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Zusammenfassung

Das pathogene Bacterium Mycobacterium tuberculosis übersteht lange Zeit-
räume unter Stress indem es in einen dormanten Zustand übergeht, der sich durch
fast vollständiges Einstellen seines Metabolismus und der Transkription auszeich-
net. Wiederbelüftung dormanter M. tuberculosis–Kulturen führte, entgegen früherer
Experimente, nicht zu einem sofortigen, synchronisierten Zellwachstum, stattdes-
sen blieb das Zellwachstum für etwa 42 h aus.

Während dieser Zeit scheinen zwei Gruppen von Genen stark antikorrelierten,
scheinbar oszillatorischen Mustern zu folgen.

Diese Muster suggerieren einen gemeinsamen Regulationsmechanismus, Ziel
dieser Arbeit ist zwischen einer Regulation durch einen gemeinsamen Traskripti-
onsfaktor und einem Regulationsmechanismus auf der Basis von DNA supercoiling
zu unterscheiden.

Dazu wurden die Genloci nach Transkriptionsfaktorbindungsstellen sowie ab-
weichenden AT–Gehalt und periodischen AT–tracts untersucht, die beide mit DNA
supercoiling assoziiert werden. Weiterhin wurden drei einfache mathematische Mo-
delle der DNA supercoiling vermittelten Regulation vorgeschlagen und zu den Da-
ten gefittet.

Abstract

The pathogenic bacterium Mycobacterium tuberculosis can endure long time
periods of stress by entering a dormant state, characterised by an almost com-
plete, temporary stop of its metabolism and transcription. Re–aeration of dormant
M. tuberculosis led, contrary to previous experiments, not to an immediate, syn-
chronised cell growth, but to a resuscitation suspended for about 42 h. During
this time the expression time courses of two sets of genes seem to follow highly
anti–correlated, seemingly oscillatory patterns.

These patterns suggest a mutual regulatory mechanism and the intent of this
thesis is to differentiate between a regulation mechanism based on a shared tran-
scription factor and a regulation mediated by DNA supercoiling.

To do so, the gene loci were searched for transcription factor binding sides
as well as for unusual AT–content and periodic AT–tracts associated with DNA
supercoiling. Furthermore three simple mathematical models of DNA supercoiling
mediated regulation were purposed and fitted to the data.
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1 INTRODUCTION

1 Introduction

Over 130 years after its discovery by Roland Koch, Mycobacterium tuberculosis remains
a major health threat, killing almost 2 million annually[1]. The SysteMTb project is
a collaborative project, funded by the European Commission FP7, aimed to create a
framework to understand key features of M. tuberculosis.

One of the key capacities of M. tuberculosis is ability to enter a dormant state
triggered by nutrient or oxygen depletion[2, 3]. By shutting down its central metabol-
ism and transcription it can endure long periods of stress and also becomes extremely
resistant to drug treatment[3]. The dormancy can be triggered by oxygen depletion
and was used by Wayne and Hayes[3] to synchronise cell growth and replication. This
was achieved by slowly depleting oxygen under constant, gentle stirring to trigger the
dormancy. The resuscitation was, after complete cease of growth, triggered by dilution
in a new, oxygen-rich medium. Wayne and Hayes observed a constant population size for
20 h after re-aeration, then an approximate 2-fold increase, followed by another interval
of constant population size.

This experiment was repeated in the SysteMTb project in order to create a cell
cycle model for M. tuberculosis. To ensure enough cell mass was available for high-
throughput experiments, the cultures were not diluted in a new medium. Instead the
flasks were re–opened for re–aeration, restoring the oxygen tension in the medium by
diffusion through the surface. The resuscitation took longer than expected with no cell
growth until 42 h passed and during this period, the expression of some of the genes is
highly anti-correlated, specifically the time course of dnaA and ftsZ expression.
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Figure 1: Time course of dnaA and ftsZ expression. The expression patterns are highly anti-
correlated.

Those patters are present in all three iterations of the experiment and seem to have an
oscillatory component. 230 genes have been found that show similar expression patterns,
200 similar to ftsZ and 30 similar to dnaA, suggesting a mutual transcriptional regulation
mechanism.
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1 INTRODUCTION

Two possible mechanisms will be explored in greater detail:

1. DNA-binding transcription factors are an ubiquitous regulation mechanism

2. DNA supercoiling is responsible for large-scale transcriptional regulation in cy-
anobacterial leading to circadian oscillations[4].

1.1 DNA Binding Transcription Factors

Bacterial genes are ordered in co–regulated clusters called operons[5]. An operon consists
of four elements: a promotor, an operator, a set of genes and the terminator. The
promotor is a sequence allowing the RNA polymerase to bind and is thus needed for
the initiation of replication. The operator is a regulatory sequence and the terminator
causes the termination of transcription. All elements of the operator are located in cis
(i.e., they are all located on the same strand of the DNA)[5].

Regulatory proteins, called transcription factors (TF), can bind to the operator and
either upregulate gene expression (activation) or downregulate gene expression (repres-
sion)[5]. In prokaryotes, genes expression is usually non-restrictive and thus the RNA
polymerase can bind to the operons without a TF. Therefore most transcription factors
are repressors (i.e., they downregulate gene expression)[6].

Transcription factors have DNA binding domains binding to a specific DNA sequence
in the operator. There are different types of DNA binding domains like the classical
helix–turn–helix (HTH) type in prokaryotes, consisting of two α–helices binding to the
DNA groves connected by a short polypeptide chain[7]. The structural features of the
TF binding sides induce certain similarities in the DNA motifs they bind. HTH–type
TF are usually symmetric homodimers and therefore the binding motif is usually a
palindrome (i.e., a symmetric sequence) but since the two binding sites are usually not
directly adjacent, the centre of the motif is less conserved[7].

Activation of large sets of genes in bacteria is often controlled by alternative σ–factors
[8]. σ–factors are a subunit of the RNA polymerase complex and necessary for the re-
cognition of promoter sequences[8]. M. tuberculosis, like most bacteria, has one primary
σ–factor (σA) responsible for the so called housekeeping genes, which are universally
expressed[9]. Alternative σ–factors can bind to different target promoter regions and
therefore activate large sets of genes usually as a direct response to environmental stress
factors like nutrient depletion or heat. M. tuberculosis has 13 σ–factors, the highest
number of alternative σ–factors of all obligate human pathogens even relative to its
large chromosome[9].

1.2 Chromosome Supercoiling

A linear, unbound DNA molecule in the B-DNA conformation, the most likely predomin-
ant DNA conformation, forms a double helix with 10.4–10.5 base pairs (bp) per turn[10].
This a result of the hydrophobic effect, minimising the contact of the hydrophobic base
pairs with the water molecules. Such a DNA molecule is called relaxed.
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1 INTRODUCTION

A DNA molecule with a stronger or weaker curvature in comparison to the relaxed
form is considered supercoiled. If the DNA has a stronger curvature (i.e., more than
10.5 bp per turn) it is positively supercoiled and if the DNA has a weaker curvature (i.e.,
less than 10.5 bp per turn) it is negatively supercoiled[11].

Most DNA is negatively supercoiled, with few exceptions, usually the DNA of ther-
mophiles[12].

The supercoiled state can be modified by DNA topoisomerases, notably ATP-dependent
gyrases can introduce negative supercoiling in bacteria[12].

While the mechanism remains unknown, the oscillations of the supercoiled state of
the chromosome seems to play an important role in cyanobacterial circadian expres-
sion[13, 14, 15, 16]. It has also been proposed to regulate endobacterial growth[17, 4]
and the oscillating metabolism of yeast[18].

1.2.1 Sequence Periodicity

Bacterial DNA sequences contain two periodic patterns[19]

1. a strong one with a ∼3 bp frequency due to the codon length[20, 21, 22]

2. a relatively weak one with a ∼10–11 bp frequency.

The second one can result from “correlations in the corresponding protein sequences due
to the amphipathic character of α-helices” [23]. These patterns are about 35 bp long.

Less well understood are the patterns formed by short runs of A and T, called AT-
tract, with an average length of 100 bp[23, 24, 19] preferentially encoded in the 3rd codon
position[24]. AT-tracts do not include TpA elements (with p = phosphate) and induce
a bend in the minor grove of the DNA[25]. Phased with the length of a single turn
of the DNA double helix the individual bents can accumulate and induce an intrinsic
curvature[25] and may aid DNA compaction[26]. Periods of AT-tracts slightly out of
phase with the DNA curvature may indicate or induce DNA supercoiling [24], with the
period of the AT-tracts corresponding with the period of the DNA turns. Alternatively,
AT-tracts with periods > 10.5 may correspond to plectonemes, twisted loops formed
by negatively supercoiled DNA [27] or represent nucleosome-like structures with DNA-
binding proteins like the HU protein.

The location of highly expressed genes is significantly biased towards segments lack-
ing strong periodic signals[19] further suggesting a connection between periodic patterns
and regulation of gene expression.

1.3 Goal

The goal of this thesis is to differentiate between the two possible regulation mechanisms
causing the anti–correlated, seemingly oscillatory gene expression patterns:

1. DNA supercoiling

2. DNA–binding transcription factors.
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1 INTRODUCTION

Co–regulation by a mutual transcription factor require shared transcription factor bind-
ing sides and therefore shared upstream sequence motifs. If shared motifs do exist,
they can be found and their significance can be assessed using bioinformatical sampling
methods, which will be the subject of section 4.1.

DNA supercoiling has been associated with unusual AT–content, both in the up-
stream region as well as the coding region, which can easily computed as described in
section 2.3 and are compared to the findings in other bacteria in section 4.2.

DNA supercoiling has also been associated with periodic AT–tracts albeit much more
loosely. Means to assign each gene a value corresponding to the strength of the local
AT–tract periodicity will be described in section 2.2 and discussed in section 4.3.

Abstract models of a DNA supercoiling mediated regulatory mechanism capable of
sustained oscillation are proposed in section 3. All models were fitted to the available
data in order to verify that the time courses could represent oscillatory time courses
formed by DNA supercoiling at all. Furthermore, comparing the generated time courses
with the experimental time course data could lead to the identification other elements
of the mechanism. The discussion of the different models and generated time courses
can be found in section 4.4.
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2 METHODS

2 Methods

2.1 Transcription Factor Binding Sides

The Gibbs Motif Sampler[28] was used to search for shared transcription factor (TF)
binding sites in each of the two groups of genes.

Two different models for the binding site were considered, one reflecting current
knowledge of known bacterial TF binding sides of the classic bacterial helix–turn–helix
transcription factor type and one representing the 9 bp binding site[29] of DnaA, since
DnaA is one of the proteins in the groups known to interact with DNA.

The first is a palindromic motif with a possible gab between the first eight positions
and their reverse complement resulting in a variable overall length of 16 bp to 24 bp
(referred to as palindromic motif).

The second is a non–palindromic motif with a length of 9 bp (referred to as non–
palindromic motif).

Genes on the same strand with less than 50 bp long intergenic sequence were assumed
to form an operon and the upstream region of the leading gene was used for all genes.
The definition of operons and the TF binding sides in M. tuberculosis were obtained
from the tutorial on co–expression data analysis in M. tuberculosis on the Gibbs Motife
Sampler web page[30].

A Wilcoxon Signed–Rank Test[31] was performed to assess the significance of the
alignments using the study sequences randomly shuffled by the Gibbs Sampler as neg-
ative controls.

A single σ–factor is part of the proteins encoded by the two groups of genes, the
σH–factor which belongs to the ftsZ group. The σH–factor is an alternative σ–factor
induced by oxidative stress and heat shock [9].
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Figure 2: Time course of the sigH expression. The gene is part of the ftsZ group and is the
structural gene of the σH–factor.

The promoter sequences of both groups of genes were searched using the web application
GLAM2SCAN that is part of the MEME toolbox[32]. A consensus sequence of the
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2 METHODS

σH–factor was proposed by Riccardo Manganelli et al.[33] and the alignment of the
promoter sequences Riccardo Manganelli et al. used to build their consensus sequence
was submitted to GLAM2SCAN as a motif. To determine whether the motif is enriched
in the promoter sequences of the genes, alignments were compared to alignments using
shuffled sequences and the significance was assessed by performing a Wilcoxon Signed–
rank test.

2.2 Periodic AT–tracts

To compute the AT–tract periodicity of a certain sequence the method described by
Herzel et al.[24, 23] can be used. The computational tools provided by Mrazek et al.[19]
expand on this method and allow the assignment of periodicity signals to parts of the
chromosome. These tools were implemented in Matlab and are explained below.

First, starting by each occurrence of the motif all further occurrences of the motif
in the next 100 bp are stored in an array. A histogram N(s) is build by summation of
all these arrays with s being the distance between the motifs. Multiple sequence motifs
were used, a motif of single nucleotides A/T (Motif AT), a binucleotide motif AA/TT
(Motif A2T2) and a tetranucleotide motif AAAA/AAAT/AATT/ATTT/TTTT (Motif
AT4), the same motifs Mrazek et al. used. The histogram was normalised in three ways:

Firstly, the counts C(s) were converted to odds–ratios R(s) = C(s)/E(s) using
expected counts E = n(s) · p2 based on the probability p of a motif in a specific place
in a shuffled sequence with an average AT–ratio fA+T . n(s) = L− s+ 1 (with L being
the length of the analysed sequence) is a correction factor to account for the incomplete
arrays in the last 100 bp of the analysed sequence. The p values were computed as
p = fA+T (Motive AT), p = 1/2 × f2

A+T (Motive A2T2) and p = 5 [1/2× fA+T ]4

(Motive AT4).
Secondly, the 3 bp periodicity was removed by averaging 3 bp wide windows (P ′(s) =

(P (s− 1) + P (s) + P (s+ 1))/3).
Thirdly, the histogram was fitted using a parabolic function and the linear and

quadratic terms were subtracted from R′ resulting in R∗. This eliminates bias induced
by varying AT–content.
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Figure 3: Normalised histogram R∗ of the whole chromosome of Mycobacterium tuberculosis
using the motif AT4. R∗(s) is the corrected odds–ratio for another motif in distance s from each
occurrence of the motif.

From this histogram R∗ a spectrum S can be obtained by using discrete Fourier trans-
formation. To avoid using periodicities caused by sequences coding α–helices, the first
35 bp were omitted. The spectrum S was normalised to an average of 1 over the relevant
range of 5 to 20 . The normalised spectrum is referred to as S∗.
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Figure 4: Normalised spectrum S∗ of the tetranucleotide motif (Motif C) tracks in the whole
Mycobacterium tuberculosis chromosome.

Since the signal is relatively weak only sequences of above 1000 bp can be analysed and
thus it is not applicable to analyse the sequence of a single gene or upstream region.
Instead the chromosome was divided into overlapping 10000 bp windows and for each
partition S∗ was computed independently.
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Figure 5: Periodicity Scan of the Mycobacterium tuberculosis chromosome using the tetranuc-
leotide motif AT4 . The normalised strength of the signal Q∗(P ) is represented by the brightness
of the colour. Black areas correspond to an aperiodic signal strength Q∗(P ) below 1.5 and white
areas to a strongly periodic signal strength Q∗(P ) above 3. The 3 bp–periodicity is masked by
averaging 3 bp windows.

Subsequently the strongest genome–wide periodicity with a period above 10 bp and
below 12 bp was determined and the maximum signal S∗max within 0.5 bp of this period
in all windows containing parts of the gene was assigned to each gene.

2.3 AT–Content

The varying AT–content in DNA supercoiling regulated genes in cyanobacteria was
found in the upstream region and in the coding region close to the translation start side.
To designate a translation start side to each gene the operons defined in section 2.1 were
used. The average AT–content of the 4000 bp long window centred on the translation
start side was computed for both groups of genes and compared to the average AT–
content of all genes comparable with the method employed to assess the AT–content
in cyanobacteria[4]. The AT–content of two additional windows was computed, in the
500 bp of the upstream and downstream region adjacent to the translation start side
respectively.

2.4 Differential equations

To characterise the temporal properties of biological systems, ordinary differential equa-
tions (ODEs) are a frequently employed tool[34]. Each of the n dependent variables
xi of the system, usually the concentrations of molecules, is described by a differential
equation of the independent variable t (time):

dxi

dt = fi(x1, . . . , xn, t)

The whole system written in vector annotation where x = (x1, . . . , xn)T and f =
(f1, . . . , fn)T is

dx
dt = f(x, t)
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2 METHODS

An ODE system can have so called steady states (xSS), were all dxi

dt = 0. If a system
attains a steady state, the ODE system will remain there indefinitely unless perturbed.
Steady states can be characterised by their behaviour after small perturbations:

1. stable steady states attract close trajectories.

2. unstable steady states repel close trajectories

3. metastable steady states do neither

Then close trajectories converge to the stable steady state for t → ∞, the steady state
is called asymptotically stable.

A linear approximation of the ODE system at the steady state can often be used to
discriminate between stable and unstable steady states. The linearisation at the steady
state is the first order term of the Taylor expansion centred at the steady state:

dxi

dt ≈ fi(x1,SS . . . , xn,SS , t) +
n∑

j=1

∂fi

∂xj

∣∣∣∣∣
x=xSS

×∆x

Since fi(x1,SS . . . , xn,SS , t) is zero, the linearisation can be simplified to

dxi

dt ≈
n∑

j=1

∂fi

∂xj

∣∣∣∣∣
x=xSS

×∆x =
n∑

j=1
aij ×∆x

where aij are the elements of the so called Jacobian matrix:

J =


∂f1
∂x1

· · · ∂f1
∂xn

...
. . .

...
∂fn

∂x1
· · · s ∂fn

∂xn


The steady state is asymptotically stable, if all the real parts of all eigenvalues of the
Jacobian matrix are negative and unstable if at least one real part is positive and none
zero.

2.4.1 Stability of Steady States and Hopf–bifurcations

Proving the existence or nonexistence of stable oscillatory solutions of a system of or-
dinary differential equations is not always possible.

Since an unstable or metastable closed trajectory would be nonfunctional from a
biological perspective, the search can be narrowed down to stable limit cycles. There
are theorems that can prove the nonexistence of limit cycles, e.g. the Bendixson–Dulac
theorem[34], but they only work for two–dimensional systems.

On the other hand, if the system has a Hopf bifurcation[34], a bifurcation where at
least two complex eigenvalues of the linearisation of a steady state change their sign
(and therefore the stability of the steady state changes), the system will contain a limit
cycle too, extending from the branching point. Hopf bifurcations can give birth to

9



2 METHODS

stable limit cycles (and are thus called supercritical Hopf bifurcations) or unstable limit
cycles (called subcritical Hopf bifurcations). The existence or nonexistence of a Hopf
bifurcation can be verified by either computing the eigenvalues of the systems directly
or, if the former is not possible, by using the Hurwitz criterion[34].
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3 MODEL

3 Model

3.1 Criteria for the Model Selection

Lacking specific information about the underlying mechanism, the proposed model
should be as simple as possible in line with Occam’s razor and to avoid overfitting.

The supercoiling state of the DNA will be represented by a continuous number.
Given that the DNA of M. tuberculosis is about 4.5× 106 bp long and typical bacterial
chromosomes have DNA supercoiling with at least 11 bp per turn, the overall difference
in turns compared to relaxed DNA is estimated to be roughly about 20.000 turns.
Therefore, a boolean variable representing the supercoiled state would be inappropriate
and the influence of stochasticity is negligible. Since the supercoiling state is not a
concentration, it will be represented in an arbitrary unit normalised to one for the sum
of both states (State T = StateA+ StateB = 1).

The supercoiling mediated regulation systems observed in other bacteria, notably
in cyanobacteria, are all undergoing stable oscillations. Since the proposed oscillatory
nature of the time courses is one of the features why the supercoiling mediated regu-
lation systems were considered at all, the model should be capable of those sustained
oscillations. Furthermore, it is desirable to have an expression fore each model that
characterises the phase space containing the stable oscillations. An applied Hurwitz
criterion would come close to such an expression although application of a stability
criterion would be needed to exclude subcritical Hopf bifurcations.

3.2 Model A

The first model is as simple as possible. The amount of supercoiling is represented
as two different states, StateA and StateB. Each state promotes the expression of a
certain set of genes, SetA and SetB respectively. One set interacts with the supercoiling
state of the chromosome, we can presume this is Set B without loss of generality. This
interaction shifts the balance between StateA and StateB to StateA and therefore
forms a negative feedback loop.
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3 MODEL

Figure 6: Simple model of regulation by chromosome–coiling. The two super–coiling states
can be continuously converted into each other. Both stimulate the expression of a certain set of
genes. One set of genes (SetB) includes at least one gene that represses StateA and activates
StateB and forms a negative feedback loop.

A deterministic model assuming mass action kinetics results in the following system of
differential equations.

dStateA
dt = k1 × StateB − k2 × StateA× SetB

dSetA
dt = k3 × StateA− k4 × SetA

dSetB
dt = k5 × StateB − k6 × SetB

State T = StateA+ StateB = 1


System 1

In this system SetA does not participate in any reaction besides its own degradation and
consequently does not contribute to the dynamics of the system. Ignoring the second
equation ( dSet A

dt ) turns this into a two–dimensional system and the negative criterion
of Bendixion can be used to rule out the existence of limit cycles in the phase space.
Given a two–dimensional system

dx1

dt = f1

dx2

dt = f2

it states: If the trace of the Jacobian matrix Trace J = ∂f1
∂x1

+ ∂f2
∂x2

does not change its
sign in a certain region of the phase space, then there is no limit cycle in this area.
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3 MODEL

In System 1, Trace J does not change its sign for positive concentrations anywhere
and thus the system cannot undergo sustained oscillations. Even considering other
reaction kinetics this is not the case. An auto–catalytic reaction is necessary for one of
the derivatives to become positive, which would alter the system fundamentally.

Alternatively, the consideration of another intermediate step representing transcrip-
tion and translation of the genes generates delay and therefore promotes oscillations.
Adding a transcription/translation intermediate and again assuming mass action kinet-
ics results in the following system of differential equations.

dStateA
dt = k1 × StateB − k2 × StateA× SetB

dTransB
dt = k3 × StateB − k4 × TransB

dSetB
dt = k4 × TransB − k5 × SetB

State T = StateA+ StateB = 1


System 2

This three–dimensional system has a single bilinear non–linearity in the first differential
equation. Is has been shown by Thomas Wilhelm et al. that in such a system an
autocatalytic reaction in the equation containing the non–linearity is needed for a Hopf
bifurcation[35].

In contrast to System 1, System 2 does oscillate when the reaction kinetics are
changed to Michaelis–Menten kinetics. This characteristic is retained when mass action
kinetics are used to describe some of the reactions as long as the degradation of SetB
follows Michaelis–Menten kinetics. Alternatively, it is possible to assume Michaelis–
Menten kinetics in the degradation of TransB, but then it is no longer possible to
understand the degradation of TransB and the production of SetB as one reaction
TransB −→ SetB and it is necessary to introduce another parameter. Assuming
Michaelis–Menten kinetics in the whole reaction TransB −→ SetB will result in a
system without Hopf bifurcations verified with the Hurwitz criterion. A Michaelis–
Menten kinetic in the third equation ( dSet B

dt ) and the inclusion of the equation dSet A
dt

results in the system:

dStateA
dt = k1 × StateB − k2 × StateA× SetB

dTransB
dt = k3 × StateB − k4 × TransB

dSetB
dt = k4 × TransB −

k5 × SetB
Kmm + SetB

dTransA
dt = k6 × StateA− k7 × TransA

dSetA
dt = k7 × TransA− k8 × SetA

State T = StateA+ StateB = 1



Model A
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3 MODEL

The Hurwitz criterion could not be used to analyse the stability of the Model A directly
due to the complexity of the resulting inequations but for low Kmm–values the Model A
behaves similar to the following system:

dStateA
dt = k1 × StateB − k2 × StateA× SetB

dTransB
dt = k3 × StateB − k4 × TransB

dSetB
dt = k4 × TransB − k5

State T = StateA+ StateB = 1


System 3

System 3 has a Hopf bifurcation and shows sustained oscillatory behaviour in the para-
meter range:
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For low Kmm values the approximate position of the Hopf bifurcation in the Model A
is close the Hopf bifurcation of System 3. The Hopf bifurcation has been confirmed for
Model A.1 utilising XPPAUT[36], a tool for simulating dynamical systems integrating
AUTO[37] a software for bifurcation analysis in ODEs. A screenshot of the bifurcation
visualised with AUTO is shown in Appendix 7.2.

3.3 Model B

The second model is analogous to the model of the global feedback system between
chromatin and metabolism in yeast proposed by Rainer Machné and Douglas Murray[18].
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3 MODEL

Figure 7: Simple model of regulation by chromosome–coiling. The two super–coiling states
can be continuously converted into each other. Both stimulate the expression of a certain set of
genes, and are either repressed (StateA) ore activated (StateB) by a global regulator. SetA
catalyses the production of the global regulator and therefore indirectly represses itself and ac-
tivates the expression of SetB. SetB catalyses the decay of the global regulator and therefore
indirectly represses itself and activates the expression of SetA.

A deterministic model assuming mass action kinetics results in the following system of
differential equations.

dReg
dt = k1 × SetA− k2 × SetB ×Reg

dStateA
dt = k3 × StateB − k4 × StateA×Reg

dSetA
dt = k5 × StateA− k6 × SetA

dSetB
dt = k7 × StateB − k8 × SetB

State T = StateA+ StateB = 1


System 4

The System 4 has two Steady States but for every given set of parameters only one of
them has valid (i.e., positive) concentration values.

The Hurwitz criterion couldn’t be used to analyse the stability in the system due
to the complexity of the resulting inequations. Therefore the last two equations ( dSet A

dt

and dSet B
dt ) were further simplified by replacing them with a single equation. Since

dSet A
dt and dSet B

dt are both linear in System 4, this is unlikely to destroy any dynamics.
Assuming a constant protein concentration for the sum of SetA and SetB, which both
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3 MODEL

can be converted into each other, results in the following system:

dReg
dt = k1 × SetA− k2 × SetB ×Reg

dStateA
dt = k3 × StateB − k4 × StateA×Reg

dSetA
dt = k5 × StateA× SetB − k6 × StateB × SetA

State T = StateA+ StateB = 1

Set T = SetA+ SetB = constant


System 5

The Hurwitz criterion proves that the Steady State of the system is always stable inde-
pendent of the parameters. But assuming Michaelis–Menten kinetics for the reactions
results in a system capable of sustained oscillations. This characteristic is retained when
mass action kinetics are used to describe some of the reactions as long as the degrada-
tion of the global regulator ‘catalysed’ by SetB follows Michaelis–Menten kinetics. This
results in the following system of equations:

dReg
dt = k1 × SetA− k2 × SetB ×

Reg

Kmm +Reg

dStateA
dt = k3 × StateB − k4 × StateA×Reg

dSetA
dt = k5 × StateA× SetB − k6 × StateB × SetA

dSetB
dt = k7 × StateB − k8 × SetB

State T = StateA+ StateB = 1

Set T = SetA+ SetB = constant



Model B.1

The Hurwitz criterion could not be used to analyse the stability of the system directly
due to the complexity of the resulting inequations but, analogous to Model A, a system
could be found that behaves similar to Model B.1 as long as the Kmm values are small
compared to the concentrations of Reg. system:

dReg
dt = k1 × SetA− k2 × SetB

dStateA
dt = k3 × StateB − k4 × StateA×Reg

dSetA
dt = k5 × StateA× SetB − k6 × StateB × SetA

dSetB
dt = k7 × StateB − k8 × SetB

State T = StateA+ StateB = 1

Set T = SetA+ SetB = constant



System 6

System 6 has a Hopf bifurcation and shows sustained oscillatory behaviour in the para-
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meter range
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For low Kmm values the approximate position of the Hopf bifurcation in the System 5
is close to the Hopf bifurcation in Model B.1. Again the oscillations could be observed
using XPPAUT and screenshots are shown in Appendix 7.2.

Changing the last equation back to the two equations ( dSet A
dt and dSet B

dt ) used before
the simplification of a constant sum of SetA and SetB results in the following Model:

dReg
dt = k1 × SetA− k2 × SetB ×

Reg

Kmm +Reg

dStateA
dt = k3 × StateB − k4 × StateA×Reg

dSetA
dt = k5 × StateA− k6 × SetA

dSetB
dt = k7 × StateB − k8 × SetB

State T = StateA+ StateB = 1


Model B.2

This Model B.2 undergoes a Hopf bifurcation as well, the screenshots are shown in
Appendix 7.2.
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Table 1: A short overview of all examined models. The differences to the predecessor are
described in the Description column. k denotes the number of parameters of the model. The
capacity of undergoing a Hopf bifurcation is indicated in the third column. The theorem or source
used to confirm this is given in parenthesis, AUTO denotes that a Hopf bifurcation was observed
using the bifurcation software AUTO. The values of some models can become negative , even
when the initial values are all positive, thus the values cannot be interpreted as concentrations
and the models are designated as not physiological in the last column.

Description k Hopf bifurcation Physiological

Model A
System 1 assuming MA kinetics 6 no (Bendixion) yes

System 2 with additional transcription 8 no ([35]) yes

Model A with MM kinetic in dSet B
dt 9 yes (AUTO) yes

System 3 with constant degradation in
dSet B

dt

8 yes (Hurwitz) no

Model B
System 4 assuming MA kinetics 8 unknown but

unlikely
yes

System 5 assuming a constant sum of
SetA and B

6 no (Hurwitz) yes

Model B.1 assuming a MM kinetic in dReg
dt 7 yes (AUTO) yes

System 6 assuming a degradation of Reg
independent of Reg

6 yes (Hurwitz) no

Model B.2 assuming a MM kinetic in
dReg

dt but no constant sum of
SetA and B

9 yes (AUTO) yes
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4 RESULTS

4 Results

4.1 Transcription Factor

Two motif models were used to scan the promoter regions of the genes, one represents the
classic bacterial helix–turn–helix type transcriptions factor and assume a palindromic
motif, the other is a simple non–palindromic motif model that would capture the DnaA
binding side.

Table 2: Significance of the TF binding side motifs. None of the p–values is significant (below
0.05) and thus all motifs were rejected.

p–values : dnaA group ftsZ group both together
Palindromic motif 0.998 0.998 0.99998
Non–palindromic motif 0.12 0.46 0.46

A mutual palindromic motif is completely absent in the sequences. The lowest p–value
has the non–palindromic motif found in the in the dnaA group of genes, but the p–value
is still below the threshold of 0.05 and thus all found motifs were rejected.

An enrichment of the σH binding side in the promotor regions of the genes was
not observed. The scores of the alignments of the motif were not significantly better
than the ones of the shuffled sequences, although some of the alignment are better than
the one of the σH gene promoter sequence itself, which is known for targeting its own
structural gene[33, 9]. Even some of the shuffled sequences have better alignments than
the σH gene promoter sequence, suggesting the motif may not be pronounced enough
to be recognised reliably.
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4.2 AT–Content
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Figure 8: The AT–content of the ftsZ (red) and dnaA (blue) oscillating genes compared with the
AT–content of all genes (yellow). The values are calculated with a smoothing window of 100 bp.
There is no apparent difference, but the ftsZ oscillating genes have a slightly but significantly
lower AT–content in the 0 bp to +500 bp coding region.

Relaxation activated genes have been associated with above–average AT–content[38]
and accordingly relaxation repressed genes have been associated with below–average
AT–content in E. coli[38, 39] as well as in cyanobacteria[4]. As described in section 2.3,
the AT–content was analysed for three different windows close to the transitions start
side. The significance of the disparity between the AT–content of the two groups and
the genome–wide population was estimated with Student’s t–test.

Table 3: The average AT–content close to the translation start side for both groups as well as
the whole genome. The position of the three windows is relative to the translation start side.
The significance was estimated with Student’s t–test, p–values below the threshold of 0.05 are
significant.

average p–value
dnaA–group ftsZ–group genome dnaA–group ftsZ–group

-2000 bp – 2000 bp 0.346 0.346 0.345 0.78 0.53
-500 bp – 0 bp 0.353 0.353 0.356 0.24 0.57
0 bp – 500 bp 0.350 0.351 0.345 0.37 0.02

For both sets the AT–content in the window from 2000 bp to 2000 bp does not differ
significantly from the genome–wide AT–content and thus shows no resemblance to the
AT–content around the translation start side of DNA supercoiling regulated genes in
cyanobacteria, which deviates substantially from the average AT–content.

But the AT–content in the downstream region from 0 bp to 500 bp of the ftsZ–genes
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4 RESULTS

is significantly (p = 0.02) lower than the average AT–content in this region. Low AT–
content in the 500–downstream region was previously found in genes repressed by gyrase
inhibition[39] in E. coli but, unlike the corresponding genes activated by gyrase inhib-
ition, the genes of the dnaA group are free of significant GC–rich consensus sequences
and have an even lower AT–content in the downstream region from 0 bp to 500 bp but
the significance is much lower due to the smaller size of the set. The deviation from
the average of both sets of genes are in all cases corresponding in direction and almost
identical. If the AT–content regulates the expression of the genes in different supercoiling
states, both groups would be affected analogously contravening the observations.

4.3 Sequence Periodicity

The genes sorted by the S∗max value representing the strength of the periodicity were
divided into highest and lowest half as well as the highest and lowest quartile. They were
analysed with Gene Ontology Term Enrichment[40] (biological process ontology) using
the methods described in [41]. All three nucleotide motifs were analysed separately, thus
twelve sets of genes were analysed in total.

The half with the highest signals S∗max using Motif C has over–represented cell cycle
genes (GO:0007049) but the over–representation is not significant (Bonferroni corrected
p–value of 0.07 (p–values calculated using hypergeometric distribution)) and the annot-
ated cell cycle genes don’t overlap with the dnaA/ftsZ genes. Both groups have neither
a heightened nor lowered S∗max signal averages.

Both the Motif A as well as Motif B, have a relatively strong signal with a periodicity
of 15 bp that dominates the spectrum taken the whole chromosome sequence and is well
visible. The period of the strongest genome–wide signal differs among the used motifs.
The period found using Motif A (A/T) and Motif C (tetra–nucleotide), 10.4 bp and
10.6 bp respectively, is lower than the 11 bp usually found in bacteria, while the period
found using the Motif B (AA/TT) is 11.4 bp, similarly to typical bacterial periodicities.

4.4 Model

The software application Copasi[42] can be used to simulate and analyse biological
networks. The mathematical models A, B.1 and B.2 formulated in section 3 have been
implemented in Copasi using ODEs and the parameter estimation task has been used
to parametrise the equations.

The parameter estimation task uses the method of least squares: it tries to find para-
meters minimising the sum of squared deviations. This problem has no closed–form solu-
tion and can therefore only solved with iterative methods, which may find a local minima
instead of a global one. Since the periodical nature of the data leads to an abundance of
local minima, using non–probabilistic optimisation methods alone, e.g. the Levenberg–
Marquardt algorithm or Steepest Descent, has been unsuccessful. Therefore a num-
ber of probabilistic methods (Evolution Strategy, Evolutionary Programming, Particle
Swarm Optimization, Scatter Search, Simulated Annealing) have been considered. The
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probabilistic Simulated Annealing method has been the most successful in finding good
parameters, which were subsequently refined using the Levenberg–Marquardt algorithm.

To find better initial parameters the model was first fitted to two perfect sinus curves
with a frequency similar to the supposed one in the data.

While SetA and SetB (as well as TransA and TransB) in the models represent
multiple proteins, they interact with the model in a linear fashion and can be treated
as one superposed entity and are represented in the model as a single species each. In
Model A transcriptomic time course data was used to fit TransA and TransB. Since
no proteomic data had been available, the transcriptomic time course data was used
to fit SetA and SetB in Model B.1 and B.2. In Model B.1 and B.2 SetB was fitted
to one hand–chosen representative of the dnaA–group and SetA to one representative
of the ftsZ–group. In Model A the same representatives were used to fit TransB and
TransA. Probably due to the almost symmetric nature of the models, fitting them
interchanged generated identical fits with the same standard derivation.

time [h]

0 5 10 15 20 25 30 35 40 45

e
x
p
re

s
s
io

n

250

300

350

400

450
Model A

time [h]

0 5 10 15 20 25 30 35 40 45

e
x
p
re

s
s
io

n

250

300

350

400

450
Model B.1

time [h]

0 5 10 15 20 25 30 35 40 45

e
x
p
re

s
s
io

n

250

300

350

400

450
Model B.2

Figure 9: The result of the parameter estimation. The red, dotted line represents the time course
of the ftsZ genes and the blue, dotted line represents the time course of the dnaA genes. The
dark red, solid line is the fitted time course of SetA ( or TransA in Model A). The dark blue,
solid line is the fitted time course of SetB ( or TransB in Model A).The fitted Model B.2 seems
to follow the time course data the closest but none is able to follow the two reversed spikes after
21 h and 24 h, respectively.
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All models were adhered to the general seemingly oscillatory dynamic but none was able
to follow the two reversed spikes after 21 h and 24 h, respectively. The time courses of
Model A and B.1 have a mirror symmetry as well as the translational symmetry.

Since the models have different numbers of parameters, the corrected Akaike inform-
ation criterion (AICc)[43] have been used to compare them. The Akaike information
criterion (AIC)[44] and the Bayesian Information Criterion (BIC)[45] have been calcu-
lated too, with similar results.

Table 4: The AICc–values for each model. The argument of the AICc are given as well: StdDev
denotes the standard deviation of the fit, k is the number of parameters and n denotes the sample
size. The AIC– and BIC–values are given for comparison. Lower values are better.

StdDev k n AICc AIC BIC
Model A 19 9 34 125.6 118.1 131.8
Model B.1 18 8 34 128.4 122.6 134.8
Model B.2 23 9 34 123.8 116.3 130.0

The criteria all favour Model B.2. Since the AICc contains constants depending on
the data, comparing the different values directly is not meaningful. But given a set of
models where ∆i is the difference between the AICc of the i th model and the smallest
AICc in the set, the term exp(∆i/2) can be interpreted as the relative probability of
the i th model minimising the information loss compared to the model with the smallest
AICc[46]. The term ∆i itself can also used to asses the quality of the model, with values
below 2 giving strong support, values between 4 and 7 giving significantly less support
and values above 10 giving essentially no support[46].

Table 5: Comparison of the three models. ∆i is the distance to the AICc–value of the best fit
(Model B.2). The exp(∆i/2)–values can be interpreted as the relative probability of the Model
minimising the information loss compared to the Model B.2.

∆i exp(∆i/2)
Model A 1.8 0.40
Model B.1 4.6 0.10
Model B.2 0 1

On this basis Model A has to be considered another valid candidate, while the support
for Model B.1 is significantly weaker.

4.4.1 Finding a Possible Regulator

The simulated time course of the regulator in model B has been normalised and com-
pared to the experimental time courses of the gene expression. The time courses were
normalised because the fit without all concentrations is too under–determined to assign
correct concentrations to the reactants. The similarity of the time courses was quantified
using the sum of squares of the difference between the predicted and the experimental
time courses.
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The time courses with the lowest sum of squares and therefore the ones most re-
sembling the predicted one were all members of the group of genes fitted to the Set A.
Since the two groups are interchangeable regarding Set A and Set B this is no evidence
that the regulator is more likely part of the dnaA group than part of the ftsZ group.
Furthermore, since the time course of the predicted regulator resembles the time course
of Set A so closely, it seems likely that this is a property of the model itself, either of
the under–determined fit or of the simple model structure.

Therefore finding a candidate for the regulator has been unsuccessful.
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5 Conclusion

The goal of this bachelor thesis was to distinguish between a regulation mechanism based
on the supercoiling of the chromosome and a mechanism based on a mutual transcription
factor. This distinction could not be achieved based on the available data.

Both the dnaA group of genes and the ftsZ group genes seem to lack an ubiquitous
transcription factor. Given the size of the groups and motif sampling is a frequently
employed and well developed method, the complete absence of a significant motif is a
reliable indicator that the groups are not regulated via a TF. The motif of the only
σ–factor found in the groups (σH) is not significantly enriched. In any case, it is ques-
tionable that a single σ–factor could be responsible for the anti–correlated regulation of
two groups alone, since σ–factors are not known for direct repression of gene expression.

Three approaches have been tried to find an unambiguous indication to DNA super-
coiling mediated regulation. Firstly, no trivial connection between the genes and the
periodicities of AT–tracts of the chromosome could be found. The connection might
be nonexistent, much more complex or the connection could not be found due to the
limited resolution the weak signal strength entrails. Such a connection has yet to be
found in cyanobacteria as well although the existence of global, circadian regulation by
DNA supercoiling is undisputed[47] and thus this is not a strong indicator for the lack
of DNA supercoiling mediated regulation in M. tuberculosis.

The second approach was the more reliable indicator for DNA supercoiling mediated
regulation, the deviation from average AT–content in close proximity to the transla-
tion start side of the genes that is present in both cyanobacteria as well as E. coli. In
the DnaA and ftsZ genes in M. tuberculosis the deviation from average AT–content is
equivocal, with only the reduced A–content in the first 500 bp of the ftsZ genes being
significant. Since the deviation from the average had in all cases the same sign for both
groups of genes, the relevance of this is disputable. On the other side, the mechanistic
connection between AT–content differences and supercoiling mediated regulation in cy-
anobacteria and E. coli is still unknown, the connection might be different or completely
missing in other distantly related bacteria like M. tuberculosis.

In the third approach a simple model of DNA supercoiling mediated regulation was
built to show that the time course data could generally support DNA supercoiling me-
diated regulation and, in case the of Model B.2, to find a potential regulator in the
transcriptomic data. The models could follow the general behaviour of the time course
data. The quality of the estimated parameters, even in model B.2 with the lowest AICc,
is poor, with some confidence intervals being greater than the values themselves. But
given that the models are based on theoretical considerations more than known reac-
tions, the determination of reaction parameters was not the intention of the modelling.
To expand the model and improve the quality of the fit, the proteomic data, that was
not available in time, could be used to fit SetA and SetB. Since the available transcrip-
tomic data was used to fit TransA and TransB in Model A, both data sets could be
fitted without changing the model. In Model B.1 and B.2 this could be done by adding a
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transcription/translation step (e.i, by adding TransA and TransB and fitting them to
the transcriptomic data). Further expansions could model different DNA supercoiling
inducing mechanisms (e.g. a gyrase–based mechanism) and their kinetic properties (e.g.
the dependence of gyrase activity on ATP). With the current models and data no other
element of the models could be identified in the data to verify them.

None of the approaches could give any incidence of the involvement of DNA super-
coiling mediated regulation, but both hypotheses could likely be verified experimentally.

DNA supercoiling can be quantified in plasmids via gel electrophoresis since the
mobility of the plasmids changes with the supercoiled state. A time course of the
supercoiled state of a plasmid introduced in M. tuberculosis could be used to verify
oscillation in the supercoiled state or dismiss the hypothesis completely. If the DNA
supercoiling state does oscillate, the connection to the two groups of genes could be
verified by artificially changing the supercoiled state, e.g. using a gyrase inhibitor like
novobiocin. If the expression pattern of the induced relaxation corresponds with the
natural one, the genes are likely regulated by DNA supercoiling.

The involvement of the σH–factor could be verified or disproved conceptionally easily
with repeating the experiment with a silenced σH–factor since the σH–factor is not vital
for growth and not known to be involved in either the activation of the dormant state
or the resuscitation[9].
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7.1 AT-tract Spectra
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Figure 10: Normalised spectrum of the mononucleotide motif (Motif A) tracks in the whole My-
cobacterium tuberculosis chromosome. Note that the maximum period differs strongly from the
expected 10–11 bp. This phenomenon was observed in M. tuberculosis before [19] and is a
signal generated by pentapeptide repeats in proteins of the PPE family. It can be seen in the
Periodicity Scans using the Motif A and B and is limited to relatively small regions of the chromo-
some.
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Figure 11: Normalised spectrum of the binucleotide motif (Motif B) tracks in the whole Myco-
bacterium tuberculosis chromosome. Note that the maximum period differs strongly from the ex-
pected 10–11 bp. This phenomenon was observed in M. tuberculosis before [19] and is a signal
generated by pentapeptide repeats in proteins of the PPE family. It can be seen in the Periodicity
Scans using the Motif A and B and is limited to relatively small regions of the chromosome.
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Figure 12: Periodicity Scan of the Mycobacterium tuberculosis chromosome using the mononuc-
leotide motif (Motif A). Clearly visible are the periodicities of 14 bp caused by the pentapeptides.
The normalised strength of the signal Q∗(P ) is represented by the brightness of the colour.
Black areas correspond to an aperiodic signal strength Q∗(P ) below 1.5 and white areas to a
strongly periodic signal strength Q∗(P ) above 3. The 3 bp–periodicity is masked by averaging
3 bp windows.

Figure 13: Periodicity Scan of the Mycobacterium tuberculosis chromosome using the binuc-
leotide motif (Motif B). Clearly visible are the periodicities of 14 bp caused by the pentapeptides.
The normalised strength of the signal Q∗(P ) is represented by the brightness of the colour.
Black areas correspond to an aperiodic signal strength Q∗(P ) below 1.5 and white areas to a
strongly periodic signal strength Q∗(P ) above 3. The 3 bp–periodicity is masked by averaging
3 bp windows.
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7.2 Bifurcation Diagrams
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Figure 14: Hopf bifurcation in Model A. A blue, solid line represents a stable steady state, a blue,
dotted line an unstable steady state, a tangerine, solid line represent a limit cycle. The missing
connection of the unstable and the stable steady state is an artifact, the steady state is existing
and stable there. Parameters: k1 = k2 = k3 = k4 = k5 = k7 = 1, k6 = k8 = 0.1, State = 1
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Figure 15: Hopf bifurcation in Model B.1. A blue, solid line represents a stable steady state,
a blue, dotted line an unstable steady state, a tangerine, solid line represent a limit cycle. The
missing connection of the unstable and the stable steady state is an artifact, the steady state
is existing and stable there. Parameters: k1 = 67, k2 = 84, k3 = 22, k4 = 5, k5 = k6 = 68,
SetT = 75, Kmm = 0.1
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Figure 16: Hopf bifurcation in Model B.2. A blue, solid line represents a stable steady state, a
blue, dotted line an unstable steady state, a tangerine, solid line represent a limit cycle.. The
missing connection of the unstable and the stable steady state is an artifact, the steady state is
existing and stable there. Parameters: k1 =, k2 =, k3 =, k4 =, k5 = k6 =, SetT =, Kmm = 0.1

7.3 Estimated Parameters

Model A Model B.1 Model B.2

k1 = 2× 10−1 ± 2 k1 = 8× 10−1 ± 9× 10 k1 = 4× 10−1 ± 3× 10−1

k2 = 2× 10−4 ± 1× 10−3 k2 = 8× 10−1 ± 8× 10 k2 = 5× 10−1 ± 4× 10−1

k3 = 6× 102 ± 1× 103 k3 = 9× 10−4 ± 9× 10−2 k3 = 3× 10−2 ± 9× 10−2

k4 = 4× 10−1 ± 4 k4 = 5× 10−4 ± 8× 10−1 k4 = 1.1× 10−2 ± 3× 10−3

k5 = 4× 102 ± 9× 102 k5 = 2× 101 ± 3× 104 k5 = 6× 10± 1× 10
k6 = 4× 102 ± 5× 104 k6 = 4× 10−2 ± 1× 10−2 k6 = 7× 10± 2× 10
k7 = 4× 10−1 ± 3 k7 = 1.3× 10−1 ± 4× 10−2

k8 = 2× 10−1 ± 4 k8 = 2.2× 10−1 ± 7× 10−2

Kmm = 1× 10−6 ± 2× 102 Kmm = 3× 10± 3× 103 Kmm = 1 · 10−6 ± 1 · 10−5
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