

stress. Yeast cells that are transfered to a medium of high osmolarity show a specific response

(Hohmann, 2002), which includes the global downregulation of the translational apparatus.

This means that the polysomal profile of the cells, is shifted from a distribution consisting of

highly translated mRNAs (polysomes) to a distribution formed by lower translated mRNAs.

In this work different models for the occupancy of mRNA with ribosomes have been devel-

oped and tested for their ability to describe both, the distribution of polysomes in unstressed

cells, and the temporal change in the polysomal pattern after osmotic shock. For this purpose

different processes that may cause the change in the translation state in response to osmotic

shock have been incorporated in the different model, and examined for their influence on these

models.

1.2 Modeling biological processes

Systems Biology attempts to understand the biology at system level (Kitano, 2002). This means

understanding the system in general, rather than focusing on isolated subsystems. Because of

the complexity of living organisms, which dooms unstructured attempts to globally understand

them to fail, this approach can only be successful by making use of a general mathematical

description of the underlying processes. Methods for the global mathematical analysis of reac-

tion systems have been developed, for instance the metabolic control analysis (MCA) allows to

determine the influence of single reactions or metabolites on the whole reaction system (Kacser

and Burns, 1973; Heinrich and Rapoport, 1974). For the mathematical description of reaction

systems a general approach exists, which shall be described in the following section.
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1.2.1 Mathematical description

The mathematical description of a reaction system can be formulated in a general way (Klipp

et al., 2005a). First of all, the topology of the network can be described by the stoichiometric

matrix. The stoichiometric matrix N consists of a column for each reaction and a row for each

substrate. The element nij is the stoichiometry at which the ith substrate participates in the

jth reacion, or 0 if the substrate does not take part in this reaction. The simple reaction system

r1→ S0
r2→ S1

r3→

leads to the stoichiometric matrix

N =

(
1 −1 0
0 1 −1

)

The concentration change of a metabolite in time is the sum of the concentration changes

that are caused by the particular reactions, in which the metabolite participates. Therefore, the

concentration change of a metabolite is given by its row in the stoichimetric matrix multiplied

with the vector of reaction velocities v. This can be written in as:

dSi
dt

=

r∑

j=1

nij · vj (1.1)

where vj denotes the reaction velocity of the jth reaction.

The substrate concentrations also can be collected in a vector S, where si denotes the con-

centration of substrate i. The reaction velocity vector v generally depends on the concentration

of all metabolites S and the parameters p, which can be written as v = v(S, p).

Equation (1.1) can be written in matrix notation as:

dS

dt
= Nv = Nv(S, p) (1.2)

To investigate the properties of such a model, it is generally considered to be in steady state,

which means that none of the substrate concentrations changes over time. A concentration

change for one of the metabolites would mean that this substrate is either removed from the

system, or accumulated. This cannot be if the system is balanced. The steady state assumption

can be written in mathematical terms as:

dS

dt
= Nv = 0 (1.3)

Solving this equation for the reaction velocities v gives the fluxes J that can be reached in steady

state. The fluxes J differ from the reaction velocities, in the point that they only depend on

the parameters p, not on the concentrations S.

J(p) = v(S, p) (1.4)
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Solving Equation (1.3) for the metabolite concentrations gives the metabolite concentrations

S(p) that can be reached in a steady state, in dependence of the parameters p. Unfortunately,

in most of the cases it is not possible to solve Equation (1.3) analytically.

Equation (1.2) gives a deterministic description of the reaction system, which means that

for known initial concentrations S and parameters p, the concentrations can be determined

for every proximate time point by integrating this equation over the time. This can be done

analytically to get a general mathematical description, if the system is not too complicated, or

numerically to simulate the system.

The deterministic approach requires that (i) the system is well mixed, and (ii) the molecule

numbers are high. For small molecule numbers also stochastic processes play a role, since

molecule numbers can only adopt discrete values. A stochastic description of a reaction system

gives the probability for each possible way in which the system can evolve. A way in this

context is made up by the concentrations of all metabolites at all time points. A stochastic

simulation chooses one possible way in which the system could evolve, but does this according

to the probability that the system will evolve in this direction.

1.3 Biological basis

1.3.1 Gene expression in eukaryotes

Gene expression denotes the process of converting information, that is contained in the DNA

sequence of a gene, into structural or signaling elements of the cell. These elements are proteins

in most cases, but can also be RNAs. In Saccharomyces cerevisiae, for example, more than

700 of its roughly 6000 genes produce RNA as their final product (Eddy, 1999; Goffeau et al.,

1996). When we speak of RNA, we usually mean the messenger RNA (mRNA) that serves

as a template for protein synthesis. But there exist also a variety of other RNA types in the

cell, which are termed after their function. The most important noncoding RNAs are ribosomal

RNAs (rRNA), which are an essential part of the ribosome, transfer RNAs (tRNA), which serve

as adaptors beween the mRNA and amino acids during translation, microRNAs (miRNA)

which are thought to regulate the expression of other genes, small nuclear RNAs (snRNA),

which among other things play an important role during splicing, and small nucleolar RNAs

(snoRNA), which process rRNAs. In eukaryotes, the different types of mRNA are produced by

three different RNA-polymerases.

The process of gene expression for protein coding RNAs is displayed in Figure 1.1. In the

first step, a region on the DNA called transcription unit is transcribed to a complementary RNA.

The catalyzing enzyme is the RNA-polymerase II, and the RNA product is called premature

messenger RNA (pre-mRNA). This pre-mRNA undergoes several modifications, before it is

engaged in protein synthesis (Lewis and Tollervey, 2000). The first modification is the addition

of a modified guanine nucleotide at the 5’ end, which already takes place during transcription.

This cap is important for the binding of ribosomes to the designated mRNA. On the other end

of the pre-mRNA a set of adenosine residues is added, forming a so called polyA tail, which
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determines the stability of the mRNA and serves as an export signal from the nucleus (Huang

and Carmichael, 1996; Drummond et al., 1985). The third modification is called splicing

and denotes a process in which noncoding regions of the mRNA are excised. This process is

catalyzed by a RNA-protein complex called splicosome, which cuts out the noncoding regions

(introns) in a two step process. By varying the number and positions of splice events, a process

called alternative splicing, it is possible also for a eucaryotic cell to encode different proteins

on a single gene (Black, 2000). Another optional modification is the change of the nucleotide

composition of the mRNA, called RNA editing.

Figure 1.1: Gene expression in eukaryotes

After the pre-mRNA has undergone the above described post transcriptional modifications,

it is a mature mRNA and ready to be exported to the cytosol. This export is highly selective to

ensure that only correct processed mRNAs are translated. The nuclear pore complex recognizes

several indications for the processing state of an mRNA, and exports only mature mRNAs

(Daneholt, 1997). In the cytosol ribosomes bind to the 5’ cap of the mRNA and translate

its base sequence into the amino acid sequence of a protein. The synthesis of all proteins

takes place in the cytosol. Proteins that contain a special signal sequence are recruited to the

endoplasmatic reticulum (ER) during translation, where the ribosome synthesizes the protein

directly into the ER lumen. In the ER proteins are further processed by the addition and

trimming of oligosaccharides before they are passed on to the golgi apparatus, which is also

involved in the oligosaccharide processing, and finally sorts and packages the proteins for further

transport.

It is important to mention that the above described processes correspond to eukaryotic

cells. In bacteria the processes are somewhat easier, although they are similar. Fundamental

differences are the absence of post transcriptional modifications, the use of just one RNA

polymerase, and the potential to encode more than one protein on one mRNA in procaryotes.

For further details on the described biological processes see (Alberts et al., 2002).

Since the cell has to be able to control its protein synthesis, another fate of the cytoplasmic

mRNAs is the degradation by ribonucleases. The degradation rate of different mRNAs depends
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on the type of the mRNA (Lowell et al., 1992) as well as on the environmental and intrinsic

conditions of the cell (Bernstein and Ross, 1989; Zingg et al., 1988).

Cells have to be able to alter their gene expression because of specialization in a multicel-

lular organism, and in response to environmental changes. These differences in mRNA and

protein levels occur not due to changes in the DNA sequence, but are controlled by a variety

of mechanisms that intervene in processes during or downstream to transcription (Gurdon,

1968). The regulation of gene expression can be roughly divided into transcriptional and post

transcriptional control mechanisms.

Transcriptional control mechanisms

The transcription is classified into the three steps: initiation, elongation, and termination. Each

of these steps requires not only the RNA polymerase, but a large number of helping proteins

named transcription factors.

Initiation starts with the binding of the general transcription factor TFIID to a region,

typically located 25 nucleotides upstream from the transcription start, called TATA box. The

binding of TFIID causes the binding of several other transcription factors (TFIIA, TFIIB,

TFIIE, TFIIF, and TFIIH) as well as the RNA polymerase II (Conaway and Conaway, 1993).

TFIIH plays an important role in unwinding the RNA and in the activation the polymerase

by phosphorylation. Altogether, well over 100 subunits are involved in transcription initiation.

To assemble this huge machinery a mediator protein complex is required. This mediator binds

to a specific DNA sequence, thereby activating the transcription for a specific gene.

After the initiation most of the initiation factors dissociate, and elongation factors bind to

the polymerase. These elongation factors reduce the probability of dissociation of the poly-

merase from the RNA. Likewise are termination factors required, that recognize the polyadeny-

lation site in the growing RNA, thereby terminating the elongation process. The termination

factors cleavage stimulation factor F (CstF) and cleavage and polyadenylation factor (CPSF)

recognize the termination signal in the growing RNA sequence, and as their name indicates

trigger the cleavage of the mRNA chain and the addition of a poly-A tail, which is catalyzed

by the poly-A polymerase. The poly-A tail is bound by poly-A binding proteins.

Regulation of transcription is possible at various of the described steps. First of all, the ini-

tiation of transcription often requires the remodeling of the chromatin structure of the DNA to

facilitate binding of the polymerase to the DNA. This task is fulfilled by chromatin remodeling

complexes, which can be selectively brought to specific regions of the DNA, thereby activating

specific genes (Kingston, 1999). Other gene regulatory proteins bind to specific DNA sites,

thereby either activating genes by attracting general transcription factors or the polymerase to

the DNA region (enhancers), or inhibiting the formation of the initiation complex (repressors)

(Kornberg, 1999). Besides the regulation of initiation, there exist also proteins that regulate

the rate of elongation (Bentley, 1995). A mechanism that is only present in vertebrates is

the methylation of DNA regions, which leads to the binding of proteins, which remodel the

chromatin structure, making the DNA transcriptionally inactive.
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Of course most gene regulatory proteins do not act on their own, but are then again regulated

upstream signaling pathways.

Post transcriptional control mechanisms

Post transcriptional control includes all the gene regulatory processes that occur after tran-

scription. One way of post transcriptional control is the above mentioned alternative splicing

process, where certain splice sites are left out, or cryptic splice sites are activated. This alter-

native splicing does not exclusively occur by chance, but is also regulated by other molecules

in both positive and negative way.

As also noted above, the coding sequence of mRNA can be changed by enzymes after

transcription in a process called RNA editing.

Another way to regulate the translation rate of mRNAs is the control of export from the

nucleus, since protein synthesis only takes place in the cytosol. To be exported, an mRNA

needs to be correctly capped, polyadenylated, and spliced. This mechanism is known to play a

role in stress induced differential gene expression (Saavedra et al., 1996).

Furthermore, the distribution of mRNAs over the cytoplasm is not random, but a regulated

process (Ding and Lipshitz, 1993; Singer, 1992; Wilhelm and Vale, 1993). This is an economic

way of the cell to direct proteins to their destination, as it only requires the transport of the

mRNA instead the produced proteins. The signals directing the mRNA localization are usually

found in the 3’-UTR of the mRNA.

The translation of mRNAs is also controlled by the cell. Several proteins for example bind

to the 5’ end of the mRNA, thereby inhibiting the translation initiation. Other proteins bind

to the 3’ poly-A tail and disturb the communication between the 5’ cap and the 3’ poly-A tail,

which is required for efficient translation. Global regulation of the protein synthesis rate can

be achieved by the phosphorylation of the initiation factor eIF-2 (Wek, 1994), which normally

mediates the binding of the methionyl-tRNA to the 40S ribosomal subunit. Phosphorylation

of eIF-2 enhances its affinity to eIF-2B, which is required for eIF-2 to release its bound GDP

after the initiation process. This leads to the consumption of eIF-2B, thereby arresting the

reactivation of eIF-2 which again induces a lower initiation rate.

A very important way for the cell to regulate the expression of certain genes is the degrada-

tion rate of the corresponding mRNAs. It has been shown that the half-lives of mRNAs vary

from less than one minute to more than one hour (Herrick et al., 1990; Jacobson et al., 1990),

what indicates a contribution of this mechanism to differential gene expression. The polyA tail

plays an important role in this pathway (Wilson et al., 1978). In the cytosol the polyA tail

is shortened continuously by exonucleases, and once the length of the polyA tail falls below a

threshold a degradation pathway is triggered. This degradation pathway involves the removal

of the 5’ cap in a process called decapping and the subsequent degradation of the mRNA.

The proteins that shorten the polyA tail compete in general with the translational apparatus,

wherefore a well translated mRNA is subjected to a lower degradation than a less translated

one (Prieto et al., 2000). The degradation of the polyA tail is also thought to be influenced
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by proteins, that bind to specific sequences in the 5’ UTR. There exist a second pathway for

mRNA degradation in which an exonuclease cleaves away the polyA tail, which lead again to

degradation of the mRNA. mRNAs which are degraded in this way carry a special signal in

their 5’ UTR. For a comprehensive review on post transcriptional control see (McCarthy, 1998).

Translation

The translation is the process of decoding the nucleotide sequence of an mRNA into a protein’s

primary structure. The location of translation is the cytoplasm, so the mRNA has to be

exported from the nucleus in advance. The initiation of translation begins with the binding of

the initiator tRNA, which carries methionine, to the small ribosomal subunit. This requires

also the binding of the eucaryotic initiation factor eIF-2. After that the small ribosomal subunit

binds to the 5’ cap of the mRNA, whereby the selective binding of the cap is achieved by the

initiation factor eIF-4E. For the binding of the 40S ribosomal subunit and eIF-4E also eIF-G

is required, which is supposed to mediate the binding of the ribosomal subunit and to enhance

the cap binding of eIF-4E (Ptushkina et al., 1998). After the binding to the cap, the complex,

consisting of the 40S subunit and the initiation factors, moves along the 5’ untranslated region

(5’ UTR) until it encounters an AUG start codon. This searching may be driven by the initiation

factor eIF-4A (Sonenberg, 1996). Once the complex has found an AUG codon, the initiation

factors dissociate and the big 60S ribosomal subunits binds to form the complete 80S ribosome.

The nucleotides surrounding the AUG codon influence the efficiency of the AUG recognition,

thereby providing a mechanism to code more than one protein even on a eukaryotic mRNA.

The ribosome has three binding sites for tRNAs, the aminiacyl-tRNA-site (A), the peptidyl-

tRNA-site (P), and the exit-site (E). After the formation of the ribosome, the methionine-tRNA

is bound to the P-site. During elongation the tRNA that matches the next codon binds to the

A-site, allowing the ribosome to catalyze a peptide bond between its bound amino acid and the

growing peptide chain. During this reaction the new tRNA moves from the A-site to the P-site,

while the preceding tRNA moves to the E-site, where it is released. At this time the tRNA is

located in the P-site, and holds the growing peptide chain covalently linked, while the A-site is

vacant and can be accessed by the next tRNA. As for the initiation various elongation factors

are required for the elongation process. eEF-1A forms a complex with GTP and aminoacyl-

tRNA, facilitating the binding to the ribosome. eEF-2 helps in translocating the peptidyl-tRNA

to the P site, and is likely to be regulated in higher cells (Pain, 1996; Nairn and Palfrey, 1996)

Termination of the translation process is induced by the occurrence of one of the stop codons

(UAA, UAG, or UGA), which have no matching tRNAs, but instead trigger the binding of the

release factors eRF-1 and eRF-3 to the A-site. The release factors initiate the release of the

peptide chain by the addition of water, and the disaggregation of the ribosome.

Because the translation of an average mRNA takes longer than it takes for the next initiation

process to take place, mRNAs are not only transcribed by a single ribosome, but instead form

a complex with several ribosomes called polyribosomes (or polysomes).
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1.3.2 Osmoadaption in yeast

The osmolarity of the surrounding media is very important for a cell, since it determines its

turgor pressure. Osmolarity is a measurement for the amount of solutes per litre of solution.

Because the interior of a cell has generally a higher osmolarity than the surrounding medium,

there is a constant force driving water into the cell to offset this imbalance. This force leads to

an antagonizing force arising from the limited expansion ability of the plasma membrane and

the cell wall, which is called turgor pressure (Blomberg and Adler, 1992; Wood, 1999).

Since the osmolarity of the medium surrounding the cell can change, a cell has to be able to

respond to those changes in order not to shrink or to burst. When cells are subjected to a so

called hyperosmotic shock, which is a rapid upshift of the extracellular osmolarity, they have

to deal with water outflow and consequent cell shrinkage. On the other hand, a hypoosmotic

shock (osmotic downshift) leads to water influx and thereby to increased turgor pressure. The

cell senses osmotic changes by certain receptors, and relays them through different signaling

pathways to alter gene expression and the production and transport of certain metabolites. A

mathematical model for the osmotic stress response of yeast is available (Klipp et al., 2005b),

but this model does not include the occupancy of mRNA with ribosomes. A very comprehensive

review about the signaling and response of yeasts to osmotic stress has been written by Stefan

Hohmann (Hohmann, 2002).

1.3.3 Sensing and signaling osmotic changes

There exist several proteins sensing osmotic changes. They either act similar to chemosensors,

with the difference that they are not restricted to a certain compound, or sense mechanical

changes that result from the osmotic shift. In Saccharomyces cerevisiae the Sln1 and Sho1

proteins are the most prominent osmotic sensors, both controlling the high osmolarity glycerol

(HOG) pathway (see Figure 1.2).

The Sln1 pathway is active under low osmolarity conditions, where it acts by inhibiting the

HOG pathway. The signal transduction from Sln1 to HOG1 can be divided in two modules, a

two component phosphorelay module, and a mitogen activated protein (MAP) kinase module.

The two component module is actually a three component system comprising the proteins Sln1,

Ypd1 and Ssk1. The two component in the name indicates the similarity of the module to

classical procaryotic two-component transduction systems (Widmann et al., 1999). Sln1 has an

autophosphorylytic activity, which is active under normal osmotic conditions, and is inhibited

by high osmolarity. The autophosphorylation of Sln1 implicates the phosphorylation of Ypd1,

which again transfers the phosphate group to Ssk1. Ssk1 stimulates the downstream MAP

kinase module by the phosphorylation of Ssk2 and Ssk22, but is inactivated by phosphorylation.

Thereby, high osmolarity activates the pathway by dephosphorylation of Ssk1.

The following MAP kinase module consists of the four components: Ssk2, Ssk22 (both MAP

kinase kinase kinase (MAP-KKK)), Pbs2 (MAP kinase kinase (MAP-KK)), and Hog1 (MAP

kinase). Hog1 then again activates several factors that are important for the stress response.

MAP kinase signaling cascades generally consist of three proteins, that amplify an incoming
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Figure 1.2: Map of the HOG pathway

signal by passing on phosphorylation signals. A simple three component MAP kinase cascade

would consist of an MAP-KKK element, which is activated by an activator (e.g a receptor) and

thereupon phosphorylates the MAP-KK. In the phosphorylated state MAP-KK activates the

protein MAP-kinase (by phosphorylation), which activates certain effector proteins affecting

their activity.

In addition to the Sln1 pathway, yeast cells activate the MAP kinase module by another

osmotic sensor, the Sho1 pathway (Helliwell et al., 1994). Sho1 is active under high osmolarity

conditions and activates the G-Protein Cdc42, which relays the signal to kinase Ste20, that again

activates the MAP-KKK Ste11. This reaction sequence also requires Cdc24, the exchange factor

for Cdc42, and Ste50 (Raitt et al., 2000). Ste20 is a MAP-KKK and activates the MAP-KK

Pbs2 in the MAP kinase module, thereby converging the two pathways.

Response to osmotic changes

When the cell is subjected to a rapid osmotic upshift, it shrinks within seconds to a fraction of

its initial volume (Albertyn et al., 1994).

Consequences of osmotic upshift include an enhanced production of glycerol and trehalose,

and the reduction of glycerol export. Glycerol is a very important osmoactive substance in

the cell, and increased cellular concentration of glycerol can countervail the increased external

osmolarity. The glycerol metabolism is effected quite dramatically by hyperosmotic shock, as

the genes for glycerol synthesis (GPD1 and GPP2) transiently increase up to about 50-fold

9



(Albertyn et al., 1994; Hirayarna et al., 1995; Norbeck et al., 1996). In addition, Fps1p, a cell

wall channel for glycerol, is regulated negatively in response to hyperosmotic shock (Tamas

et al., 1999; Luyten et al., 1995).

General pathways of the cell such as amino acid metabolism, cell wall maintenance, nucleo-

some structuring, DNA synthesis, and nucleotide metabolism are downregulated under osmotic

stress (Hohmann, 2002). In addition, the elongation step of protein synthesis is also believed

to be downregulated by osmotic stress (Teige et al., 2001).

Also the production of trehalose and glycogen is found to increase in response to (not

exclusively) osmotic stress (Causton et al., 2001; Gasch et al., 2000). Trehalose is a disaccharide

which is important for cells to survive under stress (Deschenes et al., 1999; Estruch, 2000;

Francois and Parrou, 2001; Nwaka et al., 1995; Singer and Lindquist, 1998), and glycogen is a

polysaccharide which serves as a energy storage in the cell. However, the increased production

of trehalose does not accumulate it in the cell (Hounsa et al., 1998), which is due to likewise

increased degradation.

1.4 Methods

1.4.1 DNA Microarrays

DNA microarrays provide a method to monitor the complete expression pattern of a cell in a

single experiment (Southern, 2001). An array consists of a huge number of small DNA pieces

that are each complementary to a certain gene (or rather transcript). When this DNA chip

is incorporated with stained RNA or DNA, the probes bind to the spot on the array which is

their complement. As the positions of each gene is known on a microarray, this enables the

experimentalist to quantify the abundance of each gene transcript by analyzing the intensity

of the stains. In practice two variants of microarrays are commonly used:

cDNA Arrays

cDNA arrays consist of pieces of DNA, that are complementary to the genes of interest (e.g. all

6000 yeast genes). They measure the relative RNA abundance of two probes and are therefore

also referred to as two channel arrays. In an experiment the RNA of two cell types (e.g stressed

and unstressed cells) is reverse transcribed to cDNA, which is labeled with a flurescent dye. In

this step it is important to label the two different probes with two distinct dyes. Commonly,

one probe is labeled with the green-flurescending Cy3, while the other probe is labeled with the

red-flurescending dye Cy5. Hybridizing the mixture of the two probes with the array results in

a competition of the two differently labeled probes for binding to the array. Therefore, a green

spot on the array indicates higher transcript level in the first probe, while a red spot indicates

the opposite. Consequently a yellow spot indicates a similar transcript level.
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Oligonucleotide Arrays

Oligonucleotide arrays contain small oligonucleotide (≤ 25 base) strands, rather than larger

copies as in the cDNA arrays. In general 11 to 16 copies of each gene are included in the array,

which makes this type of array more specific, but less suitable for global analysis of whole

genomes. Another difference to the cDNA arrays is, that only one probe is analyzed in one

experiment, instead of comparing two expression patterns. The technical difference is that the

cDNA derived from the cellular RNA, is again transcribed to cRNA, which then is hybridized

to the array.

1.4.2 Analysis of polysomes

The activity at which mRNAs are translated is regulated both globally and specifically (Jo-

hannes et al., 1999; Zong et al., 1999; Kuhn et al., 2001; Mikulits et al., 2000; Brown et al.,

2001). The underlying mechanisms are described in section 1.3.1. The translation state can be

measured globally and for specific mRNAs. The methods how this is done are described in this

section.

Global polysomal profiling

A method to determine the global translation state of a cell is to separate the differently loaded

mRNAs by centrifugation, and to measure the abundance of RNA along this segregation by

absorbance of ultraviolet (UV) light. RNA absorbs light with at a wavelength of 254 nm, and

the absorbance of a solution containing RNA is proportional to the containing amount of RNA.

More precisely, the absorption at a certain wave length A is the concentration C multiplied

with way the light has to go through the solution I and an extinction coefficient ε (A = εCI).

This method has been used for example in (Swaminathan et al., 2006; Ashe et al., 2000;

Dickson, 1998). In the first step the cellular RNA, which is still being translated by ribosomes

is extracted and separated by high speed sedimentation centrifugation. This method separates

by density, thus the higher translated mRNAs are driven to the bottom of the centrifugation

tube. In the next step fractions are collected from the separated solution by isotonic pumping,

and changing the collecting bin at certain time intervals. These fractions contain the same

mRNA with different numbers of bound ribosomes and can be used for the specific analysis

described in the next paragraph. A global profile of the translation state of the cell can be

gained by monitoring the absorbance at wavelength 254 nm during the isotonic pumping.

Figure 1.3 shows an example of how such a measurement of the absorbance looks like. The

isotonic pumping starts from the top of the centrifuged solution, wherefore the highly translated

mRNA pertains to the right side of the graph. The high absorbance at the beginning of the

pumping is due to the absorbance of other solutes than RNA. After that, the graph shows

peaks for the big and small ribosomal subunit, and thereupon a big peak for the mRNAs

that are translated by one ribosome (monosomes). Behind the monosomes follow the different

polysomes. Since the polysomes consisting of more than 10 ribosomes can not be distinguished
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in this analysis, they are pooled together. Furthermore this method gives no estimation for the

amount of mRNA that is not engaged in translation.

Figure 1.3: Example for a measurement of the global polysomal profile. Cellular RNA with
the associated ribosomes has been separated by gradient centrifugation. The gradient has been
monitored for it’s RNA content by measuring the UV absorbance.

Specific polysomal profiling

In addition to the global analysis of the translation state, it is also possible to monitor the

change in translation for single mRNAs. Two methods are available here, the first determines

the abundance of certain mRNAs by northern blotting, and the second by DNA microarrays.

For the northern blotting method the RNA from the fractions collected during the isotonic

pumping (typically up to 15) are run separately on agarose gels and probed by northern blotting.

This gives a measurement for the abundance of individual mRNAs in the fractions. An idea how

this looks like can be obtained from Figure 1.4 B, although in this case the shown procedure is

not a northern blot but a simple RNA separation and subsequent staining. This method has

been applied for example in (Kuhn et al., 2001; Swaminathan et al., 2006; Arava et al., 2003).

The second type of analysis is to use DNA microarrays to quantify the abundance of a

huge number of mRNAs from one or more polysomal fractions. In general, a pool of polysomal

fractions is compared to total mRNA by the use of two channel arrays. This gives an estimate

of the translational activity of each single mRNA. This method has been applied in (Serikawa

et al., 2003; Swaminathan et al., 2006; Mata et al., 2005). It can be extended by comparing

multiple polysomal fractions to the total mRNA (MacKay et al., 2004). This approach is

illustrated in Figure 1.4 C.
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Figure 1.4: (A) Absorbance profile as already shown in figure 1.3. (B) Separating the RNA
from each fraction by electrophoresis shows the different types of RNA in each fraction. (C)
A specific polysomal profile for single mRNAs can be achieved by comparing the fractionated
mRNA with the total mRNA on a microarray. Therefore the RNA from the fractions is reverse
transcribed and labeled with Cy3, while the unfractionated RNA is reverse transcribed and
labeled with Cy3. Figure taken from (Arava et al., 2003)

1.4.3 Gillespie algorithm for stochastic simulation

The Gillespie algorithm (Gillespie, 1977) is a method to simulate a chemical reaction system

stochastically, which means that the algorithm chooses one possible way of the system, but

does this according to the probability that the system would evolve in this way. A way is here

defined as the number of all molecule numbers at each time point. When we consider a system

of N metabolites with molecule numbers X1, ..., XN at time point t that interact through M

reactions, Gillespie’s algorithm creates a time point t+ τ at which the next reaction will occur,

and states which reaction Rµ it will be. The important point is that the algorithm chooses

these values according to the reaction probability density function of the system. The reaction

probability density function P (τ, µ)dτ is the probability that, given the state (X1, ..., XN), the

next reaction will occur in the infinitesimal time interval (τ, τ+dτ) and that it will be Rµ. This

probability is the product of the probability that no reaction will happen in the interval (0, τ)

times the probability that reaction Rµ will occur in the interval (τ, τ + dτ). The probability

that there will be no reaction in the interval (0, τ) is

P0(τ) = e−
PM
v=1 avτ (1.5)
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where

av = hvcv (1.6)

is the product of the number of distinct molecular reactant combinations for reaction Rv hv
and the respective reaction constant cv. The probability that a Reaction Rµ will occur in the

interval (t, t+dt) is just aµdt = hµcµdt. Consequently, the reaction probability density function

can be written as:

P (τ, µ)dτ = aµe
−PM

v=1 avτdτ (1.7)

Integration this equation over all possible reaction times gives the reaction probability distri-

bution

P (Rµ) =
aµ∑M
v=1 av

(1.8)

and integration over all possible reactions leads to the probability distribution for the times τ

P (τ)dτ =

M∑

v=1

av · e−
PM
k=1 akτdτ (1.9)

Therefore, the algorithm chooses for each step two unit random numbers r1 an r2, and calculates

from it τ and Rµ. From (1.9) and (1.8) it follows that choosing

τ = (1/a0)ln(1/r1) (1.10)

where

a0 =

M∑

v=1

av (1.11)

and the reaction Rµ with µ being an integer for which

µ−1∑

v=1

av < r2a0 ≤
µ∑

v=1

av (1.12)

holds true, gives the right probability density function for τ and Rµ.

The algorithm proceeds as follow:

0. Assign M reaction constants c1, ..., cM and N molecule numbers X1, ..., XN . Initialize

time (t = 0) and reaction counter (n = 0)

1. Calculate ai for i = 1..M (1.6) and their sum a0 (1.11).

2. Generate two unit random numbers r1 and r2 and calculate τ and µ according to (1.10)

and (1.12)

3. Output X and t, update molecule numbers Xi for species participating in Rµ, set t = t+τ

and if t < tmax return to 1.

The running time can be improved by using a binary tree to compute a0 and to find the ai
corresponding to r1 (Gibson and Bruck, 2000).
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1.4.4 Differential Evolution algorithm for optimization

Differential evolution (DE) (Storn and Price, 1997) is a heuristic to find the minimizing pa-

rameters for an arbitrary input function. The algorithm operates stochastically as the starting

parameters are chosen randomly, and the search for the best parameter also involves throw-

ing dices. The strategy is similar to the natural selection theory, wherefore DE borrows its

terminology.

The aim is to minimize an objective function with a certain set of parameters (p1, ...pD),

for example the mean square difference of data points and a proposed function to generate

these points. In the beginning NP parameter sets (vectors of length D) are chosen randomly.

These NP vectors form the first generation, from which the succeeding generations evolve. The

formation of the succeeding generation is done by randomly combining the preceding generation

vectors. When a newly generated vector yields a better result than its predecessor, it replaces

the predecessor, otherwise it is discarded. The generation of the new vector generation takes

place in a two step process:

Mutation

Given the vectors of generation G X1,G, ..., XNP,G a new vector generation is created by choosing

NP vectors Vi according to

vi,G+1 = xr1,G + F · (xr2,G − xr3,G) (1.13)

where r1, r2 and r3 are random indices and F is a constant factor ∈ [0, 2] that has to be specified

by the user. F controls the amplification of the variation.

Crossover

In addition to the construction of parameter vectors as a random linear combination from

preceding vectors, DE includes another stochastic process, as it mixes values from the preceding

vectors with values from the newly generalized vectors to generate trial vectors. Therefore the

user has to specify a crossover constant CR, which determines the rate at which the newly

generated parameters are included in the trial vector. Exactly spoken the trial vector is formed

according to

uj,i,G+1 =

{
vji,G+1 if (randb(j) ≤ CR) or j = rnbr(i)
xji,G if (randb(j) > CR) and j 6= rnbr(i)

(1.14)

j = 1, 2, ..., D

whereas randb(j) denotes a unit random number generator and rnbr(i) a random index gen-

erator 1, ..., D. Because of its similarity to the genetic recombination this process is termed

crossover.
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Selection

To decide whether a trial vector ui,G+1 replaces the target vector xi,G the outcomes of the

objective function of the two vectors are compared, and the one with the smaller value is kept.

This process is called selection.
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Chapter 2

Model construction

2.1 Models

2.1.1 Single rate model

In a very simple approach to model the occupancy of mRNAs with ribosomes, one could suggest

that ribosomes bind with a certain rate ka to the mRNA, and likewise dissociate with a certain

rate kd. Thus the time it takes for the ribosome to translate the mRNA is not considered in

this model. Another assumption of this model is that the number of bound ribosomes does

not affect the binding rate of additional ribosomes. Since this model omits a lot of information

about the involved processes, its biological meaning is questionable, but its a good starting

point to look into the problems that arise when modeling ribosomal binding.

The reactions of the system can be written in the following way: Assuming that an mRNA can

carry the maximum of N ribosomes, the reactions of the system can be written as

Mi +R↔Mi+1 (2.1)

where Mi denotes an mRNA species with i bound ribosomes R and the index i runs from 0 to

N − 1.

2.1.2 Multiple rate model

Because of steric hindrance the number of bound ribosomes should affect the binding rate of

additional ribosomes, especially since ribosomes do not bind to an arbitrary location of the

mRNA, but instead all bind to the 5’ cap. To take this into account, the single rate model

has been extended to make use of different binding rates for varying occupied mRNAs. The

reactions considered in this model are equal to the single rate model, but the binding rates kai
are distinct for each Mi. One way here is to assume a linear dependency between the binding

rates kai = ka· 1
i+1

for i = 0, ..., N−1. This implies a linear decrease of the binding rate, as more

ribosomes bind. A different approach would be to consider each binding rate independently

from the others, or to collect them in groups (e.g. M0 to M5 have the same binding rate, M6

to M11, and so on).
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2.1.3 Bitstring model

The above described models have the shortcoming that the elongation process is not taken

into account. This means that the time the ribosome is bound the mRNA, and the steric

hindrance during the elongation process are not considered. To model this, one has to consider

the position of each bound ribosome. An approach to do this, is to divide the mRNA in

equable intervals and assume that these intervals are small enough, so that only one ribosome

can bind to the interval. The representation of the mRNA translation state in this model is a

binary vector of length K, where K is the maximal number of bound ribosomes. For example

the vector (10000) denotes an mRNA with a single ribosome bound to the first position and

the maximum of 5 bound ribosomes. When we consider every possible translation state of

the mRNA as a separate species, we can write down the processes initiation, elongation, and

termination as several reactions. To do this, it is most convenient to name each species after

it’s translation state vector, wherefore this model has the name bitstring model.

The processes initiation, elongation and termination inflate each to several reactions in this

model.

1. Initiation

The initiation reaction is a reaction of the form

M0XXXX +R→M1XXXX (2.2)

where each X can be either 1 or 0, wherefore this reaction stands actually for 2K−1

reactions.

2. Elongation

An elongation reaction can take place at each 10 pattern in the bitstring, producing a 01

pattern. Therefore we have to model (K − 1) · 2K−2 elongation reactions.

3. Termination

The termination reaction is formulated similar to the initiation:

MXXXX1→MXXXX0 +R (2.3)

where again each X can be 1 or 0

2.1.4 mRNA degradation and production

The above described models can be extended by adding a reaction that produces mRNA (tran-

scription) or degrades it. Obviously, transcription should produce mRNA that is not occupied

by ribosomes. But it is also reasonable to restrict the mRNA decay to not (or poorly) trans-

lated mRNAs, by assuming a competition between ribosomes and ribonucleases binding to the

mRNA (Muhlrad et al., 1995; Jacobson and Peltz, 1996).
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2.1.5 Degradation and production of ribosomes

As the number of ribosomes in a cell is probably nutrition-dependent (Warner, 1999), the

models can be further extended by adding reactions for ribosome production and degradation.

In this framework, only the degradation of free ribosomes is considered.

19



Chapter 3

Model analysis

3.1 Mathematical analysis

3.1.1 Single rate model

To characterize the dynamics of the single rate model, a mathematical analysis was done. But

despite the rather simple structure of the model compared to the other ones, it was not possible

to describe the steady state of the model exclusively by a mathematical expression. Notwith-

standing the mathematical analysis revealed some notable traits of the model. Assuming mass

action kinetics for the binding of a single ribosome to an mRNA, the differential equation

system for the model reads:

d

dt
M0 = −ka ·M0 ·R + kd ·M1 (3.1)

d

dt
Mi = ka ·Mi−1 ·R − kd ·Mi − ka ·Mi ·R + kd ·Mi+1 (3.2)

d

dt
MN = ka ·MN−1 ·R− kd ·MN (3.3)

d

dt
R =

N∑

i=1

(−ka ·Mi−1 ·R + kd ·Mi) (3.4)

Whereas Mi denotes the concentration of mRNA with i ribosomes bound, R the concentration

of unbound ribosomes, ka and kd the rate constants for binding and dissociation, and N the

maximal number of ribosomes an mRNA can bind. Solving this system gives:

Mi = M0 ·X i (3.5)

where X = ka·R
kd

which leads to:

Mi =
Mtot · (x− 1)

XN+1 − 1
·X i (3.6)

where Mtot is the total mRNA concentration. (For proof see appendix)
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First of all, it has to be mentioned that the given equations depend on the unbound steady

state concentration of ribosomes rather than the total concentration, which makes it impos-

sible to determine the steady state metabolite concentrations by just looking at the system

parameters. Attempts to solve the system for the ribosome concentration failed, because the

combination of formulae (3.4) and (3.5) results in a polynomial of rank N , which cannot be

solved analytically for N > 4 (Abel, 1826). But some important conclusions can be drawn

from the given formulas. The most interesting one is that the steady state concentrations of

the different mRNA species always relate in an exponential manner (M1 = M0X
1, M2 = M0X

2

and so on). This implies that the concentrations of the different mRNA species in the model

form a monotonic function. Another interesting property of the system is the dependence on

the ratio of ka · R and kd, which is defined as X. When this is close to 1, the concentrations

of the differently loaded mRNAs are close to each other. A ratio smaller than 1 leads to a

distribution where the unbound mRNA has the highest concentration, whereas a ratio greater

than 1 gives the inverse concentration pattern where the mRNA with the maximum number of

bound ribosomes has the highest concentration (see Figure 3.1).

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Change of polysome distribution depending on x

x

co
nc

unbound
mono
poly2
poly3
poly4
poly5

Figure 3.1: The influence of the ratio of X = kaR
kd

on the (relative) concentrations of the
differently loaded mRNAs. The ordering by concentration gives an ascending ribosomal loading
pattern for X < 1, and a descending one for X > 1.

For simulation of the model, this implies that when X crosses 1 during the simulation the
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distribution pattern of the mRNAs gets inverted. This change may be due to altered values

of ka or kd, which pertains to a regulation of the translation process, of it may be due to the

degradation or production of ribosomes. Figure 3.2 gives an example, where the degradation

of ribosomes leads to an inversion of the concentration pattern.

Figure 3.2: Simulation of the single rate model with ribosome degradation (mRNAi = mRNA
with i ribosomes bound) . At time point 25 the value of kaR

kd
= X drops below 1 and the order

of the different mRNA concentrations is inverted.

3.1.2 Multiple rate model

The multiple rate model differs from the single rate model only in having distinct initiation

rates for the different translation states. Therefore, the derived formula for the concentration

of each translation state looks rather similar to the one in the single rate model. The steady

state concentration of mRNA with i ribosomes bound in is given by:

Mi = M0 ·
i−1∏

j=0

kaj ·
(
R

kd

)i
(3.7)

(For proof see appendix)

It is to mention that the concentration of each translation state depends on all the initiation

rates of the lower transcribed mRNAs, which is not surprising since the ribosomes have to bind

sequentially.

22



3.1.3 Bitstring model

The structure of the rate equations for the bitstring model is rather complicated and hence

it was not possible to solve the rate equations analytically. Nevertheless, the derived rate

equations are given here. In contrast to the single and multiple rate models, Mi denotes not

the concentration of mRNA with i ribosomes bound but rather the concentration of the mRNA

which translation state is represented by the binary string of i. For instance, M2 denotes an

mRNA with a single ribosome bound to the second last position (M00010 for K = 5). K

denotes the maximal number of bound ribosomes, and N = 2K the number of distinct loading

patterns for the mRNA. The rate equations read:

d

dt
Mi =I(i) · ka ·R ·Mi−2K−1 − T (i) · kd ·Mi +

K−1∑

j=1

e · (A(i, j)−B(i, j)) (3.8)

d

dt
R =

N∑

i=1

(−ka ·Mi ·R · I(i) +Mi · kd · T (i)) (3.9)

=

2K−1∑

i=1

−ka ·Mi ·R +

2k−1∑

i=1

kd ·M2i−1

where

N = 2K (3.10)

I(i) =

{
1 if bin(i)[1] = 1
0 else

(3.11)

T (i) =

{
1 if bin(i)[K] = 1
0 else

(3.12)

A(i, j) =

{
Mi+2j+1−2j if bin(i)[j] = 0 ∧ bin(i)[j + 1] = 1
0 else

(3.13)

B(i, j) =

{
Mi if bin(i)[j] = 1 ∧ bin(i)[j + 1] = 0
0 else

(3.14)

and bin(i)[j] denotes the jth position of the binary representation of i

Since these equations are not too obvious, they need a bit of explanation. Formula (3.8)

denotes the time derivation of the concentrations of the different translation states. This

equation is formed by a term for the initiation (I(i) · ka · R ·Mi−2K−1), a negative term for

the termination (−T (i) · kd ·Mi), and a sum over the different elongation reactions (
∑K−1

j=1 e ·
(A(i, j)−B(i, j)). To understand these terms, one has to keep in mind that i actually denotes

the decimal representation of a binary string. For example, M4 represents the mRNA which

translation state is described by the bitstring 00100 (for K = 5), that means an mRNA with

a single ribosome bound to position 3. An mRNA species can only have been formed by an

initiation reaction, if a ribosome is bound to the first position. This is indicated by I(i), which
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is 1 if the corresponding mRNA can have been formed by an initiation, and 0 if not. In addition,

an mRNA species that is formed by initiation arises from the mRNA species with the same

bistring representation, with the difference that the first position is 0, whereas it is 1 in the

formed species. Therefore, the mRNA species that forms mRNA species Mi by initiation is

Mi−2K−1 . Thus, the contribution of initiation to the rate change of Mi is the product of the

initiation rate ka, the ribosome concentration R, and the concentration of the uninitialized

mRNA (Mi−2K−1). I(i) just indicates if Mi−2K−1 is defined or not.

The Termination term in formula (3.8) can be explained in a similar way. An mRNA species

can be degraded by termination, if a ribosome is bound to the last position. This is indicated by

T (i). Therefore, the contribution of termination is the product of the mRNA to be terminated

(Mi), the indication if it can be terminated T (i), and the termination rate kd.

The term for the elongation reactions is a bit more complicated. As explained in section

2.1.3, an elongation reaction is represented in the bitstring model by the change of a 10 pattern

to a 01 pattern. Consequently, the degrading contribution of elongation can be described

by a sum over all 10 pattern, and the forming contribution by a sum over all 01 patterns.

Furthermore, a degradation corresponds to the considered mRNA (Mi), whereas a formation

arises from the mRNA where the specific 01 pattern is a 10 pattern. The term B(i, j) gives

Mi if the considered position j in the mRNA Mi is a 10 pattern. That means the degradation

contribution of elongation can be summed up by −∑K−1
j=1 e · B(i, j), whereas e denotes the

elongation rate. The function A(i, j) gives the mRNA species from which Mi can be formed in

the initiation reaction if Mi contains a 01 pattern at position i, and 0 otherwise. This mRNA

species is Mi+2j+1−2j , since one is interested in the mRNA concentration where the 0 in the

bitstring at position j is 1 and the 1 at position j+ 1 is 0. Combining these two effects one can

write the elongation contribution as
∑K−1

j=1 e · (A(i, j)−B(i, j)).

Equation (3.9) denotes the rate change of the ribosomes. This can be written as a sum over

all mRNA species containing a negative term −ka ·Mi ·R · I(i) for the initiations and a positive

term Mi · kd · T (i) for the terminations. Since an initiation reaction can only take place if the

first position is free, the initiation contribution can be rewritten by the sum over all mRNAs

where the first position is 0 (
∑2K−1

i=1 −ka ·Mi ·R). Likewise the termination requires a ribosome

bound to the last position. Therefore, the termination contribution can be written as a sum

over all uneven mRNA species (
∑2k−1

i=1 kd ·M2i−1).

3.2 Simulation analysis

The mathematical analysis revealed some properties of the single rate model, but it was not

possible to derive a complete mathematical description for any of the presented models. For this

reason, it seemed sensible to examine the behavior of the different models, by just simulating

them with different parameters. The simulations were done with MATLAB (Matlab, 2005),

which allows simulating any system that can be described by ordinary differential equations

(ODEs). The process of simulating a system in MATLAB is exemplified in the appendix.
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3.2.1 Single rate model

At first, a simulation of the single rate model with the maximum of N = 10 bound ribosomes

was done. The parameters were ka = 0.0015, kd = 1 and the initial concentrations M0 = 10,

Mi = 0 and R = 1500. The concentrations can be interpreted as molecule numbers in this

case, although the deterministic simulation admits also non discrete concentration values. The

deterministic approach was favored to the more realistic stochastic, because the aim was to show

the general system behavior, rather than to do a realistic simulation. Because the systems starts

with concentrations far away from the steady state, and therefore may involve fast reactions,

the stiff odesolver ode15s was used.

The simulation result is shown in Figure 3.3. As shown in the mathematical analysis, the

steady state concentrations relate in an exponential manner to each other. In this case X = kaR
kd

is greater than 1, why M10 shows the highest concentration. Because of the exponential relation,

the difference of M10 to the next mRNA (M9) is greater than the difference of M9 to its next

(M8), and so on.
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Figure 3.3: Simulation of single rate model

At time point 0 only the unbound mRNA has a concentration greater than 0. Therefore, the

simulation could be interpreted as a rapid production of an mRNA species that was not present

in the cell before. Though in living cells one would not expect that the production of a single

mRNA species affects the number of unbound ribosomes notably (The ribosome concentration

drops from 1500 to 1409 in this simulation). As one would expect, the concentrations of the
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differently loaded mRNAs increases one after another, where the raise is the highest for the

mRNAs increasing first. These are the mRNAs with few ribosomes bound. After this initial

increase, the concentration drops again until the steady state concentration is reached. M8,

M9 and M10 do not show this descend, because on the one hand they have a high steady

state concentration anyway, and on the other hand they reach their maximum not until the

underlying mRNAs have leveled off. As already explained in the in the mathematical analysis,

it is possible to invert the concentration pattern by either increasing kd or by decreasing ka

(Simulation result not shown here).

3.2.2 Multiple rate model

The multiple rate model assumes a distinct initiation rate for each translation state of the

mRNA. The most simple approach here, is to assume a linear dependency between the initiation

rates. This means that each kai can be written as kai = ka
i+1

whereas i runs from 0 to N − 1.

This model was simulated analog to the single rate model, but the general initiation rate ka

was increased to 0.004. Figure 3.4 shows the simulation result.
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Figure 3.4: Simulation of the multiple rate model with linear dependency between the initiation
rates kai = ka

i
for i = 1..N

The pattern of the temporal concentration increase of the differently loaded mRNAs is

similar to the single rate model.
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The interesting trait of the multiple rate model is that, in contrast to the single rate model,

the concentrations of the differently loaded mRNAs do not form a monotonic function. There-

fore, M5 has the highest steady state concentration in this simulation. This distribution can not

be reached with a single initiation rate, where the mRNA concentrations relate in a monotonic

pattern (Mi = M0 ·X i). The simulation shows that up to M5 the concentrations increase with

the number of bound ribosomes, whereas it decreases for mRNAs with more than 5 bound

ribosomes.

In addition to the simulation of the multiple rate model with linear dependent initiation

rates, another simulation with arbitrary initiation rates was done. The parameters were here

adjusted by hand, so that monosomes and highly translated mRNAs show a high concentra-

tion, while moderately translated mRNAs show a smaller concentration. This distribution was

desired because it can not be reached by the single rate model, and in addition the ribosomal

loading pattern is contrary to the simulation of the model with linear dependent initiation

rates, where M5 has the highest concentration. The simulation result is shown in Figure 3.5.
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Figure 3.5: Simulation of the multiple rate model with arbitrary chosen initiation rates

As required, the highest steady state concentrations are made up by M1 and M10. Further-

more, the polysomes M2, M3, M8, and M9 show also a relatively high concentration, while the

concentration for the medium translated mRNAs and for the untranslated mRNA is low. This

distribution of the polysomes is pictured in Figure 3.6.

The parameters that were used for this simulation are shown in Table 3.1.
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Figure 3.6: Steady state distribution of the polysomes in the simulation shown in Figure 3.5

ka0 ka1 ka2 ka3 ka4 ka5 ka6 ka7 ka8 ka9 kd
15 0.0004 0.0005 0.0003 0.0005 0.0009 0.0012 0.0012 0.0009 0.0012 1

Table 3.1: Parameters for simulation 3.5

The initial concentrations were the same as in the previous simulations. Interestingly the

rate constant for the reaction directly forming M1, ka1 is 4 orders of magnitude higher than

the one for the reaction producing M10, which shows a similar steady state concentration. This

is because (i) the polysomal pattern depends not only on the distribution of the ka′s but also

on the ratio of the total mRNA and ribosome concentration, and (ii) the concentration of each

mRNA is not only determined by the rates directly acting on it but also on all the other rates

for the preceding reactions (see Equation (3.7)). This is again reflected in the high value of

ka7, while the proximate rates have a relative low value although the according concentrations

are rather high.

3.2.3 Bitstring model

In contrast to the models examined so far, the bitstring model takes into account interactions

between the ribosomes. The bitstring model has three parameters: the binding constant for

the initiation ka, the rate at which ribosomes move forward one interval e, and the rate at

which ribosomes dissociate when they reach the end of the open reading frame kd. Figure 3.7

shows a simulation result for ka = 0.1, e = 1, and kd = 5. The initial concentrations are again

10 for the untranslated, 0 for all other mRNAs, and 1500 for the ribosome concentration. It

has to be noted that the different translation states are not made up by a single species in this
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model, but rather by a sum over species. The monosomes for instance are actually the sum

over 10 distinct species, because the single ribosome can bind to 10 positions. This makes the

bitstring model computationally very demanding, as a model with K binding sites consists of

2K species. Therefore, the temporal behavior of 1024 mRNA species had to be evaluated to

calculate the shown results, as the model assumes a maximum of 10 bound ribosomes.

The most striking property of the bitstring model is that the polysomal distribution does

not form a monotonic function as in the single rate model, although the initiation rate of the

differently loaded mRNAs is determined by a single parameter. This behavior can be led back

to the steric hindrance that is taken into account here, meaning that a new ribosome can not

bind if there is still a ribosome bound to the initiation site. Also a ribosome can not move

forward one interval, if there is already a ribosome bound to that interval. This mechanism

makes very high translated mRNAs unlikely, as this would require that all ribosomes move

forward synchronously.

The temporal behavior for the binding of ribosomes to the untranslated mRNA is, as one

would expect, similar to the previous simulations. Remarkable is, that the raise of the mono-

somes is very fast compared to the polysomes. The explanation is again that, once a ribosome

has bound to the first position, no other initiation can take place until the ribosome moves

forward.
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Figure 3.7: Simulation of the bistring model with arbitrary parameters

In general it is believed that the initiation process is the rate limiting step in the translation
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process (Jackson and Wickens, 1997; Lindahl and Hinnebusch, 1992; McCarthy and Kollmus,

1995). But one could assume a model where the termination is the rate limiting step. The

bitstring model allows to examine consequences of such a model. Figure 3.8 shows a simulation

where the initiation rate has been set to kd = 0.5 and the other values are kept from the

first simulation. In this simulation the maximal translated mRNA has the highest steady state

concentration. This is because the ribosome in the last position dissociates very slow, and

thereby forms a bottleneck which hinders the other ribosomes from moving forward. In this

constellation it is possible to achieve the maximal number of bound ribosomes, whereas this

is very unfavorable under normal conditions, because it requires synchronously progressing

ribosomes. As to expect, the binding of ribosomes right after simulation start is identical to

the simulation where the initiation is the rate limiting step, with the difference that in this

simulation also the higher translated mRNAs show a high amplitude.
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Figure 3.8: Simulation of the bitstring model with rate limiting termination
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Chapter 4

Data fit

The aim of this work was to develop a model which is able to explain the temporal pattern

of polysomal association of mRNAs that is found in yeast cells when subjected to osmotic

stress. Therefore, the parameters for different models were adjusted in a way, so that they best

describe the given data. The approach here was to fit the models to a steady state distribution

of polysomes first, and to modify these models subsequently in a way such they can explain

the temporal data.

4.1 Data

The data that the models were fit to are measurements of the polysomal association of the

total mRNA in a cell. This data has been measured as explained in section 1.4.2. These

measurements were done in the Department of Cell and Molecular Biology at the Lundberg

Laboratory, Göteborg University, and were kindly provided for this thesis.

The data that has been used in this section are the measurements of the polysomal profiles

in the yeast cells Saccharomyces cerevisiae in a 10 minute time window after osmotic shock.

Figure 4.1 shows how the translation state of the cell changes after the osmotic shock. The

values for the concentration of mRNA translated by ten or more ribosomes has been pooled in

this data, and also there are no values for the concentration of untranslated mRNA. The value

on the X-axis is not the absolute concentration of the mRNA, but indicates the extinction in

the measurements and thereby the relative concentration.

It can be seen that under normal conditions most mRNA has bound 10 or more ribosomes.

After the osmotic shock this distribution gets shifted, so that most mRNA is translated by

monosomes. The time points 2 and 3 show an intermediate distribution, where both monosomes

and polysomes have a relatively high concentration.

4.2 Used tools

Different tools have been tested to fit the models to the time points, and shall shortly be

described at this point. Mathematically, a parameter fit is an optimization problem that
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Figure 4.1: The change of the translation state after osmotic shock. The X-axis indicates the
number of bound ribosomes, and the Y-axis the relative mRNA concentration. After osmotic
shock the translation state drops from highly translated polysomes to prevailing monosomes.

minimizes the distances between certain data points and the according points in the model, by

choosing the right parameters. This optimization problem can be tackled by either guessing

the parameters in a smart way, or by directed search algorithms that evaluate the gradient of

the system. In addition, it may be possible do fit the parameters by analytically solving the

system, but this is only possible in few cases.

4.2.1 SBMLpet

SBMLpet (Zi and Klipp, 2006) is a parameter estimation tool that operates on files given in

the Systems Biology Markup Language (Finney and Hucka, 2003) (SBML) format, which is a

standard for the representation of reaction networks. Since all models developed in this thesis

have been implemented in Dizzy (Ramsey et al., 2005), which offers an export to SBML, the

program could have been used to fit all models. SBMLpet translates the SBML model to C

source code, which can be compiled and runs therefore very fast. The program is able to handle

normalized data, where the maximum value of each time point has been scaled to 1. SBMLpet

works well for small SBML models, but importing the bitstring model with 10 binding sites

failed because it was too large. Some models have been fitted with SBMLpet, but since the fits

have been repeated using MATLAB these are favored for better comparability.

4.2.2 Berkeley Madonna

Berkeley Madonna (BM) 1 is a commercial software to simulate systems that are given as

differential equations. In this thesis only the free version of BM has been used, which does not

1http://berkeleymadonna.com
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allow to save models. There exist a Mathematica (Wolfram, 2003) SBML interface (Shapiro,

2004) which is able to export the BM format, but in this case it was easier to just reimplement

the model in BM, since BM was only used with the multiple rate model which has relatively

few differential equations.

A fit of the multiple rate model has been done for the different time points (as described for

MATLAB in section 4.3.2). The fitting procedure of BM runs very fast, but no value is given

for the goodness of the fit. To illustrate the goodness of the fit, plots of the data values against

the predicted values of the fitted models for time points 0 and 4 are displayed in Figure 4.2. It

can be seen that the fit for time point 0 is more or less acceptable, but the fit for time point

4 is not since the deviations are too large. Compared to the fit in 4.3.2, the results of the fits

with BM are not convincing, and therefore are not shown here.
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Figure 4.2: The values predicted by the multiple rate fitted with Berkeley Madonna mode have
been plotted against the data values.

4.2.3 Matlab

Since MATLAB is able to simulate biochemical models (for example see appendix), it is also

suitable for parameter estimation. For the parameter estimation with MATLAB the differential

evolution (DE) algorithm was used (see 1.4.4). The MATLAB code for this algorithm can be

downloaded from 2. The process of parameter estimation in MATLAB is similar to simulating

a system in MATLAB. One has to write an objective function, which determines for every

parameter set the goodness of the fit. In this case, the objective function is called by the DE

algorithm with a certain set of parameters. The objective function then simulates the system

2http://www.icsi.berkeley.edu/˜storn/code.html
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for the given parameters, determines the residual sum of squares (RSSQ) at a fixed time point,

and returns this value to the DE function. This is done a lot of times during one parameter fit,

and the best parameters are returned.

Parameter estimation with MATLAB gives the user by far more control over the procedure

than SBMLpet or Berkeley Madonna, since optimization parameters can be specified, the model

can be modified arbitrarily, and certain constraints can be included (This is also possible in

SBMLpet). Because the estimation procedure is also very fast and underlying algorithm and

procedure is known, MATLAB was used for the fits in this section.

4.3 Steady state fit

In the first step the polysomal distribution at different time points was considered as a steady

state distribution. Of course the different time points do not correspond to a steady state,

but this assumption was just accepted to compare the estimated parameter sets for these time

points. This allowed to fit the models to the different time points independently, and to compare

the resulting parameter distribution afterwards. The idea behind this was to derive a temporal

model by looking at how the parameters for the different time points change in the same model.

To adjust the model to the data, at first the data was normalized, so that the sum over

all concentrations equals 100. Since the measurements are relative measurements, the concen-

trations have no unit in this approach. The initial concentrations were chosen in a way that

the total mRNA concentration is 110. The total concentration was chosen higher than it is

in the normalized data, because the data does not include the untranslated mRNA. To fit the

models to the concentration values of the different time points, the differential evolution (DE)

algorithm (see introduction) was used with MATLAB. The DE algorithm requires an objective

function, which determines for every parameter set the quality of the fit. In these cases the

residual sum of squares (RSSQ) between the data and the predicted values at time point 60

were used. It is important to distinguish this simulation time point from the data time points,

since we are considering each of the different time points as a steady state distribution. This

time point was used, since it was assumed that 60 time steps are sufficient for the system to

reach a stable distribution.

4.3.1 Single rate model

The single rate model has been fit to all six time points. The monotonic structure of the model

implies that no satisfiable fit to a non monotonic polysomal distribution can be found. Time

points 2 and 3 show such a monotonic distribution. Since the polysomes with 10 or more

ribosomes bound have been pooled in the data, it was assumed in the model, that maximal 16

ribosomes can bind to one mRNA, and the concentrations were pooled together for polysomes

consisting out of 10 or more ribosomes. The initial concentrations have been chosen to be
110
17
≈ 6.47 for each translation state (including untranslated mRNA).
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time ka kd ka/kd RSSQ
0 0.267242 476.632364 5.6069e-04 36.06
2 0.000047 0.140580 3.3433e-04 178.73
3 0.000062 0.183990 3.3697e-04 353.12
4 0.100161 469.616672 2.1328e-04 701.09
6 0.163748 782.522937 2.0926e-04 1561.93
10 0.026837 127.616315 2.1029e-04 1103.90

Table 4.1: Parameters and residual sum of squares (RSSQ) of the fits of the single rate model
to the different time points. In these fits the different time points have been considered as a
steady state distribution, and the model has been fit to the single time point independently.

Table 4.1 shows the outcome of the fits: the parameters ka and kd, their ratio, and the

RSSQ between the data and the prediction from the model. As expected the ratio of ka to

kd decreases with the time, reflecting the redistribution from polysomes to monosomes after

the osmotic shock. On the other hand, the RSSQ also increases significantly with the time.

This can be explained (i) by the non monotonic distribution for time point 2 and 3 and (ii) by

the pooling of the mRNAs with ≥ 10 ribosomes bound, which makes distributions with high

monosomal concentrations unfavorable.

The results of a simulation of the fitted model with the estimated parameters are shown in

Figures 4.3 and 4.4, where the data points are indicated as asterisks in the same color as the

pertaining curve. It can be seen that, although the fit at time point 0 is not perfect (RSSQ=36),

it is still much better than the fit at time point 10 (RSSQ=1104). The polysomal distribution

at time point 0 is descending, except for the pooled M10, which indicates that kaR
kd

= X is

smaller than 1 (see section 3.1.1). Furthermore, all data points except the pooled M10 have a

concentration close to 7, while the concentration for M10 is much higher. This is a distribution

which complies with the developed model, because only M10 differs significantly from the other

distributions.

At time point 10 the highest concentration in the data is made up by M1, while most other

concentrations are very low. This distribution is very hard to reach with this model, as a

high concentration for M1 implies also a high concentration for M2 and M3 in the single rate

model. In addition, the second highest concentration at time point 10 is made up by M10, while

the single rate model does not allow a non monotonic distribution of the different polysomes.

Considering the very high RSSQ for most of the time points, it is very unlikely that the single

rate model can explain the underlying biological processes in a satisfying way.

4.3.2 Multiple rate model

The multiple rate model has also been fit separately to the different time points. In contrast

to the fit of the single rate model, the high translated polysomes were not pooled together in

this model. This was not done because this would imply a very huge number of parameters,
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Figure 4.3: Simulation of the single rate model with the parameters estimated for time point
0. The data points are shown as asterisks in the same color as the pertaining curve.

since in the multiple rate model each translation state has it’s own initiation rate. The initial

concentrations were 10 for each mRNA species, which gives a total mRNA concentration of

110, and again 1500 for the ribosomes. The result of the parameter estimation is shown in

Table 4.2.

As to be seen, the model explains the data in an almost perfect way, since no RSSQ has a

higher value than 1. Indeed this was to expect, because a model with 11 parameters should be

able to explain 10 data points. On the other hand, all the velocity constants are very high, which

indicates very fast reactions. This is not very realistic, but results from the objective function

that does not discriminate very high reaction constants. The parameters are also shown in a

normalized way, where the highest value of each time point (the dissociation rate) has been

rescaled to 1. These normalized values can be compared with each other, and make more sense

in a biological way than the extremely high reaction constants derived from the DE algorithm.

The differences in the errors between the normalized and unnormalized parameters may be due

to rounding errors, since Equation (3.7) indicates that linear rescaling of all parameters should

not affect the polysomal steady state distribution.

The initiation rates are much smaller than the dissociation rates in this fit, but this should

not be interpreted because the ratio of the both depends on the concentration of total mRNA

and ribosomes, which were chosen arbitrary in this case. Looking into the differences in the
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Figure 4.4: Simulation of the single rate model with the parameters estimated for time point
10.

normalized parameters for the different time points reveals that the initiation rates for the

untranslated mRNA (M0) raises about four fold from time point 0 to 10. In contrast, the

initiation rate for M9 drops to half of its initial value. This was to expect, since the distribution

changes from highly translated polysomes to monosomes. Interestingly, the initiation value for

M1, ka1 also drops significantly, although the concentration of M2 does not change notably over

the different time points. This can be explained by the raising concentration of M1, which also

determines the concentration of M2. To balance this, k1 has to drop. The other initiation rates

do not change notably over the different time points, as their corresponding concentrations also

not changes.

4.3.3 Bitstring model

As mentioned beforehand, the bistring model is computationally very demanding. Because of

this, a fit was only done for one time point, and even for this one fit the number of iterations

was much lower than for the other fits. For instance, in the single rate model the shown fits are

each based on 5000 to 20000 iterations per time point, whereas the shown data for the bitstring

model is based on 150 iterations.
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time ka0 ka1 ka2 ka3 ka4 ka5 ka6 ka7 ka8 ka9 kd RSSQ
0 1064 434 2083 1382 888 903 957 1047 1187 4637 1510438 0.1829
2 5010 344 3099 2752 2196 1795 1739 2175 1885 10289 3138069 0.1249
3 7359 347 2918 2580 2261 1911 2253 2158 1945 13003 3539761 0.3221
4 22168 538 3915 5151 4432 3623 3488 9550 1716 13215 7452302 0.1843
6 43668 528 5237 6891 5916 5540 5928 10938 2428 15481 11744738 0.2267
10 18778 271 3632 4005 3129 2737 2990 2716 4810 7477 5992164 0.5478
0n 0.0007 0.0003 0.0014 0.0009 0.0006 0.0006 0.0006 0.0007 0.0008 0.0031 1.0000 0.1788
2n 0.0016 0.0001 0.0010 0.0009 0.0007 0.0006 0.0006 0.0007 0.0006 0.0033 1.0000 0.1261
3n 0.0021 0.0001 0.0008 0.0007 0.0006 0.0005 0.0006 0.0006 0.0005 0.0037 1.0000 0.3036
4n 0.0030 0.0001 0.0005 0.0007 0.0006 0.0005 0.0005 0.0013 0.0002 0.0018 1.0000 0.3031
6n 0.0037 0.0000 0.0004 0.0006 0.0005 0.0005 0.0005 0.0009 0.0002 0.0013 1.0000 0.8952
10n 0.0031 0.0000 0.0006 0.0007 0.0005 0.0005 0.0005 0.0005 0.0008 0.0012 1.0000 0.5979

Table 4.2: Parameters and RSSQ estimated for multiple rate model at different time points. Time points with appended n show
the normalized parameters.
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The maximum number of bound ribosomes was limited to 10 in this model, which already

leads to 1024 mRNA species. Since the highly translated polysomes have been pooled in the

data, it would be more realistic to set this number to a higher value but a value of 16, as chosen

in the single rate model, would lead to 65536 species, where 1024 is already at the border of

being computable in this context. The result of the fit to time point 0 is displayed in Table 4.3.

time ka e kd RSSQ
0 0.000539 40.481332 0.423811 400.573768

Table 4.3: Parameters for the bistring model fitted to time point 0.

The RSSQ value is 400, which indicates that the fit is rather bad. But, as already mentioned,

this fit is based on only 150 iterations, since the time consumption to simulate this model is

very high. In addition, it was not possible to pool the highly translated polysomes, as it was

done in the data.

One conclusion that may be drawn from the estimated values is that the initiation rate is

the rate limiting step in translation, as this rate has a significantly small value in this fit. In

addition the elongation reaction is very fast in this model. A simulation of the bistring model

with the estimated parameters is shown in Figure 4.5.
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Figure 4.5: Simulation of the bistring model with the parameters derived from the fit to time
point 0. Original data points are shown as asterisks.
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4.4 Time course fit

The modes that have been fitted in the previous section were constructed to describe a steady

state distribution of polysomes. Originating from these separated fits to the single time points,

the aim was to develop a model that can explain the temporal behavior of the translation state

after the osmotic shock. Because one could imagine different explanations for the translation

state response after osmotic shock, these explanations were incorporated into the models, and

the models were fit to the time course data. At the end, the different possible explanations

were compared.

Two different approaches were chosen to fit the data: First, an additional reaction that may

explain the change in the polysomal profile was added to the multiple rate model, whereas the

parameters were kept from the previous fit to time point 0. In addition, a simplified multiple

rate model with a lower number of parameters was fitted to the time course data. This second

approach was not based on the previous steady state fits, but instead all parameters were

guessed by the DE algorithm. The bitstring model was not used to derive a time course model

because it was not possible to simulate it in an appropriate time, whereas the single rate model

was not used because of its inability to explain the steady state data.

The additional reaction (or parameter change), that was supposed to explain the temporal

data, was chosen to set in after the system has found a steady state. Therefore this reaction

did not act before time point 50, wherefore time point 50 pertains to time point 0 in the data.

The time scale was the same as in the data, so time point 52 pertains to time point 2 in the

data, and so on. This means that the data fit was only done in the interval [50 60]. Since the

time scale is in minutes in the data, this scale applies also to the models.

4.4.1 Multiple rate model

In the first approach, the multiple rate model was modified in a way that it may explain the

data. The parameters and initial concentrations were taken from the previous steady state

fit to time point 0, but in addition a reaction producing mRNA, or degrading ribosomes was

included. Because only one reaction was added and the other parameters were taken from the

preceding step, only one parameter had to be guessed by the estimation algorithm.

mRNA concentration change

The first model examined was the production of mRNA. Since the measured data gives no

information about the total mRNA concentration, one could imagine that mRNA production

leads to a redistribution of poly- and monosomes. A biological basis for this assumption is not

given. Nevertheless, one would expect a shift from polysomes to monosomes in response to an

mRNA production, since the available amount of ribosomes is shared between more mRNA.

To examine the goodness of such a model explaining the time course data, it was implemented

and fitted. The model used for this fit was the multiple rate model, with the parameters and

initial concentrations from the fit to time point 0. In addition, a reaction producing mRNA
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with a certain rate k transrc, that sat in at time point 50 was included. Only the parameter

k transcr, was guessed by the DE algorithm.

The outcome of the DE algorithm is shown in Table 4.4. An RSSQ of 4681 indicates, that

the model is not very good to explain the given data. Figure 4.6 shows a simulation result for

the estimated parameter. The production of mRNA leads to a dramatic increase of monosomes

(M1), and interestingly to a light decrease in highly translated mRNA (M10) concentration.

The increase of M1 can be explained (i) by the raising concentration of M0, from wich M1 is

formed, and (ii) by the fewer number of ribosomes, which leads to a redistribution from highly

translated mRNA to lower translated ones. The decrease in the concentration of M10 is due

to the fewer number of ribosomes. The restriction of the fit to the time interval [50 60] has

the shortcoming that the estimated mRNA production is very high, leading to an exponential

mRNA increase after time point 50. Therefore, it could make sense to restrict the mRNA

production to the time interval [50 60].

k transcr RSSQ
0.426314 4681

Table 4.4: Parameters estimated for the time course fit of the multiple rate model with mRNA
production outgoing from the steady state fit model.
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Figure 4.6: Simulation of the multiple rate model with mRNA production.
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Ribosome concentration change

In the mathematical analysis it has been shown that a degradation of ribosomes can invert

the concentration pattern in the single rate model. Therefore, one could expect that this

rearrangement from polysomes to monosomes also takes place in the multiple rate model, if

the ribosome concentration drops below a certain value. This approach has also been tested.

The procedure was analog to the test of the mRNA production, with the difference that the

reaction that produced mRNA was replaced by a reaction that degrades ribosomes with rate

R · k degr.
The result of the fit is shown in Table 4.5 and a simulation with the estimated parameters

is shown in Figure 4.7. The RSSQ of almost 7000 indicates that this model is not able to

explain the data. As to be seen in the simulation, the degradation of ribosomes leads to a rapid

concentration decrease of the highly translated mRNA M10. In addition, the concentration of

the monosomes M1 shows a light increase, which is by far not as strong as in the data. Likewise

a light increase in the beginning of the degradation can be seen for the less translated mRNAs

M2 and M3. The other polysomes show a decrease, since the available number of ribosomes

gets smaller. Summing up it can be said that the increase of monosomes derived from the

ribosome degradation is not strong enough to mimic the data. In contrast, the drop of highly

translates polysomes (M10) is similar in the model and in the data.

k degr RSSQ
0.23579 6927

Table 4.5: Parameters estimated for the time course fit of the multiple rate model with ribosome
degradation outgoing from the steady state fit model.

4.4.2 Model with 3 initiation rates

In addition to the multiple rate model originating from the fit to time point 0, a hybrid of the

single rate model and the multiple rate model was used, where the different translation states

were split into three groups with different initiation rates. In this approach the untranslated

mRNA M0, the mRNAs M1 to M10 and the mRNAs M11 to M16 made each up one group. The

mRNAs M10 to M16 were pooled together in the model, because also in the data the highly

translated mRNAs had been pooled. The main difference to the previous fit is that in this case

all model parameters are guessed, and no information from the previous fitted steady state is

taken into account.

Initiation rate change

One could imagine that the drop from polysomes to monosomes after osmotic shock is due

to a regulation of the initiation. Therefore a model was implemented, where the initiation

rate drops linear with the time. This would correspond to a slow regulation of the initiation
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Figure 4.7: Simulation of the multiple rate model with ribosome degradation.

process. One could also assume a rapid regulation, what would correspond to a step function

instead of a linear decrease. In this model the initiation rates after time point 50 are changed

to kanew = kaold · c
c+t

where t is the time in minutes and k is a constant, that has been guessed

by the DE algorithm.

Table 4.6 shows the outcome of the parameter estimation. The high RSSQ indicates that

the result is not really satisfying, although the result is better than in the steady state fits,

that are based more parameters. But, in contrast to the fit outgoing from the steady state, all

parameters have been fit in this approach, whereas the initiation and dissociation rates have

been taken from the fit to time point 0 in the previous fit. This enables the DE algorithm

to adjust the parameters in a way that they better correspond to the temporal data. Figure

4.8 shows a simulation of the fitted model. It can be seen, that the curves go in the right

direction, although the data is not explained perfectly. A drawback of the used fit method

is that it focuses exclusively on the interval [50 60], whereas other time points are not taken

into account. In this case this leads to a model which shows a very high increase of M1 even

after time point 60. This results in an undesired high concentration of M1. In this case one

could improve the model by limiting the regulation to the time interval [50 60], in which the

estimation takes place.

The drop of the initiation rate from time point 50 on leads to a rapid decrease of the M10

concentration, which makes up the highest concentration before time point 50. Likewise the
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ka0 ka1−10 ka11−16 kd c RSSQ
0.210333 0.000605 0.000702 1.005655 0.593045 621.73

Table 4.6: Parameters estimated for the time course fit of the multiple rate model with initiation
rate change.
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Figure 4.8: Simulation of the multiple rate model with initiation rate change from time point
50 on.

concentration of M1 increases dramatically. This shift can also be seen in the data. A change

in the model that can not be seen in the data is the drop of the concentrations of the mediately

translated mRNAs. This happens because all initiation rates are changed in the same direction.

mRNA concentration change

The model, which includes mRNA production and that was tested for the multiple rate model,

has also been tested for the model with three initiation rates. The procedure was analog to the

fit for the initation rate, with the difference that the initiation rate drop at time point 50 has

been replaced by a reaction which produces mRNA with a certain rate k trancr. This reaction

produces mRNA with no ribosomes bound (M0).

The estimated parameters are given in Table 4.7 and a plot of the simulated model is shown

in Figure 4.9. An RSSQ of 2115 indicates that this fit is also not convincing. The simulation
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indicates that M1 shows a very fast increase, which is due to the production of M0. Likewise

show the other few translated mRNAs also a slight increase, which is not supported by the

data. The concentration of M10 shows a light decrease in the simulation, which is not affected

by the mRNA production, setting in at time point 50. This decrease is due to the general small

initiation rates in this fit, which lead to a very slowly adopting model.

ka0 ka1−10 ka11−16 kd k transcr RSSQ
0.001190 0.000690 0.016035 10.769169 28.042055 2115.22

Table 4.7: Parameters estimated for the time course fit of the multiple rate model with mRNA
production.
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Figure 4.9: Simulation of the multiple rate model with mRNA production from time point 50
on.

Ribosome concentration change

Also the degradation of ribosomes was tested with the model comprising three initiation rates.

The model with 3 initiation rates was extended in this case by a degradation reaction for

the ribosomes, that sat in at time point 50. This reaction degrades ribosomes with a rate

R·k degr, whereas R denotes the ribosome concentration. One would expect that the polysomal
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distribution evolves in the direction of monosomes in response to ribosome degradation, since

there are simply not enough ribosomes.

The result is shown in Table 4.8 and Figure 4.10. It can be seen that this fit has gone badly

wrong, since the reactions are so slow that the system does not reach a stable distribution

before the simulation ends. In addition, no appreciable change can be noticed at time point 50,

where the degradation of ribosomes sets in. An explanation for this could be that the fitting

procedure went wrong for some reason. For instance, the starting intervals for the parameters

may have been chosen inappropriately. Because also the fit of the multiple rate model outgoing

from the steady state distribution with included ribosome degradation showced a high RSSQ,

it may be that the model just can not describe the data.

ka0 ka1−10 ka11−16 kd k degr RSSQ
0.000160 0.000000 0.000008 0.070577 0.000425 2551.752858

Table 4.8: Parameters estimated for the time course fit of the multiple rate model with ribosome
degradation.
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Figure 4.10: Simulation of the multiple rate model with ribosome degradation from time point
50 on.
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Chapter 5

Results

5.1 Comparison

In this work, different models have been developed and prospected with regard to different pro-

cesses explaining the change in polysomal profiles, that is found when yeast cells are subjected

to osmotic stress. At this point, the different models, and the different probed processes shall

be compared for their quality to explain the given data.

5.1.1 Models

Three models have been examined: (i) the single rate model, where the initiation rate does not

depend on the number of bound ribosomes, (ii) the multiple rate model, where this is adverse,

and (iii) the bitstring model, that takes into account the position of each ribosome on the

mRNA.

Single rate model

The single rate model has a fairly simple structure, and is therefore only able to describe

a monotonic pattern of the ribosomal association. This means that it is not able to form a

distribution where both monosomes and highly translated polysomes have a high concentration,

while mildly translated polysomes have a low concentration. For this reason the single rate

model has not been used to construct a temporal model. The simple structure of this model

has the advantage that at least some conclusions can be drawn from a mathematical analysis

(e.g. monotonic structure, turning point). Though a complete mathematical description, for

instance to fit the model analytically to data points, could not be derived.

Multiple rate model

The multiple rate model is an extension of the single rate model, where every translation state

of the mRNA has its own rate for binding to a ribosome. This leads to a model with a lot

of parameters, and it is questionable if this assumption is meaningful in a biological context.
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Nevertheless, the multiple rate model is able to mimic the distributions of the measurements

at the different time points in an almost perfect manner. Because of the enormous number of

parameters, this had to be expected.

Two modifications of this model outgoing from the fit to the data at time point 0 were not

able to mimic the temporal polysomal profile after the osmotic shock. This may be reducible,

either to an inability of the model or of the examined processes to describe the data. An answer

to this question would require a deeper analysis of the model and the processes.

In addition to the fit outgoing from a steady state distribution, a simplified version of the

multiple rate model has been fit to the time course data, where all parameters have been esti-

mated. In this simplified model the different translation states of the mRNAs were divided into

three groups. Compared to the fit outgoing from the steady state distribution, this approach

gives a better result, although it is still not satisfying. The explanation for this may be that

all parameters are guessed in this approach, whereas in the first approach a fixed distribution

was modified by a single influence.

Bitstring model

The bitstring model is the most complicated of the presented, since it simulates the binding

position of each single ribosome to the mRNA. Because of this precision the model is very

complex, and therefore could not be solved analytically. In addition, this complexity makes

the model computationally very demanding to simulate. Therefore, it was not possible to fit

this model to time courses, and also the fit to a steady state distribution was only possible in a

limited way. This fit to a steady state distribution led to an inferior fit compared to the other

models. But since the number of iterations of the estimation algorithm was much smaller in

this case, the results are not comparable. The bitstring model is not restricted to a monotonic

loading pattern as the single rate model, although all translation states have the same initiation

rate in this model (not considering the states where a ribosome occupies the initiation site).

5.1.2 Processes

Different processes have been tested in this work that could explain the temporal change in the

polysomal profile in response to osmotic stress. They have been incorporated into the multiple

rate model and fitted to the time course data. The ability of the different processes to describe

the data is compared in this section.

mRNA production

A process that might explain the polysomal profile change after osmotic shock would be an

increase in the mRNA concentration. From the biological point of view this assumption is

doubtful, since the mRNA level is believed to decrease after osmotic shock (Hohmann, 2002).

Nevertheless, this assumption has been tested by implementing it into the multiple rate model,

and fitting this model to the data. The mRNA production hypothesis was tested outgoing from
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a steady state distribution, as well as by fitting all model parameters. In both cases the result

was not satisfying, since the mRNA production can explain the increase of the monosomes

but not the decrease of the highly translated polysomes. In addition, the mRNA concentration

increased dramatically in the fitted model, which is not possible in such an extend in the reality.

Ribosome degradation

The second model that has been tested was a degradation of ribosomes. In the model outgoing

from the steady state fit this could explain the drop of highly translated polysomes, but not

the increase in monosomes. In the model where all parameters have been fit, this hypothesis

led to a completely wrong model. This may be either because the model can not explain the

data, or because the method to fit the data was inadequate. An improvement of the fit method

would be to require the model to find a steady state before fitting the parameters, since the

simulation in Figure 4.8 shows that this was not the case in this parameter fit.

Initiation rate change

A process that has only been examined outgoing from the model with three initiation rates

was a drop in the initiation rate during the simulation. This corresponds to a regulation in

the translation initiation process, which has been shown to exist (Kimball, 2001). In fact, this

initiation rate change leads to a better result than the other analyzed processes. The initiation

rate drop leads to a redistribution, where the concentration of highly translated polysomes

drops and the concentration of monosomes increases. On the other hand, the concentration of

mediate translated mRNAs drops as well, which is not supported by the data.

5.2 Validation

In addition to global translation state data, array data about the translation state of single genes

was available. This data has been kindly provided by the Department of Cell and Molecular

Biology at the Lundberg Laboratory, Göteborg University. In this data the polysomal and

total mRNA of cells that have been subjected to osmotic stress were measured with DNA

microarrays. Precisely spoken, the polysomal and total mRNA of stressed cells have been

compared to total mRNA of unstressed cells. This was done by two channel arrays (see section

1.4.1). A more detailed analysis of this data was not part of this work, but some results

are displayed and compared to a simulation result. Figure 5.1 shows three different clusters

of a hierarchical clustering of the delta PAFs derived from the array analysis. PAF stand for

polysomal association factor, and denotes the ratio of polysomal to total abundance of a certain

mRNA species. The ratio of the PAF at two time points is called delta PAF. This delta PAF

is shown in Figure 5.1 in a illustrated and quantified way for three differently regulated mRNA

clusters. Because the delta PAFs are all compared to time point 0, the fist value has always

a value of 0, since it is compared to itself. The values are displayed in dual logarithmic scale,

thus a value of 1 denotes a upregulation of factor 2 compared to time point 0.
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Figure 5.1: Change of the difference of the polysomal association factor to time point 0 (delta
PAF) in response to osmotic shock for different mRNAs. Green: mRNAs that are upregulated
in their translational activity. Red: mRNAs that are downregulated. Black: mRNAs that do
not change their translation state in response to osmotic stress.
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Three different clusters are shown in the figure: (i) a cluster of mRNAs that have been

upregulated (green), (ii) a cluster of mRNAs that have been downregulated (red), and (iii) a

cluster of mRNAs which polysomal profile did not change in response to osmotic stress (black).

The names of the genes are not shown, since they are not evaluated at this point.

In this section, the bitstring model with the maximum of number of 5 bound ribosomes

has been simulated stochastically. This model includes three different types of mRNA, an

upregulated one, a downregulated one and a not regulated one. These mRNA classes differed

in the model only in their initiation rate. The PAF of these mRNAs has been calculated in the

simulation. Therefore the concentration of the polysomes with 4 and 5 ribosomes bound has

been divided by the total concentration of the corresponding mRNA. This total concentration

did not change during the simulation. In addition, this fraction has been multiplied by 50, since

the polysomal concentration is always smaller than the total in this model. This factor 50 has

been chosen arbitrarily, but is needed because in the analysis the polysomal fraction can have a

higher concentration of a certain mRNA than the total fraction. This is because the polysomal

mRNA is concentrated in the measurements, while the polysomal mRNA has of course always

a lower concentration than the total mRNA in the model.

The initiation rates of the different mRNA classes have been chosen, in a way that they

give a high, a middle, and a low PAF value. The simulation result for the PAF values of the

three groups is displayed in Figure 5.2.

Figure 5.2: Simulation of the PAF value for a bitstring model with three different types of
mRNA (upregulated, donwregulated, not regulated)
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Figure 5.3: Simulation bitstring model upregulated mRNA

It has to be pointed out that the values in Figure 5.1 are delta PAF values, and denote

a temporal change of the translation state. Since in this simulation only a steady state is

considered, it can not be compared directly to the delta PAFs. One could derive delta PAFs

from this model by implementing a temporal change in the initiation rates and taking the

fraction of the PAFs at different time points. This simulation was only meant to illustrate the

polysomal distributions, which lead to different PAF values. Therefore the polysomal profiles of

the different mRNA classes in this simulation are shown in Figures 5.3, 5.4, and 5.5. As already

mentioned, the initiation rates have been chosen in way, that the PAF distribution forms three

different classes. Figure 5.3 shows the upregulated class with a PAF of about 8 (no logarithmic

scale). As one would expect, most of the mRNAs in this class have 5 ribosomes bound. Figure

5.4 shows the simulation for the downregulated class, which has a PAF of about 0.1, and forms

an adverse distribution where the highest concentration is made up by untranslated mRNA.

Figure 5.5 shows the simulation result for the mRNA class which has a PAF at around 1, that

has not been regulated. In addition, this simulation shows that the stochastic noise is bigger

in the PAF values, than in the mRNA concentrations.
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Figure 5.4: Simulation bitstring model downregulated mRNA

Figure 5.5: Simulation bitstring model not regulated mRNA
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5.3 Conclusions

In this work three different approaches to model the occupancy of mRNA with ribosomes have

been developed. It has been shown that a simple model where the ribosomes just associate with

a certain rate, and dissociate with another rate, can not explain the osmotic shock response of

the polysomal profiles. In addition, a model where the number of bound ribosomes influences

the binding of other ribosomes has been developed. This model is able to describe different

steady states of polysomal profiles, but requires many parameters. A third model that takes

the binding positions of the ribosomes into account has been developed, but it could not be

tested well enough, since this model is computationally very demanding,

Different possible explanations for the osmotic shock response have been tested with these

models. While a degradation of ribosomes, or an increase of mRNA seem unlikely to cause

the shift from polysomes to monosomes, the tested models favors a regulation of the initiation.

Nonetheless, the developed models were altogether not capable of mimicking the response shown

in the data. This indicates that either some important points are not considered in the models,

or the method used to fit the models to the data was not appropriate. A problem arising

from the method of measuring the data is that no value is given for the concentrations of the

polysomes consisting of more than 10 ribosomes. This forms a restriction for fitting the models

to the data. Additional assumptions to be included in the models could be different ways of

regulating the initiation (step function, exponential decrease), a regulation of the dissociation,

or different sets of coordinately regulated polysomes (groups as in the three initiation rate

model). In addition, one could work on a method to make the bitstring model feasible for

computational simulation, for instance by scaling the data down to a lower number of maximal

bound ribosomes, by implementing it with a faster method, or by simplifying the model in

some way.
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Appendix A

Proofs

A.1 Derivation of fomulae (3.5) and (3.6)

To proof (3.5) it has to be shown that:

Mi = Mi−1 ·X = Mi−1 ·
ka ·R
kd

(A.1)

Proof by induction:

1. Basis

from Equation (3.1) and the steady state condition follows:

0 =− ka ·M0 ·R + kd ·M1

⇔M1 =M0 ·
ka ·R
kd

(A.2)

2. Inductive hypothesis

(A.1)

3. Step

From Equation (3.2) and the steady state condition follows:

0 =ka ·Mi−1 ·R− kd ·Mi − ka ·Mi ·R + kd ·Mi+1

⇔Mi+1 =Mi−1 ·
ka ·R
kd

−Mi −Mi ·
ka ·R
kd

(A.1)⇔ Mi+1 =
ka ·Mi−1 ·R

kd
−Mi−1 ·

ka ·R
kd

− ka ·Mi ·R
kd

⇔Mi+1 =Mi
ka ·R
kd

Therefore is

Mi = M0 ·
(
ka ·R
kd

)i
= M0 ·X i (A.3)
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An expression that depends on the total mRNA rather than on the unbound mRNA can be

deduced by solving the sum over all translation states for M0

Mtot =

N∑

i=0

Mi

⇔Mtot =
N∑

i=0

M0 ·X i

⇔ Mtot

M0
=

N∑

i=0

X i =
XN+1 − 1

X − 1

⇔M0 =
Mtot(X − 1)

XN+1 − 1
(A.4)

Combining Equations (A.3) and (A.4) yields:

Mi =
Mtot(X − 1)

XN+1 − 1
X i (A.5)

A.2 Derivation of formula (3.7)

The proof of Equation (3.7) is analog to the proof of formula (3.5). The rate equations for this

system read:

d

dt
M0 = −ka0 ·M0 ·R + kd ·M1 (A.6)

d

dt
Mi = kai−1 ·Mi−1 ·R− kd ·Mi − kai ·Mi ·R + kd ·Mi+1 (A.7)

d

dt
MN = kaN−1 ·MN−1 ·R− kd ·MN (A.8)

d

dt
R =

N∑

i=1

(−kai−1 ·Mi−1 ·R + kd ·Mi) (A.9)

What has to be shown is:

Mi = Mi−1 · kai−1 ·
R

kd
(A.10)

1. Basis

(A.6)⇒ 0 =− ka0 ·M0 ·R + kd ·M1

⇔M1 =M0 · ka0 ·
R

kd
(A.11)
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2. Inductive hypothesis

(A.10)

3. Step

(A.7)⇒ 0 =kai−1 ·Mi−1 ·R− kd ·Mi − kai ·Mi ·R + kd ·Mi+1

⇔Mi+1 =− kai−1 ·Mi−1 ·
R

kd
+Mi + kai ·Mi ·

R

kd
(A.10)⇔ Mi+1 =− kai−1 ·Mi−1 ·

R

kd
+Mi−1 · kai−1 ·

R

kd
+ kai ·Mi ·

R

kd

⇔Mi+1 =kai ·Mi ·
R

kd
(A.12)

From (A.12) it follows that (3.7) is true.
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Appendix B

Deterministic simulation in MATLAB

The change over time of the concentrations of the species in a biochemical system can be

described by a set of ordinary differential equations (ODEs). The change of each species

at a specific time point can be expressed by a gradient function that depends on all other

concentrations, on the parameters and on the time.

d

dt
Xi = −

∫

i

(X1, ..., XM , p1, ..., pk, t), i = 1...M (B.1)

A general way to derive ODEs for a biochemical system is described in the introduction. A

way to simulate a system is to integrate these equations for certain parameters and initial

concentrations numerically. Numerically integrating a system means to repetitively calculate

the gradient of the single rate model, and update the system values accordingly. This gives an

approximation of how the system would evolve.

To numerically integrate a system in MATLAB a function is required, that calculates the

gradient from the present metabolite concentrations and parameters. A function that does

this for the single rate model with maximum of 10 bound ribosomes is given Figure B.1. This

function calculates the gradient of the system according to Equations (3.1), (3.2), (3.3), and

(3.4) and takes the time t, the concentration vector x and the parameter vector p as input. To

make a simulation with this gradient function one needs to specify initial concentration values

and a set of parameters. Figure B.2 gives an example how this is done in MATLAB. The plot

that is produced by this function is shown in figure 3.3. Because some of the reactions may be

fast in the beginning, where the system converges toward a steady state, the stiff ODE solver

ode15s was used. The different ODE solvers included in MATLAB are listed in the MATLAB

documentation 1.

1http://www.mathworks.com/access/helpdesk/help/techdoc/ref/ode15s.html
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function dx = gradient(t,x,p)

ka = p(1); % define parameters

kd = p(2);

R = x(12); % define ribosome concentration

dx = zeros(12,1); % initialize gradient

% calculate rate of change for each mRNA

dx(1) = -ka*x(1)*R + kd*x(2);

dx(2) = -ka*x(2)*R - kd*x(2) + ka*x(1)*R + kd*x(3);

dx(3) = -ka*x(3)*R - kd*x(3) + ka*x(2)*R + kd*x(4);

dx(4) = -ka*x(4)*R - kd*x(4) + ka*x(3)*R + kd*x(5);

dx(5) = -ka*x(5)*R - kd*x(5) + ka*x(4)*R + kd*x(6);

dx(6) = -ka*x(6)*R - kd*x(6) + ka*x(5)*R + kd*x(7);

dx(7) = -ka*x(7)*R - kd*x(7) + ka*x(6)*R + kd*x(8);

dx(8) = -ka*x(8)*R - kd*x(8) + ka*x(7)*R + kd*x(9);

dx(9) = -ka*x(9)*R - kd*x(9) + ka*x(8)*R + kd*x(10);

dx(10) = -ka*x(10)*R - kd*x(10) + ka*x(9)*R + kd*x(11);

dx(11) = ka*x(10)*R - kd*x(11);

% calculate rate for ribosomes

dx(12) = - ka*x(1)*R - ka*x(2)*R - ka*x(3)*R - ka*x(4)*R

- ka*x(5)*R - ka*x(6)*R - ka*x(7)*R - ka*x(8)*R - ka*x(9)*R -

ka*x(10)*R + kd*x(2) + kd*x(3) + kd*x(4) + kd*x(5) + kd*x(6)+ kd*x(7)

+ kd*x(8) + kd*x(9) + kd*x(10) + kd*x(11);

Figure B.1: MATLAB code to calculate the gradient for the single rate model with N = 10
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% set ka to 0.0015 and kd to 1

p = [ 0.0015 1];

% set initial concentrations M0, M1, ..., M10, R

start x =[ 10 0 0 0 0 0 0 0 0 0 0 1500];

% options for the ODE solver

options = odeset( ’RelTol’, 1e-4, ’AbsTol’, [1e-4]*ones(1,12) );

% integrate the gradient function for the time interval [0 20]

[T,Y] = ode15s( @gradient, [0 20], start x, options, p );

% plot the time course

plot( T,Y(:,1), T,Y(:,2), T,Y(:,3), T,Y(:,4), T,Y(:,5), T,Y(:,6),

T,Y(:,7), T,Y(:,8), T,Y(:,9), T,Y(:,10), T,Y(:,11))

Figure B.2: MATLAB code to integrate the gradient function in a certain interval for certain
parameters and start values
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angegebene Literatur und Hilfsmittel verwendet zu haben.

Jannis Uhlendorf

1. August 2006

68


