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“Wenn sie nun imstande wären, miteinander das Erblickte an- und durchzusprechen,

glaubst du nicht, sie würden das, was sie da sehen, für das Seiende halten?”

Platon, Politeia VII, 515a
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Abstract

The following thesis treats of methods and procedures for the mathematical modeling of gene

regulatory networks (GRNs) involved in the determination of pluripotency and self-renewal. It

aims at mathematically explaining the processes of embryonic stem cell (ESC) differentiation

and induced pluripotent stem cell (iPSC) reprogramming. We are presenting different versions

of gene regulatory networks that rely on literature research, ChIP-on-chip and microarray data.

These networks involve the core regulatory genes of pluripotency, epigenetic remodeling fac-

tors, microRNAs and genes from signaling pathways. The analysis of these networks is done by

different mathematical means, the Boolean modeling method, the standardized qualitative dy-

namical approach and with systems of ordinary differential equations (ODEs) to give an insight

into the dynamical behavior of the networks.

We analyzed 5 different network structures, the Chickarmane network, the Boyer core network,

the epigenetic network model, the miRNA network model and the signaling pathway network

model. For the first, we were able to reproduce some of the dynamics mentioned in the pub-

lication of Chickarmane and Peterson in 2008 but at the same time we showed the limitations

of Boolean network models when it comes to more complex than switch like dynamics, e.g.

biphasic behavior. With the small epigenetic model we were able to explain the importance of

the appropriate timing of epigenetic reprogramming. The miRNA network model introduced

a repressive switch applied to the core network of pluripotency that could provide possibili-

ties why NANOG alone is not sufficient in reprogramming. Lastly, the pathway model could

give an impression of the interplay of the branches of TGFß and FGF2 in reprogramming and

differentiation.

Overall, by the mathematical analysis of the different mechanistic networks we were able to

reconstruct known dynamics of reprogramming and found possible reasons for the low repro-

gramming efficiencies and long reprogramming timing. It will be of interest one day to merge

these models in a systems biology approach to get a holistic view of pluripotency and iPSC

reprogramming.
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Zusammenfassung

Die vorliegende Arbeit beschäftigt sich mit der mathematischen Modellierung von genregula-

torischen Netzwerken, die bei der Bestimmung von Pluripotenz und Selbsterneuerung eine Rolle

spielen. Ziel der Arbeit ist die mathematische Analyse der Prozesse, die bei der Differenzierung

von embryonalen Stammzellen (embryonic stem cells, ESCs) und der Reprogrammierung von

differenzierten zu induzierten pluripotenten Stammzellen (induced pluripotent stem cells, iP-

SCs) stattfinden. Wir stellen verschiedene genregulatorische Netzwerke vor, die auf Literatur-

recherchen, ChIP-on-chip- und Microarray-Daten beruhen. Diese beinhalten kernregulatorische

Gene der Pluripotenz, epigenetische Faktoren, microRNAs und Gene aus Signalwegen. Die

Analyse dieser Netzwerke und ihres dynamischen Verhaltens erfolgt mittels mathematischer

Methoden, der Booleschen Modellierung, der standardisierten qualitativen dynamischen Sys-

teme und mittels Systemen gewöhnlicher Differentialgleichungen.

Wir analysierten 5 verschiedene Netzwerkstrukturen: das Chickarmane Netzwerk, das Boyer

Kernnetzwerk, unser epigenetisches Modell, ein mit miRNAs erweitertes Netzwerk und ein

System, das bestimmte Signalwege beinhaltet. Beim ersten waren wir in der Lage die Dy-

namiken von Chickarmane und Peterson 2008 teilweise zu reproduzieren, stießen jedoch auf

die Einschränkungen der Booleschen Modellierung bei komplizierteren Dynamiken, z.B. bipha-

sischem Verhalten. Mittels unseres epigenetischen Netzwerks konnten wir die Wichtigkeit der

zeitlichen Abfolge der epigenetischen Reprogrammierung nachweisen. Mittels der miRNAs

führten wir einen repressiven Schaltermechanismus ein, der auf das Kernnetzwerk ausgeübt

wird. Dieser konnte Möglichkeiten aufzeigen, weshalb NANOG alleine nicht ausreichend für

die Reprogammierung ist. Zuletzt konnten wir mit dem Signalwegmodell einen Überblick über

das Zusammenspiel der Zweige des TGFß und des FGF2 Weges bei der Reprogrammierung und

der Differenzierung geben.

Wir konnten dank der mathematischen Analyse der verschiedenen Netzwerke bekannte Dy-

namiken des Prozesses rekonstruieren und Möglichkeiten für die geringe Effizienz der Repro-

grammierung aufzeigen. Es wird außerdem in Zukunft von großem Interesse sein, die ver-

schiedenen Modelle in einer systembiologisch ganzheitlichen Sicht der Pluripotenz und iPSC

Reprogrammierung zusammenzuführen.
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1. Introduction

1.1. Presentation of the subject

The investigation and characterization of embryonic stem cells (ESCs) is one of the most promis-

ing and most relevant fields of today’s research. The main focus is therein put on the develop-

ment of medical applications for the treatment of many degenerative diseases, i.e. diseases in

which the affected tissues will progressively degenerate with time. The reason for their attrac-

tivity is that ESCs have the potential to develop into any cell of the organism, the so called

pluripotency, when the right triggers are applied and to self-renew indefinitely in vivo and in

vitro under the appropriate conditions.

As the direct acquisition of human embryonic stem cells (hESCs) requires the killing of a human

embryo which is ethically controversial, the recently developed concept of nuclear reprogram-

ming first performed by Takahashi and Yamanaka in 2006 [1], is becoming more and more

attractive for medical therapy. In their work, Yamanaka and Takahashi introduced genes coding

for the four transcription factors Oct4, Sox2, Klf4 and C-myc via viral transfection into mouse

embryonic fibroblasts (MEFs). Thereby, they induced the reprogramming of these terminally

differentiated cells into cells that strongly resembled ESCs from a morphological and genetic

point of view and which they called induced pluripotent stem cells (iPSCs).

As degenerative diseases have mainly genetic issues, the ideal workflow of a hypothetical thera-

peutic approach would be to extract terminally differentiated cells from a patient with the degen-

erative disease, e.g. skin cells [2] or cells from adipose tissue [3], to reprogram them in vitro into

iPSCs and to repair the genetic defect in this culture. As a next step, the repaired iPSCs could

be differentiated into the cell lineage from the affected tissue and retransplanted into the patient

(see Figure 1.1). This strategy offers large advantages compared to the “conventional” stem cell

therapy where unspecific ESCs from an existing cell line would be used. In first place, because

the transplanted cells originate from a patient’s graft, immune rejection could be prevented.

Moreover, as the iPSCs are patient specific, diseases could be evaluated more individually and

not only for model ESCs which may not be able to reflect the vast majority of patient’s genetic

defects.
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1.2. State of the art in iPSC research: possibilities and

problems

The reprogramming method of Yamanaka in 2006 was a big breakthrough in the field of ESC

therapy. Nevertheless, the arising criticism about the use of the transcription factor c-myc

which is commonly known to be an oncogene [5], the low reprogramming efficiency and the

involvement of viruses randomly integrating and remaining in the genome after transfection,

even though they are silenced, led to the development of further reprogramming techniques.

In 2007, Yu et al. used a slightly different cocktail consisting of Sox2, Nanog, Lin28 and Pou5f1,

the ladder being the name of the gene coding for Oct4, to reprogram differentiated cells into iP-

SCs thus avoiding the C-myc oncogene although the efficiency was further decreased compared

to the Yamanaka cocktail [6]. However, an enhancement of the efficiency was attained by Liao

et al. in 2008 when they combined the two cocktails to a six factor comprising combination of

Pou5f1, Sox2, Nanog, Klf4, C-myc and Lin28 [7]. Another very effective method to enhance the

efficiency is the use of small molecules in addition to the reprogramming factors. Valproic acid, a

histone deacetylase (HDAC) inhibitor is one of these small molecules that is able to increase the

efficiency by a factor of approximately 100 [8]. A virus-free induction method was performed

by Okita et al in 2008 and Kaji et al in 2009, where they used a plasmid for the transfection with

the reprogramming factors that could be excised once the reprogramming was done [9, 10]. In

another approach some reprogramming factors were replaced by small molecule compounds but

viruses for the transfection with the remaining factors were still necessary [11, 12]. In 2009,

Kim et al showed that human fibroblasts could be reprogrammed by the direct delivery of the

reprogramming proteins fused to a cell penetrating peptide thereby avoiding the use of viruses

or possibly harmful chemical compounds [13].

Another question that arose early in iPSC research is on the concern of the rather long repro-

gramming times. In fact, the reprogramming experiment proposed by Yamanaka and Takahashi

and also the one of Yu et al. which were the two reprogramming methods adopted by most

groups in this field needed at least 12 days to show the first iPS colonies [6] while full repro-

gramming took even longer up to 28 days or more. Ongoing theories to clarify this problems

name epigenetic modifications or the low transfection efficiency as main reasons for this repro-

gramming timing. Very recent results published in December 2009 by Hanna et al. showed that

assumingly it is not the absolute reprogramming time but the number of cell divisions taking

place during the reprogramming that is responsible for the time of the process [14]. The time

period can thus be associated with the epigenetic remodeling of the cell’s DNA since this is one

of the few processes that can be altered by the number of cell divisions. Simultaneously to the

2
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remodeling of the endogenous core transcriptional factors of pluripotency that will be activated

during the reprogramming, the exogenous retroviral genes are silenced epigenetically. Possible

mechanisms for both processes will be discussed in 2.2.2 and later in the result section in 4.2

where we combined the concepts of epigenetic reprogramming and silencing of retroviral genes

in order to give possible reasons for the long reprogramming times.

1.3. The biological origin of ESCs

To understand the origin and the purpose of ESCs, we will have a very simplified look at the

embryogenesis of mammals especially humans, i.e. the process of development of an embryo

after fertilization of an ovule (egg cell) by a spermatozoon.

Directly after the fertilization the egg cell (or zygote) undergoes rapid cell divisions without

significant growth resulting in a cluster of cells called the morula. Approximately 4 days after

fertilization, the blastocoel appears, a cavity filled with fluid and the morula becomes a blastula

consisting of around 128 cells. When this blastula develops into the blastocycst, it is composed

of the trophoblast forming the outer layer and of the inner cell mass (ICM) (see Figure 1.2)

While the trophoblast represents extraembryonic tissue giving rise to the placenta, the amniotic

sac and nutrients for the embryo, the ICM (or embryoblast) consisting of ESCs will develop into

all the tissues of the later organism. At the stage of the ICM, the cells are pluripotent but not

omni- or totipotent anymore because they lost their ability to give rise to extraembryonic tissue.

3
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Figure 1.2.: First part of the mouse embryogenesis from the zygote until the late blastocyst stage
[15]

At this stage of development, the blastocyst begins the implantation into the uterus via a part of

the trophoblast while the embryoblast divides into the hypoblast which will form the extraem-

bryonic endoderm giving rise to the yolk sac and into the epiblast. The epiblast then divides

again into the embryonic epiblast and other epiblast cells forming the amniotic cavity. The em-

bryonic epiblast will continue its development and perform the gastrulation approximately at day

16 after conception (post conceptionem p.c.). During that process cells of the embryonic epiblast

migrate through the primitive streak in direction of the hypoblast replacing its cells progressively

thus forming a new layer, the endoderm. While the original epiblast now forms the ectoderm

layer, cells remaining between it and the newly created endoderm will form the mesoderm (see

Figure 1.3). These 3 germ layers evolving from the embryonic epiblast will later develop into

the internal organs of the organism during the organogenesis which takes place within the 3rd to

8th week of p.c.

4



Till Scharp CHAPTER 1. INTRODUCTION

Figure 1.3.: The process of gastrulation giving rise to the three germ layers which will develop
into all tissues of the later organism [developmental biology, Scott F Gilbert]

1.4. Aim of the work

The field of ESCs and iPSCs reprogramming is very young compared to others and thus scientific

facts, although strongly emerging in the last years, are still scarce and a lot of unproved theories

and unsolved problems surround it. The following work will give an overview of the possibilities

and limits of mathematical modeling applied to several possible versions of gene regulatory

networks (GRNs), that are likely to be involved in the reprogramming of differentiated cells into

iPSCs, as a means to understand how the reprogramming factors act in multiple ways on the

cell.

5
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Figure 1.1.: Possible iPSC therapy [4]. Adult differentiated cells (e.g. fibroblasts) are taken
from the diseased mouse or human, cultured in a dish and transfected with the re-
programming cocktail. The resulting iPSCs are then genetically manipulated to
become healthy again, differentiated back to cells of the tissue in question and re-
transplanted into the patient, regenerating the unhealthy tissue.

6



2. Theoretical background

2.1. How to control protein expression on the genetic level

2.1.1. From genes to proteins: the central dogma of molecular biology

The genome encodes some ten thousands of genes whose gene products make cell survival and

cellular functions possible. Since its first use in 1909 by Wilhelm Johannsen in Limitations of

natural selection on pure lines [16], the definition of the word “gene” has constantly evolved

with the findings and progress in the research. However until today, there are ongoing contro-

versial discussions and there is no commonly accepted truth on this matter [17]. With a contem-

porary molecular definition by Lodish a gene corresponds to “the entire nucleic acid sequence

that is necessary for the synthesis of a functional polypeptide” [18]. By that definition, genes

do not only code for mRNAs which can directly be translated into proteins but also for other

types of RNA which are necessary to convert the mRNA into a functional protein e.g. rRNAs,

snRNAs, snoRNAs or miRNAs which will be mentioned later on in this work again.

The concept of the central dogma of molecular cell biology was first introduced by Crick in

1958, elaborated in 1970 [19] and has evolved ever since. It mainly states that the flow of

information between the species carrying information, i.e. DNA, RNA and proteins takes place

in the direction of the protein but not vice versa [20] as shown in Figure 2.1. In the following

we will give a short overview of the processes involved in this information flow to get an insight

into protein biosynthesis. However we will not give the detailed molecular mechanisms in here,

since they will be mentioned further in the next sections.

The DNA is localized in the nucleus of a cell where it is associated with proteins, mainly his-

tones, to form the chromatin. This chromatin can take its transcriptionally active euchromatin

or inactive heterochromatin conformation depending on the modifications of the DNA and the

histones. When in an active conformation, it is accessible for the RNA polymerase II which can

bind to the DNA and initiate its transcription into the corresponding pre-mRNA. The binding

takes place at the promoter of the gene, i.e. an evolutionary conserved consensus sequence,

7
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Figure 2.1.: The central dogma of molecular cell biology as envisioned by Watson in 1965 (in-
spired from [21])

such as the TATA box in Eukaryotes that lies 25-35 base pairs (bps) upstream of the transcrip-

tion starting point. However, not all euchromatin is transcriptionally active which is due to the

fact that the process of transcription depends furthermore on a large set of transcription fac-

tors (TFs) [18, 22]. There are two groups of transcription factors: general TFs are essential for

building up the transcription initiation complex required for the transcription in general. The

second group consists of specific TFs that can positively or negatively regulate the transcription

of certain genes by mechanisms depicted in 1.4.2. In that section we will also discuss the role

of transcription regulators that are not defined as TFs.

Following the transcription, the pre-mRNA is processed to become a mature mRNA and trans-

ported from the nucleus through the pores of the nuclear membrane into the cytoplasm. There,

it can be translated by the ribosomes into polypeptides which can then fold spontaneously or

mature in the endoplasmic reticulum and the Golgi apparatus to become the active protein. We

will not mention the detailed mechanisms of mRNA processing, translation and protein folding,

because it is not important for the subject of this thesis.

2.1.2. Mechanisms of eukaryotic gene control

In multicellular organisms, the most important aim of gene control is the execution of exact

developmental decisions. The right gene must be regulated in the right cell at the right time

during the development of numerous different cell types. Although gene control can occur on

many different levels, most genes in higher Eukaryotes are regulated on the stage of transcription

initiation [18].

Regulation of transcription initiation

As mentioned in 2.1.1, there are specific transcription factors that can act as activators or re-

pressors on the transcription of their target genes. In the terminology of molecular cell biology,

8
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these transcription factors as well as the genes they are coded by are designated as trans-acting

elements, while the regulatory DNA sequences where these transcription factors bind to regu-

late the target gene expression are called cis-acting elements. The trans-acting elements regulate

gene expression by binding to the DNA at promoter-proximal elements (PPEs within 100-200

bps upstream from start site) or distant enhancer sites which can lie up to 50 000 bps (50 kbps,

e.g. in SV40 enhancer) away from the start site. While the regulating mechanisms of enhancers

consist in the formation of an enhanceosome through the assembly of several interacting pro-

teins, there are several complex mechanisms by which the TFs binding to PPEs can control the

transcription on the molecular level [18]:

• Activators can stimulate the assembly of the initiation complex

• Repressors can bind to a specific DNA site competitively to an activator or a general TF or

can prevent in a different way the function of an activator or the assembly of the initiation

complex

Moreover, there is a group of transcription regulating proteins that are not termed TFs because

they don’t have a DNA binding site. This group consists of chromatin remodeling proteins,

histone acetylases, deacetylases, kinases and histone or DNA methylases [23, 24]. In this group,

transcriptional activation or repression is mediated by chromatin remodeling through histone

post-translational modifications [25] as will be explained in more detail in the following section.

Regulation through epigenetic modi�cations

As mentioned in 1.4.1, DNA is associated with histone proteins in the nucleus to form chromatin.

This highly condensed structure is formed of repeating units called nucleosomes which comprise

approximately 146-147 bps of DNA wrapped around a histone octamer [26]. When folded

into higher order structures, the repeating nucleosomes forming the chromatin are thus able to

package approximately 2 m of DNA into a nucleus of roughly 10 µm diameter. The histones

of the chromatin can be modified by specific enzymes in multiple ways which will affect the

transcription activity of the part of DNA associated with them. Because to date, not all epigenetic

modifications have been studied in the context of stem cell research, we will mainly focus on

the modifications known to be associated with pluripotency, i.e. histone (de)methylation and

(de)acetylation and DNA methylation.

There are two characterized mechanisms likely to occur as a consequence of histone modifica-

tions: first, the disruption of contacts between nucleosomes resulting in the unraveling of chro-

matin and second, the recruitment of enzymes able to modify the chromatin structure. Thus both

9
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mechanisms are aimed at the remodeling of chromatin structure into either the transcriptionally

active euchromatin or the inactive heterochromatin.

Considering the first mechanism, modification of the acetylation pattern has the highest potential

to disturb chromatin structure, because it neutralizes the charges of the lysine residues it applies

to, which may have important implications in intra- and intermolecular interactions of histones,

especially their N-terminal tails [27, 28, 29].

For the mechanism of enzyme recruitment, recent findings suggest that the methylation pattern

of histone H3 at lysine residues 4 (H3K4), 9 (H3K9) and 27 (H3K27) are important for the

tethering of enzymatic activity including ATPases [30], histone deacetylases [31], demethylases

[32, 33], ubiquitin ligases or methyltransferases [25].

Keeping the focus of this work in mind, it is important to assess the different modifications to

one event, silencing or transcriptional activation of a gene. Recently, there has been evidence

that acetylation of histones H3 and H4 as well as tri-methylation of H3K4 are marks of active

chromatin whereas methylation of H3K9 and H3K27 and any deacetylation account for silent

chromatin [25]. Nevertheless, as it is always the case in biological systems, there is not only one

truth and given modifications may have the potential to act either in a repressive or an activating

way depending on their location in the genome. H3K36 and H3K9 have lately been shown to

act in such an opposite manner when found either in coding regions or in a promoter of a gene

[34]. Moreover, activating and repressing chromatin signatures can coexist in so called bivalent

domains in ESCs [35, 36] as will be depicted in 2.2.2.

The role of miRNAs in transcriptional regulation

In addition to TF and epigenetic control, I would like to mention the recently discovered regu-

lation of genes by small non-coding RNAs (ncRNAs) especially micro RNAs (miRNAs) which

seem to play an important role in ESC pluripotency. Although the first miRNA was already

discovered in 1993 in the worm C.elegans [37], the name of micro RNAs only came up in 2001

[38]. The miRNA family consists of 21-25 nucleotide small RNAs which are transcribed from

the genome and processed to the mature miRNAs that negatively regulate gene-expression post-

transcriptionally [39, 40, 41]. The short RNAs form imperfect stem-loop structures and bind to

the 3’ untranslated region (3’ UTR) of their target mRNAs either acting as translational repres-

sors [42] or inducing the degradation of the mRNA [43] depending on their complementarity.

Important miRNAs involved in ESC pluripotency, as will be discussed below, are let-7 which

seems to form a feedback loop with LIN28 [44] one of the mentioned reprogramming factors

of iPSCs [6], miR-21 which is involved in the regulation of NANOG, SOX2 and POU5F1 [45]
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and miR-145 which regulates the expression of POU5F1, SOX2 and KLF4 [46]. Thus, these

miRNAs can be integrated in the transcriptional regulatory networks involved in the iPSC re-

programming process where they may be playing important roles as repressive switches (see

4.3).

So far, we have mentioned some of the most important mechanisms of eukaryotic gene con-

trol that are involved in the complex regulatory mechanisms that control pluripotency and self-

renewal. In the next section we will introduce the concept of gene regulatory networks (GRNs)

which are crucial for the modeling of the processes associated with differentiation and repro-

gramming.

2.1.3. Gene regulatory networks (GRNs)

The genome of an organism plays a central role in all kinds of cellular processes. A GRN is a

selection of certain genes interacting through mutual activation or inhibition by their encoded

gene products. Every organism, be it a single-celled bacterium or a highly developed animal

consisting of trillions of cells, needs to respond adequately to external conditions and signals

in order to survive or to optimize its situation. Other than the direct and fast responses through

receptor-protein coupled signaling, in many cases there is also a need for adjustment of the pro-

tein composition of the cell for a longer time range. This can be attained by the cell through

regulation of the expression rate of its genes. A classic example is the adjustment of metabolic

pathway’s enzyme concentrations as a response to external substrate abundance. A lot of work

has been done on this subject for metabolic and signaling pathways in prokaryotic model sys-

tems such as the lac-operon in E.coli [47] or eukaryotic cells, e.g. the cell cycle in yeast or

Saccharomyces cerevisiae [48]. Other prominent examples of GRNs are the signaling pathways

such as TGFß, MAPK, WNT and many more which will be discussed later in this work.

Since nearly all cells of an organism contain the same genetic material, it seems necessary to

understand which genes are expressed to which extent at which time. Even though proteins

involved in gene expression and molecular mechanisms of gene regulation is a well studied

research field, the knowledge of the functioning of regulatory systems including these genes and

proteins still needs to be expanded.

In the graphical representation of gene regulatory networks, we often don’t differentiate between

genes, mRNAs and proteins, especially when it comes to the mathematical modeling as will

be explained in 2.3.2. Of course this can only be done if we accept, that we are not looking

at an exact biological process which would involve transcription, processing, translation and

maturation of the protein. To describe the pure interaction between the species we will identify
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the nodes in the GRN, i.e. the species, with the expression level of a gene. Like that, in a logical

network, if a gene is expressed and the corresponding TF represses another gene, than the ladder

will be deactivated. Thus, there is no need to incorporate the transcription factor as a proper

species when dealing with gene expression. Genes, or more exactly their expression level, are

thus represented as nodes in a graphical representation of GRNs and interactions between the

genes as edges. As there are two kinds of interactions, positive or negative, there are also two

types of edges, i.e. activation is commonly represented by a normal arrowhead while inhibition

is represented by a different arrow with a crossed out point.

The enormous interconnectivity of GRNs involved in physiological processes guarantees the

perfect function of the organism, i.e. the adjusted answer to a diversity of possible inputs, but

it also renders the analysis and dynamic modeling of such GRNs a challenging task. In fact,

GRNs easily give rise to multiple dynamic behaviors even if the network structure still seems

quite simple. The aim of every mathematical model is to understand how a GRN dynamically

responds to diverse inputs, i.e. what changes in the expression of which genes will be effected.

When confronted with large GRNs, a common approach to begin the network’s study is the

discrete Boolean modeling method which will be depicted in 2.3.1. That method may give a

first insight into the behavior of the system before starting a lot more complex mathematical

approaches such as qualitative standardized dynamical models or ODE systems 2.3.2.

2.2. Biochemical characteristics of ESCs

2.2.1. The core network of pluripotency: an example for a simple GRN

As seen in the last section, the dynamic behavior of GRNs is responsible for the function of

many physiological processes. In this section, we will discuss how pluripotency is determined

and maintained by the action of a core GRN which acts on a large part of the genome.

To understand human development and the therapeutic potential of ESCs, it is fundamental to

identify the most important regulatory factors that determine cell fate. The transcription factors

OCT4 (encoded by the gene POU5F1), SOX2 and NANOG were recently found to play essential

roles in early development and ESC identity in mouse and human [49, 50, 51, 52, 53, 54].

Silencing any of these 3 factors in ESCs resulted in the differentiation of ESCs into one of the

cell lineages of the 3 embryonic germ layers, thus showing their importance for the maintenance

of pluripotency and self-renewal [55, 56, 57, 58, 59].

In 2005, Boyer et al. in a groundbreaking work identified OCT4, SOX2 and NANOG as parts of a

core transcriptional regulatory circuitry in hESCs. They carried out a nearly genome-wide ChIP-
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on-chip analysis, a procedure that aims at revealing all the DNA binding sites of the transcription

factors in question. Their results showed that the 3 transcription factors are master regulators,

i.e. they bind to a large number of genes (around 600 for OCT4, more than 1000 for NANOG

and SOX2) and that many of these target genes are co-occupied by a combination of at least

two of the 3 TFs [60]. Some of the target genes were found to be active, e.g. those involved

in pluripotency, others to be inactive, e.g. those having developmental functions, suggesting

the master regulators to have activating and repressive functions at once depending on possibly

involved cofactors, precise concentration levels or posttranslational modifications. Moreover, in

the same publication, Boyer et al. postulated a regulatory circuitry consisting of interconnected

autoregulatory loops between the 3 TFs.

Figure 2.2.: The core regulatory network of pluripotency (from [60])

As one can see in Figure 2.2, the TFs OCT4 and SOX2 act positively together as a heterodimer

on the transcription of their own genes and on that of NANOG, as postulated as well in other

publications [61, 56, 62], while the TF NANOG acts positively on the expression of its own

gene, POU5F1 and SOX2 [63, 60]. These findings were confirmed and expanded by many other

groups later on to give more and more complex pluripotency networks [64, 65, 66, 67, 68] some

parts of which will be mentioned later on in this work again.

We will now concentrate on the three transcription factors and their function in the ESC state

maintenance. The transcription factor OCT4 which is encoded by the gene POU5F1 is a piv-

otal regulator of pluripotency. Its artificial repression in ESCs leads to differentiation into the

trophectodermal lineage. In the ESC state, OCT4 associates with CDX2, a trigger for tro-

phectoderm (TE) differentiation, to form a complex that represses POU5F1 as well as CDX2

expression. As the TFs OCT4 as well as CDX2 regulate their own expression positively, down-
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regulation of POU5F1 will result in up-regulation of CDX2 and vice versa [69] thus leading to a

bistable system where either of the 2 factors is present at high levels and the other is not. How-

ever, it was shown, that if POU5F1 is overexpressed in ESCs they will differentiate into primitive

endoderm cells [70, 59] showing that a precise regulation of OCT4 levels in ESCs is required

for the maintenance of this state. Moreover, looking at the great variety of its downstream target

genes, OCT4 is very likely to be involved in a number of different cellular processes that have an

impact on cell fate. A good overview of the processes, OCT4 and also SOX2 may be involved

in is given in Greber et al 2007 suggesting multiple action on metabolism, cell cycle, chromatin

architecture, signaling pathways or apoptosis only to name a few [71].

The TF SOX2 whose depletion in ESCs leads to defective epiblasts and differentiation into

trophectoderm cells [57] is another part of the pluripotency core network. SOX2 deficient cells

die immediately after implantation while knockdown of SOX2 in ESCs induces differentiation

into multiple lineages. We’ve already mentioned that SOX2 acts together with OCT4 on a

large number of downstream targets activating or repressing their transcription. However, one

main difference between SOX2 and OCT4 is that SOX2 is not restricted to ESCs but it is also

present in extraembryonic ectoderm and neuroectoderm [57]. Nevertheless, similarly to OCT4,

small increases in Sox2 levels in mESCs and embryonic carcinoma cells (ECCs) were recently

shown to lead to differentiation into several cell types but not into endoderm [72]. In fact,

when slightly overexpressed, Sox2 decreases the expression of its own gene and of Pou5f1 and

Nanog mESCs and ECCs [73]. Moreover, while OCT4 currently appears to be irreplaceable for

reprogramming, Sox2 could be substituted by a combination of Sox1 and Sox3 [74]. Overall it

seems that the known role of SOX2 mainly consists in its action as a cofactor of OCT4 but as

its exact expression level is critical for pluripotency and proper differentiation of reprogrammed

iPSCs [75], it may have a more powerful task which still needs to be examined.

The third TF of the core network is NANOG which is highly expressed in the cells of the ICM

and later restricted to pluripotent cells. Similar to the other factors its lack in mouse embryos

results in the failure to develop an epiblast, i.e. an embryo, while NANOG knockdown in ESCs

drives them to differentiate into extra-embryonic endoderm cells [76, 67, 51]. However, un-

like POU5F1 and SOX2, NANOG overexpression does not induce differentiation but promotes

self-renewal and the maintenance of the pluripotent state [49, 51]. Apart from endoderm differ-

entiation NANOG was also shown to block neuronal [77] and mesodermal [78] differentiation.

There are many theories about the multiple functional mechanisms of NANOG. Thus, it was

hypothesized that it acts as a repressor on GATA6, a gene coding for a transcription factor that

triggers differentiation into primitive endoderm [79, 51] while Ralston et al. 2005 and Chickar-

mane et al. 2008 even suggest a mutual inhibition between the two factors [15, 68].
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To summarize, POU5F1, SOX2 and NANOG form a highly interconnected GRN whose overall

task is the transcriptional activation of genes involved in pluripotency and self-renewal and the

repression of genes responsible for differentiation processes. Nevertheless, recent work on the

subject of up- or downregulation of the core TFs has proved that this simplistic view of the core

network should be further extended to explain the narrow expression limits in ESCs. Thus, even

though at the big level, a picture of ESC pluripotency and self-renewal is starting to arise, details

of the numerous mechanisms and their importance for ESCs and iPSCs are still only poorly

understood. We will try to give a short overview of the epigenetic modifications and signaling

pathways involved in ESC maintenance and differentiation in the following section.

2.2.2. Epigenetic modi�cations in ESCs

In the last section we have discussed the pure core GRN responsible for the maintenance of

the ESC state consisting of OCT4, SOX2 and NANOG. In this part we aim at describing the

downstream effects of this network when it is switched on or off and possible effectors that

target the genes of the core network.

Epigenetic processes that have been described in general in 2.1.2 were recently found to be in-

volved in important mechanisms of cell fate determination and cellular reprogramming [80, 81,

82]. In fact, ESCs are overall transcriptionally more active than differentiated cells. Thus, dur-

ing differentiation of ESCs to developmentally more restricted states (or vice versa) the global

genetic expression patterns change due to covalent histone modifications, DNA methylation and

localization of chromatin to specialized nuclear domains. The exact mechanisms and processes

will be outlined in the following.

As mentioned above, gene activity critically depends on the chromatin structure which can be

altered through histone modifications. When inducing differentiation in ESCs, e.g. by retinoic

acid (RA), an increase of H3K9me3 (a heterochromatin marker) as well as a decrease of global

concentrations of acetylated H3 and H4 (euchromatin markers) were observed [83, 84] showing

that cells tend to develop transcriptionally less active chromatin.

We’ve already introduced the concept of bivalent domains in which active and inactive chro-

matin marks can coexist in particular regions mainly in ESCs. These domains, consisting of a

combination of the transcriptionally inactive marker H3K27me3 and the transcriptionally active

marker H3K4me3, are associated with genes expressed at low levels [35, 60] which is a common

feature of many genes that relate to the ESC state [85, 86]. Since they are mainly found in ESCs

and only scarcely in differentiated cells where either activating or inhibiting chromatin marks

are present (but not both at a time), Bernstein et al. 2006 proposed these bivalent domain’s main
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task to be the silencing of developmental genes in ESCs while keeping them poised for activation

when differentiation programs are initiated. Furthermore, they showed that upon differentiation

bivalent domains resolve to either H3K27me3 or H3K4me3 resulting in a transcriptional inhibi-

tion or activation of the associated gene respectively. In fact, it has been found that many target

sites of OCT4, SOX2 and NANOG co-localize with such bivalent domains, these genes tending

to be silenced in the ESC state [35]. Implications of these mechanisms in transcriptional models

for ESC pluripotency will be hypothesized below in the epigenetic model of the result section.

DNA methylation at CpG islands is another gene silencing mechanism that has not yet been

mentioned and that is required for the induction of differentiation of ESCs. In this context,

hypomethylation of the promoter of pluripotency related genes is required for high expression

levels and thus for maintaining pluripotency. Genes involved in these processes include the DNA

methyltransferases Dnmt3a and Dnmt3b and the CpG binding protein (CGBP)[87, 88].

2.2.3. Signaling pathways involved in pluripotency

Pluripotency of mouse and human ESCs is determined by different signaling pathways. In

mouse ESCs (mESCs) one key factor to maintain pluripotency and the ability to self-renew is

the leukemia inhibitory factor (LIF) [89, 90] which works by activation of the Janus-associated

tyrosine kinase (JAK) and of signal transducers and activators of transcription (STAT) [91, 92]

which activate downstream targets involved in the maintenance of the ESC state such as the key

factor c-Myc [93] that is able to induce infinite proliferation through the control of telomerase

[94]. While it is known that STAT3 is the main mediator of LIF signaling, the exact mechanism

remains largely unknown. Nevertheless it has been shown that bone morphogenetic proteins

(BMPs) are likely to play a role in LIF signaling as well. In mESCs in fact, depending on the

presence of LIF, BMPs either induce mesodermal differentiation in the absence of LIF or help

promote self-renewal when LIF is available [77]. However, in human ESCs (hESCs) the ESC

state has been found to be independent of this LIF-STAT3 interaction keeping its property in

vitro [95].

Another difference between mESCs and hESCs was found in the mitogen-activated protein ki-

nase (MAPK) signaling pathway and especially the extracellular-signal regulated kinase (ERK)

which belongs to the MAPK family. While mESCs show high activity of extracellular-signal

regulated kinases (ERKs) when inducing differentiation and ERK suppression leads to self-

renewal [96], in hESCs high levels of ERK activity have been found, relating to basic fibroblast

growth factor (bFGF) signaling which can maintain hESCs self-renewal over a long period of

time [97, 98, 99]. In fact, hESCs are most commonly cultured on feeder layers of fibroblasts in
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the presence of bFGF which seems to have great importance for hESCs self-renewal [100, 101].

Components of the bFGF pathway have thus been found to be enriched in hESCs and inhibitors

of FGFR for example lead to their differentiation [102]. It has moreover been discovered recently

that hESCs cultured without feeder layers but supplemented with bFGF and Noggin (an inhibitor

of BMP4) are supported in their undifferentiated proliferation [103, 98, 104] although very high

concentrations of bFGF (100 ng/ml) have also been proved to be sufficient for the maintenance

of the hESC state [105]. The mechanism by which bFGF can help maintain pluripotency and

self-renewal are largely unknown though it was recently found that it can activate MAPK path-

way [98, 97] and inhibit BMP4 activity on the SMAD1 level [103].

Another factor that has an effect on the ESC state is the TGF beta pathway family which com-

prises more than 40 members including BMPs, Activin, Nodal and TGF beta itself. We’ve

already mentioned BMPs above where we showed that their function in mESCs is dependent on

the presence of LIF. In fact, BMP4 acts through phosphorylation of SMAD1/5/8 whose activa-

tion leads to the expression of the inhibitor of differentiation (Id) that blocks neural differenti-

ation [77]. It has also recently been found that SMAD1/5/8 directly acts on SOX2 decreasing

its expression [106]. Moreover BMP4 blocks the MAPK cascade maintaining the pluripotent

state in mESCs in the presence of LIF [107]. In contrast to its effect in mESCs, in hESCs BMP4

does not maintain the ESC state but induces differentiation to the trophoblast or primitive en-

doderm lineage [108]. The other branch of the TGF beta pathway that leads to the activation

of SMAD2/3 can be activated by TGF beta, Activin or Nodal. In this case SMAD2/3 inhibits

SMAD1/5/8 showing that the TGF beta/Activin/Nodal pathway can block BMP4 mediated sig-

naling [109, 110]. Thus, it was shown that without condition medium, Activin A can keep

hESCs in an undifferentiated state [109]. Moreover Greber et al. showed in 2007 that SMAD2/3

directly enhances NANOG expression [111]. These interactions will be the basis for our pathway

model in 4.4.

To summarize, Figure 2.3 shows the involvement of the different pathways and their conse-

quences for the ESC pluripotent state. Overall, these relations of the signaling pathways JAK-

STAT, MAPK, FGF, TGF beta suggest that they play important roles in ESCs self-renewal and

pluripotency as will be reflected in our models in the results section.
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Figure 2.3.: Overview of the relationship between the relevant pathways and their implications
for the ESC state

2.2.4. The task of miRNAs in the ESC fate

As seen in 2.1.2, where we described the mechanisms of eukaryotic gene control, several miR-

NAs have been identified as active parts of the transcriptional network regulating pluripotency

and self-renewal. As they are going to play an important role in the modeling of regulatory

networks responsible for ESC fate in the result section, we will focus on miR-21 and miR-145

and their relations to the pluripotency core network.

It has recently been shown by Xu et al. that the microRNA miR-145 is expressed at low levels in

hESCs but strongly upregulated during differentiation. Moreover, they found out that the genes

of the core transcription factors OCT4, SOX2 and KLF4 are targets of miR-145 which inhibits

their expression. However there seems to exist a negative feedback loop on the transcription of

miR-145 by OCT4 thereby creating a network of interconnected inhibitions [46].

Another miRNA involved in the determination of pluripotency and self-renewal in mESCs is

miR-21 which acts as an inhibitor on the genes of the core TFs OCT4, SOX2 and NANOG.

In the undifferentiated state, this miRNA is repressed by the neuronal repressor protein RE1-

silencing transcription factor (REST) [45] that restricts the differentiation along the neuronal

lineage [112, 113]. In fact, REST is directly activated by OCT4, SOX2 and NANOG [60] in

the ESC state, thereby keeping miR-21 repressed which shows once more the autoregulatory

mechanism of the core network of pluripotency that keeps itself activated.
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We have shown that the miRNAs -21 and -145 are actively involved in the fate decisions of stem

cells repressing the expression of core TFs when they get activated by an external or internal

signal, e.g. upon differentiation when the core TFs are downregulated. In the result section of

this work, we will see which role miRNAs can play in the dynamic modeling of pluripotency

networks.

2.3. Methods for the mathematical modeling of GRNs: A

systems biology approach

The main task of the systems biology approach is to explain the dynamic behavior of biological

systems observed experimentally. In this definition the biological system in question can be any

set of compounds, i.e. genes, proteins, mRNA, small molecules, etc. inside or outside of a cell

that can be translated into a set of variables describing their respective amount or concentration.

Here, we will concentrate on the mathematical modeling of GRNs, i.e. the variables will reflect

the concentration of a specific mRNA or a protein because in GRNs we don’t discriminate

between these two species. The evolution of each species’ concentration over time will then be

defined by certain rules depending on the chosen mathematical approach.

There are several mathematical methods that were shown to be able to describe cellular, molec-

ular or physiological processes with high precision, i.e. reflecting experimental data in a good

way (examples: cell cycle in yeast, glycolysis, other pathways in other organisms (look for ex-

amples, citations, etc.). These methods which will be presented as follows divide into two major

fields, one applying binary logic to a system of variables and the other using ordinary differential

equations (ODEs).

2.3.1. The Boolean modeling approach

The foundations of Boolean logic were laid by George Boole in his work The mathematical

analysis of logic which was published in 1854. His ideas were then further developed by Jevons,

Peirce, Huntington, Stone and others over the last century to the Boolean algebra that we know

today. We will herein directly focus on the application of Boolean logic to biological networks

which was first described by Stuart Kauffman in the 1960s [114].

As we have seen before, GRNs can be represented in directed graphs where the nodes corre-

spond to the genes and transcription factors in question and the edges describe the effect, i.e.

transcriptional activation or inhibition of the input node on a target node. In the Boolean method
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all the nodes are assigned Boolean variables that can only take two values, 0 or 1. That is to

say each gene represented by a node is either active or inactive at a certain time t like a switch

that has only these two positions. This assumption is legitimate as many important reactions

in vivo are nearly irreversible and follow a sigmoidal rate dependence on the concentration of

the metabolites both in enzyme [115] and gene control systems [116]. The ensemble of all the

variables’ values at a time t is called the state of the network at the time t. As every variable can

take two values, in a network of n nodes there will be 2n possible states.

The progression of all the variables in time and thereby of the state is determined by rules, the so

called Boolean functions, that depend on the structure of the genetic network. In that context we

will call “input node to a target node” every node in the graph of the network that is connected

with the target node through an edge that points towards the target node. For every node, the

effect of all its input nodes is described by a Boolean function that will determine the following

state t+1 from an initial state t in a deterministic way. A Boolean function fi for the node i takes

as an input all the values of the input nodes to the node in question at time t and generates an

output value for the node i at time t+1. Boolean functions can easily be represented by truth

tables as it is visible in Tab.2.1 where the OR and the AND function for 2 inputs are represented.

Every input has 2 possible values 0 or 1 so for every Boolean function there are 22= 4 outcomes

that have to be defined. Every of these outcomes can again take two possible values, hence there

are 22∗2= 16 possible combinations of outcomes, i.e. Boolean functions for this specific problem

or more generally for k inputs 22k possible Boolean functions [114].

OR 0 1
0 0 1
1 1 1

AND 0 1
0 0 0
1 0 1

Table 2.1.: The truth tables for the Boolean functions OR and AND

Hence, time step by time step, the system develops to finally reach a state, that it has already

visited before. Since the dynamics are deterministic the system will fall into an attractor, i.e. a

steady state or a stable oscillator.

The biggest challenge in this Boolean modeling method is to find the right Boolean function for

every node in the network. There are two main ways to deal with this problem. One can either

try to construct random nets and have a look at their dynamics comparing them with the real bi-

ological system like Kauffman did in several studies [114, 117, 118] or one can choose to define

specific Boolean functions for each node when there is sufficient experimental information on

the interaction between the genes. We will chose to go with the second step since in most of

our models we at least have the interaction information of the GRN. The implementation rules
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for the conversion of the directed graph representing the GRN into the Boolean model will be

mentioned in 3.1.

The state space of a Boolean network is the ensemble of all possible states and their progression

in time. It can be represented in a directed graph where every node corresponds to one state and

the directed edges mark the transition from one to the next state in time. A sequence of transi-

tions between states is called a trajectory or a path. Such a graphical representation of the state

space of a Boolean network contains a wealth of information in a very easy appearance. First

of all, we can deduce the steady states and possible stable oscillators, i.e. the attractors of the

system that the variables will reach after a certain time. A state in the graphical representation

of the state space can be called steady state if there are no outgoing edges from it, only incoming

edges towards it, meaning that this state remains as it is over time and does not change anymore.

Meanwhile, stable oscillators can be detected by finding cycles in the graph, i.e. closed paths

where the start and end node are the same. Moreover, although a state space seems to be a static

representation more than a dynamic model, we can deduce the dynamics of the network by look-

ing at the trajectories, i.e. at the transitions between the states. When looking at the trajectories

through the state space, it also gives us information about the reachability of specific states when

starting from a certain different state. In fact, a state can only be reached from another one if

there exists a path or trajectory leading from one to the other either directly or through different

intermediate nodes. Thus, the state space is an easy graphical representation that can provide

us with a lot of information about the network stability, its dynamics and reachability of certain

states. For a better understanding, we will give an example for the graphical representation of

the state space of a Boolean model and its contained information below in 3.2 where we also

mention the software used.

There are two main forms of dynamic Boolean modeling that differ from each other in their

application and prediction power, the synchronous and the asynchronous approach. While the

update rules, i.e. the Boolean functions, are applied simultaneously on all the variables of the

system in the former, in the ladder they are applied in a random order thereby introducing the

concept of stochasticity into the Boolean method. In fact, when repeating the asynchronous

approach several times, we will find an ensemble of possible steady states or state cycles each

of which will be attained with a certain frequency. This frequency can be extrapolated to a

probability when comparing to the total of runs.

For further reading on the Boolean method and its application to biological systems, I suggest

the works of Kauffman [114, 117, 118] and the reviews of Huang and de Jong [119, 120].

The Boolean modeling approach is an example for a discrete model, i.e. the variables in the

network can only take a countable number of values, in the Boolean example only two. These

21



Till Scharp CHAPTER 2. THEORETICAL BACKGROUND

discrete methods have recently served to model and predict the main characteristics of complex

networks and large-scale regulatory systems [121, 122]. In 2006, Mendoza and Xenarios pre-

sented a method for the extrapolation of any regulatory network graph to a continuous dynamical

system. It is based on the construction of two dynamical systems one discrete, one continuous

from the network structure. The stable steady states of the discrete system can then be found

analytically and used to find the stable states of the continuous system numerically [123]. To-

gether with Di Cara, they moreover created their own software, SQUAD that is able to perform

this extrapolation. This software and its technique will be further described in the result section

when we will focus on the mathematical analysis of different versions of pluripotency related

GRNs [124].

A last concept that has to be introduced is the one of the hamming distances. A hamming

distance between two states of a Boolean network’s state space is defined as the minimal number

of variable values that have to be changed to reach a certain state from the other one [125]. We

used this concept in the result section to unravel possible transitions between subnetworks in

the state space thus being able to manipulate a transitional state that would normally end up

in a certain steady state to join another subnetwork that reaches a different steady state. This

concept picks up the idea of reprogramming by manipulating a terminally differentiated state or

any transitional state that would end up in this differentiated state and only introduce a minor

change (e.g. one gene activation or inhibition for hamming distances of 1) in this state to end up

in a pluripotency related steady state or a transitional that reaches this steady state.

Although Boolean networks do not correctly model every biological process, e.g. the dynamics

of a TF that downregulates its own expression as shown in [118], and their state space increases

exponentially with the size of the network, they nevertheless constitute a well suited model

system for small networks when only qualitative data is available. In fact, the Boolean method

always provides a good insight into the existence and stability of steady states and the robustness

of the network.

2.3.2. Modeling of GRNs by ordinary di�erential equations (ODEs)

Ordinary differential equations (ODEs) are the most widespread formalism to model dynamic

systems not only in biological but as well in chemical and physical systems. Strongly applied

to GRNs, this formalism describes the time-dependent variation of RNA, protein and other

molecule concentrations with variables that are connected through rate equations in a differ-

ential way. The system with n variables usually has the following mathematical form:

dxi
dt = fi(x1, ...,xn)
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where xi is the ith species’ concentration and fi is the rate equation, usually a non linear function

that has to be defined, connecting xi with the components of the systems which it is interacting

with, i.e. in a GRN its activators and inhibitors. The rate equations describe the production rate

of the species and can either be chosen or combined out of a set of different types of equations,

e.g. mass-action kinetics, Michaelis-Menten kinetics, Hill kinetics or they can be derived by

the exact mathematical description of the network. When enumerating the equations for all

the species, we are facing a system of non-linear ordinary differential equations describing the

dynamics of a GRN.[120]

To model a GRN in a detailed, biologically relevant model, one would have to take into account

all the steps from the gene to the protein as largely described in 2.1. This would mean that genes,

mRNAs, proteins and to be really exact all the intermediate steps of the process would have to

be proper species which would increase the number of variables of the model very quickly mak-

ing it very complex and unclear. To overcome this problem, we can simplify things and assess

the variables to the activity of the genes which can be increased by synthesis and decreased

by degradation of the species in question. As well as the example employed in [126] which is

shown in Figure 2.4, we also made the assumption in our models that every transcript is imme-

diately translated into protein, the kinetic constants of synthesis thus referring to transcription

and translation.

We will concentrate now on the derivation of the kinetic rate laws for the different interactions

in a GRN that define the ODE system. As mentioned above, we mainly use Michaelis-Menten

(MM) or in rare cases Hill kinetics to model the interactions. When dealing with a single inhi-

bition as shown in Figure 2.4a) in the first equation or with a single activation as in the second

equation, we just admit the MM or Hill kinetics with the only difference that we use the form

d[gene1]
dt

=
V 1

k1+[gene2]n

for inhibition and
d[gene1]

dt
=

V 1∗ [gene2]n

k1+[gene2]n

for activation, where most of the time we admit n = 1 which leads from general Hill kinetics to

MM kinetics. It is moreover possible to include basal transcription rates, i.e. constants that will

be added to the equation.

Now, if we have to deal not only with one but with more inputs to a gene, i.e. 2 activations or

an activation and an inhibition, we combine the equations for the two following the upcoming

rules. For several activations we just sum up the terms for the activation which leads us to an

increased overall response when all genes are active but still preserves the ability for the gene
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Figure 2.4.: An example for an ODE model from Karlebach and Shamir 2008 [126] A network
of three genes shown in b is modeled by the system of ODEs shown in a Every
differential equation is assembled by a term for synthesis and one for degradation.
The term for synthesis depends on the activators or inhibitors of the gene in ques-
tion. The kinetics used for activation in here are Michaelis-Menten Kinetics, for
repression it is for degradation it is simple linear (mass action) kinetics, The graphi-
cal representation in c shows the expression level of the respective genes over time,
thus the dynamic behavior of the system.

to be active, when not all activators are present. To include an inhibition into the equation with

one or more activations we will just multiply the denominator of each activation term with the

denominator of the inhibition equation in the way that every activation is lowered by the presence

of inhibitor. We can compare this with the OR and the AND gates of the Boolean modeling: for

several activations, we just used an OR connection, which corresponds to the sum in the ODE

model, while for an inhibition in combination with an activation we always used the AND gate

combined with the NOT operation for the inhibitor which corresponds to the multiplication in

the denominator in the ODE model.

The ODE approach provides detailed information about the network dynamics but when it comes

to fitting the system to the biological reality, it requires the presence of a wealth of high quality

data for the estimation of kinetic parameters which often are not available.
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3. Materials and methods

3.1. MS Excel, the simplest tool for dynamical Boolean

modeling

When it comes to dynamic Boolean modeling, i.e. the representation and calculation of the time

dependent behavior of an implemented Boolean network, software is scarce until today. I will

give a quick overview of existing software and its problems in the following.

As a tool for matlab, CellNetAnalyzer is an interesting software to create and analyze Boolean

networks that we tried to use in first place. It combines a wealth of possible actions and provides

the possibility to fully analyze Boolean networks but it turned out to be hard to handle because

of its complexity and different features were not well suited for our purposes. Another software

dealing with the representation and analysis of Boolean networks, called GINsim (gene interac-

tion network simulation), was found to be not trivial to handle and is probably better suited for

larger networks.

Compared to these tools, MS Excel at first sight does not seem like the best choice to perform

an analysis of Boolean networks. However the huge advantages of this software consist in the

fact that one knows exactly what it does, that Boolean functions can easily be implemented and

one can qualitatively perform an iterative time course that adjusts itself automatically when the

input values are changed. As everyone probably knows how to deal with MS Excel and as the

method is really straight forward, its following description will be short and comprehensible.

As a first step, we put the names of our species in the first row and leave the second row empty in

the first place. The ladder will serve as our input value row when the Boolean functions will have

been defined. Now in the third row, we can just use MS Excel’s logical language comprising not

more than the 3 operators “And”, “Or” and “Not” which you can build every Boolean function

with, and connect the values of the first row in the way they need to be connected to reflect the

GRN structure. The rules for this connection are the following:

1. Without any inputs, a node at time t+1 takes the same value that it had at time t. Such a

node is called an input node to the network.
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2. When affected by activations and inhibitions, the value of a node at time t+1 is determined

by the following function:

N (t +1) = (OR(
i

Ai))AND(NOT (OR
i

(Ii))

where N(t + 1) is the value of the node at time t+1, Ai is the value of the ith activator of the

corresponding gene and Iiis the value of the ith inhibitor of this gene. The indices underneath

the OR and AND functions indicate, that the activators (respectively the inhibitors) are all con-

nected through the OR function. That function implies that one active inhibitor is enough to

inhibit the expression of the gene in question even if many activators are expressed. This as-

sumption is probably the most limiting one in the Boolean method but since we don’t have any

information on the subject of the molecular mechanisms of inhibition and activation of the genes

and transcription factors in question in pluripotency related GRNs, this is at least a reasonable

assumption to make. When looking at the rules one may ask where we include the degradation

of the species. It is very easy since upon lack of an activator for a certain gene at time t, it will

be turned off at time t+1 because in that case the Boolean function returns a 0.

The rules as they are defined above are applied exactly like this in MS Excel for every cell of

the third row. In the next step, we can simulate an iterative time course by applying the rules

progressively on the cells of the next rows just by clicking on the third row in the lower right

and pulling the mouse straight down the next rows. We can stop this step-by-step time course,

when the cells don’t change anymore or when we discern a loop structure, i.e. when a complete

row is only a repetition from an earlier row, since the update rules are deterministic.

To visualize the Boolean modeling method with MS Excel, we will now give an example with

the pluripotency related GRN by Chickarmane and Peterson from 2008 [68]. The network, its

implementation and the results for 4 different input value combinations are shown in Figure 3.1.

In fact, as we will see below in the result section, we could have eliminated the OCT4-SOX2

dimer as a proper species, but since we’re only looking at the dynamics and not at the whole

state space, which would increase in size by the factor 2 when including the OCT4-SOX2 dimer

as a species, we can leave it in the network for the upcoming analysis.

Figure 3.1 shows the graphical representation, the implementation and the Boolean time courses

for some initial values for the GRN proposed by Chickarmane and Peterson 2008. We were

able to reproduce some of the outcomes that were found in the paper by ODE modeling, e.g.

the two steady states where either the pluripotency related TFs are activated while the others

are not or the other way around. Moreover we can show that NANOG alone can push the

network into the pluripotency related steady state even in the absence of OCT4 and SOX2 which

was a prediction of an earlier publication by Chickarmane et al. in 2006 [127]. However, the

Chickarmane paper mainly focuses on the biphasic response of the network in dependence of
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If all transcription factors except for NANOG are
deactivated, the core transcription factors of
pluripotency will turn on and the others stay off.
This process may mark a transition from a
differentiated into a stem cell state.

Translation of the graph and the author‘s assumptions
into a dynamical Boolean model in Excel‘s logical
language

OCT4: AND(OR(OS;N) ;NOT(OR(C;GC)))
SOX2: OR(OS;N)
OS: AND (O;S)
NANOG: AND(OR(OS;N);NOT(G))
GATA6: AND(OR(G;O);NOT(N))
CDX2: AND(C;NOT(O))
GCNF: OR(C;GC)

Legend: O = OCT4, S = SOX2, OS = OCT4-SOX2, N = 
NANOG, G = GATA6, C = CDX2, 
GC = GCNF

The activity of OCT4 and SOX2 with all other genes
being deactivated doesn‘t seem to be sufficient to
generate a pluripotent state. As shown before
Nanog is necessary as a trigger.

Chickarmane et al. 2008

The time courses are modeled by discrete steps in the system‘s evolution in Excel until the
system reaches a steady state (Boolean variables don‘t change anymore)

Simple dynamical Boolean modeling in
Microsoft Excel

Time dependent outputs of the Boolean model in Excel for
different inputs (in the second row of the following tables)

OCT4 SOX2 OS NANOG GATA6 CDX2 GCNF

1 1 0 0 0 0 0

0 0 1 0 1 0 0

1 1 0 0 1 0 1

0 0 1 0 1 0 1

0 1 0 0 1 0 1

0 0 0 0 1 0 1

OCT4 SOX2 OS NANOG GATA6 CDX2 GCNF

0 0 0 1 0 0 0

1 1 0 1 0 0 0

1 1 1 1 0 0 0

If the core transcriptional factors are deactivated and
the others turned on at the beginning, then the core
factors remain off and the cell remains in a
differentiated state as expected.

If the core transcriptional factors are activated and
the others turned off at the beginning, then the
core factors remain activated and the cell remains
in its stem cell state as expected.

OCT4 SOX2 OS NANOG GATA6 CDX2 GCNF

1 1 1 1 0 0 0

1 1 1 1 0 0 0

OCT4 SOX2 OS NANOG GATA6 CDX2 GCNF

0 0 0 0 1 1 1

0 0 0 0 1 1 1

Figure 3.1.: The Boolean model of the network proposed by Chickarmane and Peterson in 2008
[68]. Upper left: The graphical representation of the GRN. Lower left: The imple-
mentation of the network in MS Excel’s logical language. Right: Time courses with
explanations for different initial conditions of the Boolean model.

the OCT4 concentration. In fact, the authors refer to earlier results of Matoba et al. [128] who

showed that differentiation related genes can only be active at either high or low concentrations

of OCT4 while pluripotency related target genes require intermediate OCT4 levels. Hence,

Chickarmane and Peterson proposed a network to describe this bistable switch which describes

different steady states for the 3 different levels of OCT4. As we decided to follow a Boolean

approach for which the species can only take two values, it is impossible to reproduce these

bistable switch data. To do so, we would have to use a multi-valued logical approach, work with

Petri nets or ODE modeling. When implementing a multi-valued logical model, the definition of

the update rules and functions gets more and more complicated with the number of values that

a variable can take with the consequence that the implementation of an ODE model which can

make better predictions is sometimes not more complex to do. However, as experimental data

are scarce in this young field of stem cell research, we will stay with the Boolean logic in first

place and give an outlook on an ODE modeling approach only at the end of this work.
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3.2. BooleanNet and Cytoscape: a visualization of the state

space for small Boolean models

In the last subsection we described the Boolean modeling approach with a simple tool, MS

Excel, that was originally designed to create and work with data arranged in lists and tables.

We will now outline the method we applied for the graphical representation of the state space

of a Boolean network model illustrated by the same example we used above. Therefore we are

going to introduce BooleanNet, a software toolbox based on matlab for the study of the dynamic

behavior of Boolean models and Cytoscape, a software originally designed for the visualization

of molecular interaction networks by graphs.

What mainly distinguishes BooleanNet from other efforts to model Boolean networks is its

focus on well defined biological sub-systems rather than large-scale networks and its input sim-

plicity. Similarly to MS Excel the input structure for BooleanNet is directly based on the 3

Boolean functions AND, OR and NOT which can build up any more complex Boolean function

when combined. Once the update rules are implemented, BooleanNet can use synchronous or

asynchronous iteration, stochastic updates or hybrid modeling by a system of linear differential

equations. Moreover, which is not necessarily true for every tool that is designed for Boolean

modeling, every aspect of the simulation can be altered throughout the process: node states can

be overridden, updating rules changed and differential equations replaced [129].

Cytoscape is a visualization tool for the graphical representations of networks that supports many

input formats e.g. SIF, GML, SBML, delimited text files and MS Excel workbook. In addition

one has the possibility to import data files such as expression profiles or GO annotations which

can be attributed to nodes, edges or whole networks which then can be manipulated, classified,

arranged and structured based on this information.

To represent the state space of a Boolean network model, we first created a python script (not

shown in this work) for BooleanNet which takes as an input the file containing the update rules

in the BooleanNet format, the name of the variable species, the name and format of the output

file, whether or not one wants the hamming distances file to be generated and whether or not the

species should be arranged in different classes. The script generates 2 SIF files, one representing

the whole state space of the model, the other one containing all the edges between nodes with an

exact hamming distance of 1. Moreover it also creates property files for the nodes, containing

whether they are steady states or not and another file representing their in-degree, i.e. the number

of nodes they are a target of.

When loading the SIF files into Cytoscape, we get the state space as a directed graph that we

can further manipulate. We can create different layouts of the state space for better comprehen-
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sibility depending on the network’s properties, i.e. steady states, classes, hamming edges, when

importing these properties into the software. For better understanding, we will show here the

same workflow we will perform on our own models in 4 for the Chickarmane model system

of the last subsection. For simplification we have left out the OCT4-SOX2 dimer as a proper

species as described above to reduce the number of states in the state space by the factor 2.

Its state space is shown in Figure 3.2. As explained in the graphic text, the state space is shape

and color coded as it will be for most models in 4 as well. Thus, nodes with a spherical shape

indicate transitional states while nodes with a triangular shape indicate steady states and the

color indicate the state of the network from states that are more related to pluripotency (red) to

states that are more related to differentiated states (green). When we take a closer look at Figure

3.2 we can discern 9 different subnetworks in the state space leading to 7 steady states and 2

state cycles. A subnetwork being defined as an ensemble of states leading to the same steady

state or the same cyclic attractor.

Without going too much into the detail of this state space, the steady state 111000 (upper right)

corresponds to the pluripotency related steady state. 000101 (upper left) and 000011 (middle

right) respectively represent the differentiation related steady states where either GATA6 and

GCNF or CDX2 and GCNF are activated. That is to say 000101 represents the endoderm and

000011 the trophectoderm state. Both of them can be attained by different initial or transitional

states as can be seen by looking at the nodes directly or indirectly related with these steady

states.

As is visible in the lower left and the lower right of Figure 3.2, when a subnetwork has no steady

state, it has to contain a state cycle, i.e. a cyclic path of repeating nodes. In our example it’s the

state cycles 110001 <–> 011100 and 111100 <–> 110000 that are found in separate subnetworks

that do not contain a static steady state.

Moreover, what we can do if we remember the dynamic simulation done in MS Excel in the

last subsection, we can try to retrace the dynamics of certain initial values in MS Excel and in

the Cytoscape state space. The only thing that we have to respect in this task is that we left out

the OCT4-SOX2 dimer, so we have to compare the steady states without this extra species. We

find that the two steady states found in MS Excel for the differentiation and the pluripotency

related steady states are the same as in the state space. Moreover we can see that the steady

state reached from the state where only NANOG is activated and all other genes turned off is

the same in both examples even though the dynamics are different. This is due to the fact, that

assumingly the OCT4-SOX2 species changes the dynamic behavior of the system. This is also

why the dynamic and the steady state of the last MS Excel example for the initial values of OCT4

and SOX2 activated and the others turned off, differ from the ones in the BooleanNet/Cytoscape
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state space. This effect will not be further explained in here but is due to the temporal shifting

introduced by the activation of a dimer species (like in the section above) instead of a direct

activation of a target gene by an AND gate like we did in here in the BooleanNet input file.

We can learn from this example that we have to pay attention on the changes of the system’s

dynamics and stability when we introduce minor changes. Even if it seems like a trivial thing

in our example that should not alter the dynamics profoundly, it nevertheless changed the whole

state space.

Another concept that should be illustrated by a graphic is the concept of hamming distances

mentioned above. To represent states that are closely related to each other, i.e. that could maybe

be converted into each other by minor changes or by transcriptional noise, we introduced edges

between all states, that only differ by the activation or inhibition of one species, i.e. two binary

states that only differ in one digit.

Figure 3.3 shows the part of the state space from Figure 3.2 discussed above. We isolated the

three subnetworks leading to the two steady states of differentiation and the steady state of

pluripotency and only represented edges between nodes of different subnetworks that have a

hamming distance of exactly 1. As we can see, transitions between the subnetworks leading to

different steady states are possible from several nodes of the different subnetworks.

In fact, we now have analyzed the GRN from Chickarmane et al. 2008 with our Boolean model-

ing approach in MS Excel as well as with the combination of BooleanNet and Cytoscape which

would make it justifiable to put it in the result section. However, as we think that the network

constitutes a good example to understand how to work with these two methods, we let it in this

section and just remind the reader that this actually is also part of the results we got out of the

analysis of different networks involved in ESC pluripotency.

3.3. SQUAD: From discrete to continuous Boolean

modeling, the standardized qualitative dynamical model

SQUAD is a software developed by Di Cara et al. in 2007 [124] for the purpose of dynamic

simulations of signaling networks with the standardized qualitative dynamical systems approach

which was developed by Mendoza and Xenarios in 2006 [123]. This approach can be used when

kinetic and other experimental data are scarce or even not available at all. The software is able

to convert the GRN in question into a discrete dynamical system in first place to identify its

steady states. It then implements a continuous dynamical system applying defined rules that can

be read in [123] and whose explanation would lead to far in this place. The steady states of the
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continuous system are located near the steady states of the discrete dynamical system and can

thus easily be found. The method thus ends up in an automatically generated continuous ODE

system, which the software uses to generate time courses.

The input file for SQUAD only contains the network structure, i.e. the species and their acti-

vating or repressive interactions. The implementation is very straightforward: activations are

defined by a “->” between two species, while inhibitions use a “-|”. Thus, the input file for a

network with a species A activating a species B and species B inhibiting species A would have

the following form:

A -> B

B -| A

and this is everything that is written in the input file and passed to SQUAD.

For the simulation of time courses for different input values, we now have the possibility to

adjust decay rates of the species, gains and attribute weights to the interactions between the

species. The exact implications of these parameters in the continuous system can also be looked

up in [123]. When all parameters are set, we can run time course simulations for different initial

conditions and extract the dynamical behavior of the system as well as the steady state that is

reached.

The big advantages of the software SQUAD are the easy handling, the scarcity of informa-

tion that it needs in comparison to the wealth of information that it generates, i.e. we only

tell SQUAD the network structure and it generates a continuous ODE model with adjustable

parameters and time courses of the species’ concentrations.

If we want to go a step further and develop our own ODE model with our own kinetic functions

and parameters, the software to do so will be described in the following section.

3.4. Copasi: a COmplex PAthway SImulator for the

integration of ODEs

In the last section, we discussed a transition from discrete Boolean to continuous modeling

using an extrapolation method developed by Mendoza and Xenarios. This method automatically

generates a set of ODEs with predefined rate equations and parameters which can be adjusted

in the software SQUAD. However, this generalized logical approach is still only a qualitative

dynamical method which is limited in its prediction possibilities and the analyst is only given a

defined set of parameters he can adjust to fit his model to possible experimental data or biological
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findings. Hence, the next step to model GRNs is the proper implementation of ODEs with kinetic

rate laws and parameter sets that we develop on our own and that we think suit the problem best.

For the integration and analysis of our ODE models we used the software Copasi that stands

for COmplex PAthway SImulator and is described in detail by Hoops et al. 2006 [130]. Copasi

has multiple features including deterministic and stochastic simulation of reaction networks,

stability, stoichiometric, sensitivity and metabolic control analysis, optimization and parameter

estimation. In this work we only use the the integration of the ODEs for graphical representation

of the time courses for different initial value and parameter sets. This is why, we will only

describe these features of Copasi in slightly more detail and neglect the others.

The model can be implemented in Copasi by defining the reactions, the species and the form

of the kinetic equations that can be chosen out of a library or defined properly, this information

being translated by the software into a mathematical model, i.e. a system of non-linear ODEs.

When specifying the parameters of the model and the initial values, Copasi can calculate the time

courses. i.e. the development of the variables over time, using either a deterministic (LSODA

integrator [131]) or a stochastic approach (Gibson-Bruck method of the Gillespie algorithm

[132]) which can easily be switched by the user. The steady states of the system are determined

by the damped Newton method and forward or backward integration using LSODA.

We will now give a short overview of how to implement a simple model in Copasi, how to

adjust initial concentrations and parameters and how to run a simulation. In fact, to translate the

graphical representation of a GRN into a reaction scheme, it is sufficient to build two reactions

for every species, one of them characterizing its synthesis, the other one its degradation. While

for the degradation we can assume linear mass-action kinetics because it only depends on the

concentration of the species to be degraded, for the synthesis, i.e. transcription and translation,

we have to include the activation and repression by other species. As derived in 2.3.2, we will

declare the corresponding equations as rate laws for the reactions in question depending on the

number of activators and inhibitors of the reaction. Following this step, we will still have to

Figure out the parameters of the system to derive its steady states. This is probably the most

limiting step of the ODE method, because we don’t know the parameters of the reaction, since

we don’t have any quantitative data on molecular mechanisms. Nevertheless, we can try to

have an insight into the qualitative behavior of the system by setting the parameters to random

values (e.g. all to 1) in a first step and let the software run a time course. For quantitative

information on the system and possible prediction, we will have to estimate the parameters

which is only possible if we have sufficient data, i.e. time points for the concentration of the

species in question, from experiments.

For the moment, we will stay with the qualitative behavior of the system. However, if we want to
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look at specific time courses, we will have to think of a set of initial values that is appropriate to

our problem. Hence, if for example, we would like to see what happens if all core transcriptional

factors are active and the others are not, we will have to adjust our initial values depending on

these conditions.
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Figure 3.2.: The whole state space of the network by Chickarmane et al. 2008 [68]. The nodes
represent the states of the model. Every state is characterized by the values of the
system’s variables The variables are arranged in the order “OCT4, SOX2, NANOG,
GATA6, CDX2, GCNF” and represented by a binary number of 6 digits, every digit
representing whether the gene is active (1) or inactive (0). The graphic is shape
and color coded. Spherical nodes indicate a transitional state while triangular nodes
indicate steady states. Moreover the color stands for the differentiation status of
a state. The more a state relates to pluripotency the more it will be red, while it
becomes green when approaching a differentiation related state.
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Figure 3.3.: A part of the state space from Figure 3.2 with dashed edges between nodes that have
a hamming distance of exactly 1. For simplification and practicability, we only show
hamming distances of 1 between nodes that are found in different subnetworks, i.e.
that would reach different steady states in time.
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4. Results

4.1. The core network of pluripotency

The Boolean approach and its limits

We implemented the core GRN of pluripotency as it was first mentioned by Boyer et al. in 2005

and as it is shown in Figure 2.2 and simplified in Figure 4.1 together with its state space. The

Boolean functions can be seen in the appendix A.1. As shown in the Boyer publication, OCT4

and SOX2 together form a dimer that binds to the promoter of all three core genes, activating

their transcription. In addition, NANOG acts in the same way, thus activating POU5F1 and

SOX2 transcription as well as the one of its own gene.

When looking at Figure 4.1, we can discern 2 steady states, 000 where all factors are deactivated

corresponding to the differentiated state of the cell and 111 where the core network is completely

active corresponding to the pluripotency related state. The order in which the species appear in

the state vectors is OCT4, SOX2 and NANOG. The transition between the two subnetworks made

up by the states leading to one or the other steady state, can occur in both direction either through

turning OCT4 and SOX2 on or off or through activation or deactivation of NANOG respectively.

These actions being applied on one of the steady states, the system will transition into one state

of the other subnetwork leading to the other steady state. This process can then be seen as a

reprogramming or differentiation experiment.

When analyzing the network a little closer by looking at the model equations in A.1, we can

easily discover that the three species in this Boolean network in fact all have the same equation,

thus being equivalent. Hence one can combine these species in one single species that activates

its own transcription, thus giving rise to the same dynamics as the network that we just ana-

lyzed. This species can then be seen as an ultimate pluripotency switch that remains deactivated

in a differentiated state and once activated remains on through self-activation giving rise to a

permanent state of pluripotency.

However, since the dynamics of the network suggest that NANOG activation, respectively POU5F1

and SOX2 activation, alone are sufficient to lead to a transition from the differentiation to the
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Figure 4.1.: The core network of pluripotency (left) and its state space (right).The species in the
state vectors appear in the order OCT4, SOX2, NANOG

pluripotency related steady state, when the biological reality suggests that the delivery of more

TFs is necessary to get significant reprogramming efficiencies, it appears that things are more

complex. The dynamics of the core transcriptional network alone may be consistent with ear-

lier results [67, 133] showing that OCT4 and SOX2 are necessary for reprogramming, but there

are many more mechanisms that are involved in the reprogramming process and that are wired

around this core network either upstream or downstream of it or otherwise interconnected with

it.

In the following sections we will concentrate on the extension of the core network model, in-

tegrating it into different other mechanisms that are known to have a significant effect in iPSC

reprogramming.

4.2. The epigenetic model, trying to explain the low

reprogramming e�ciencies or long reprogramming

times

Boolean model

We have mentioned earlier in this work that one of the unsolved problems and questions of iPSC

reprogramming consisted in the long times needed for the full process. Simultaneously it is well

established that epigenetic pathways are involved in retroviral silencing in iPSCs [81]. Our aim

was to include epigenetic modifications into the network of the core transcriptional regulatory
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circuitry in order to gain an insight into possible epigenetic mechanisms and implications which

could affect the reprogramming time period. Indeed, this question should be approached using

ODE modeling after having analyzed the steady states and Boolean dynamics of the network.

Starting from the transcriptional core regulatory network as proposed by Boyer et al. [60] and

shown in Figure 2.2, we first included the incorporated reprogramming genes that we named

OCT4i, SOX2i and NANOGi into the network since we clearly wanted to separate these two con-

cepts to show which genes are turned on and which are turned off during the reprogramming. Al-

though the encoded transcription factors of course are the same, the endogenous and exogenous

genes differ in their promoter and thus in their regulatory input pattern. The second assumption

that we made was the incorporation of two genes responsible for epigenetic modifications one

of them keeping the endogenous core transcriptional factors inactive in a differentiated state and

the other one silencing the retroviral exogenous factors after the reprogramming is done. The

one that we called M1 (see Figure 4.2), that controls the expression of the endogenous core

regulatory genes, can be identified either with repressive or bivalent histone modifications or as

well with DNA methylation at the pluripotency gene promoters, e.g. through Dnmt3a/b, both

mechanisms having been mentioned in 2.1.2 and 2.2.2. The species M2 can represent several

different mechanisms that are involved in retroviral silencing and that can be looked up in [134].

Moreover, for better visibility and comprehension we combined the species OCT4 and SOX2 to

their dimer, as it has been done in Chickarmane et al. 2008 for example [68]. The resulting GRN

is shown in Figure 4.2. As this network contains 7 species and many interactions between them,

its state space would be made up by 128 nodes, the implementation would be rather complicated

and the update rules would probably not perfectly reflect the situation. When taking a closer look

at this network, one can see, that OCT4-SOX2 and NANOG on the one hand, as well as OCT4i,

SOX2i and NANOGi on the other hand have each the same inputs from the same species as well

as the same outputs. As we already eliminated the problem of dimerization of OCT4 and SOX2

through eliminating OCT4 and SOX2 and only keeping OCT4-SOX2 as proper species, we can

see that the species have the same update rules. Thus, they are equivalent in the network and can

be combined into one species that we will call OSN and OSNi respectively. We have analyzed

the more complex network as well as the simplified version and found that the simplifications

did not change the qualitative behavior of the network and the steady states of the system (results

not shown).

This rather easy assumption, even though not respecting the exact dynamics of the biological

system, preserves the qualitative behavior of the network and thus leads us to an extremely

simplified model with only 4 species and no more than 8 interactions which is shown in Figure

4.3.
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Figure 4.2.: First, large epigenetic model with 7 species that are highly connected through differ-
ent interactions. Since some of the species can be assumed as equivalent from just
looking at their interactions, this model can be strongly simplified which is shown
in Figure 4.3

What is still hidden in the two graphics is that in fact, the update rule for OSNi also contains that

once it is brought into the cell, it will remain there, transcriptionally active unless M2 is active.

So, we included in the update rule, even though not shown in the graphical representation of the

network, that OSNi is self sustaining, thus is autoactivating. In fact, if OSNi is present in the cell

at time t and there is no inhibition, in our case by M2, then it will stay active in the cell because

of its specific promoter. The exact Boolean update rules as the are implemented in BooleanNet

are shown in A.2.

Since the model only contains 4 species, there are only 24 = 16 nodes in the state space which is

shown in Figure 4.4. In this example, we abandoned the idea of color coding for the state space

as it was mentioned in 3.2 because the species can not that easily be classified into categories.
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Figure 4.3.: GRN for a simplified epigenetic model. We merged the endogenous core transcrip-
tional factors OCT4, SOX2 and NANOG in one species, OSN and the exogenous
retroviral corresponding genes in OSNi. Furthermore, we included the two unspe-
cific epigenetic modifying genes M1 and M2 that both have inhibitory character.

As one can easily see, the system has 2 steady states corresponding to the pluripotency related

state where OSN and M2 are activated and OSNi and M1 are silent. In this configuration,

the reprogramming is completely finished, the retroviral genes are silenced and the epigenetic

modifications represented by M1 that were destined to keep OSN repressed have been turned

off. We will first look at the state 0110 in the lower left of Figure 4.4 which corresponds to

the introduction of the retroviral genes into a differentiated cell which is in the steady state

0010 since M1 therein maintains the pluripotency genes OSN silenced. This transition that

corresponds to a reprogramming experiment is shown by one of the dashed lines in Figure 4.4.

We can easily see that this state 0110 will transition in 2 steps into the pluripotency related

state 1010 where M1 is turned off, the endogenous pluripotency core genes are activated and

the retroviral exogenous genes have been silenced by M2 which is active. This transition from

0010 over 0110 which then ends up in 1001 reproduces in an easy Boolean model including

epigenetics the reprogramming process thereby partly justifying our idea. Moreover, the model

also predicts that without the exogenous retroviral genes but only by activating the endogenous

core transcriptional factors in a transient way like in the state 1010 (Figure 4.4, lower left of

the right subnetwork, transition also indicated by a dashed line), the system will not reach a

pluripotent state, but fall back into the differentiated steady state 0010.

To show that this epigenetic state space can be remodeled in MS Excel, we implemented the rules

for the GRN in the software and tried to reproduce some the paths of the state space. Figure 4.5

shows the implementation and the paths for some initial states but we were able to reconstruct
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Figure 4.4.: The whole state space of the small epigenetic model from Figure 4.3. The variables
of the state vectors are arranged in the order OSN, OSNi, M1 and M2. Thus the two
steady states respectively correspond to the pluripotent state (left), where OSN and
M2 are active and a differentiated state (right) where only M1 is activated keeping
OSN silenced. The dashed lines correspond to significant transitions between nodes
with hamming distances of 1 whose implications will be further described in the
text.

all the other paths as well (results not shown). As examples, the graphic shows the initial states

for the experiment that resembles the reprogramming process as we mentioned above, another

one that represents the transient activation of OSN without incorporation of OSNi into the cell

which results in a differentiation related state and the last one for the state where all species are

active at the beginning. The last path, as mentioned in the graphic as well, shows the importance

for the right timing of M2 activation. If it is turned on too early like it is in this special case, it

will turn off OSNi which results together with inactivation of OSN in a differentiation related

steady state.

Thus, we show that with the use of MS Excel and the combination of BooleanNet and Cytoscape

we have two powerful tools designed each for a slightly different purpose. While the implemen-

tation of a network structure and the simulation of the time courses for different inputs is very

easy and straightforward in MS Excel, the combination of BooleanNet and Cytoscape provides

us with a wealth of information and all possible time courses represented in the state space with

just a little more effort. However, when the network becomes larger, the size of the state space
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increases making it hard to recognize specific paths and information on first sight. For this task,

MS Excel seems well suited, because we just have to implement the suited initial conditions to

see to which steady state they will lead.

Figure 4.5.: Reproduction of some of the paths of the state space with the MS Excel time course
simulation

Standardized qualitative dynamical model in SQUAD

To show the possibilities, advantages and implications of continuous models compared to dis-

crete models, we implemented the epigenetic model in SQUAD which is described in 3.3.

It is apparent, that when the possibilities to manipulate a network increase, it becomes more

complex to work with the software. In the Boolean modeling approach we only had to define

the rules that were dictated by the network structure to be able to generate the whole state space.

Now, with the use of a software that extrapolates a network structure into a continuous model,

we have the possibility to adjust interaction strengths, decay and gain rates and initial conditions

for the time course simulation. This is at the same time a big advantage for the analysis of a GRN

and a disadvantage for the simplification of network dynamics. The advantage mainly consists

in the opportunity given to the analyst by the number of parameters, to manipulate the network
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in a way that it fits experimental data and biological reality. However, since now we are dealing

with a complex extrapolation method developed by Mendoza and Xenarios in 2006 [123] which

has been mentioned in 3.3, it becomes harder for us to retrace the exact mechanisms which lead

to the generated outcome, thus making the interpretation of the parameter adjustment difficult.

Nevertheless, we will now present some of the results we got by adjusting the parameters in a

specific way and try to interpret them here and below in 5. The parameters are shown in the

appendix in tab.A.1.

Figure 4.6.: Time courses from SQUAD for different initial conditions of the small epigenetic
model. Upper left: When all species are 0 at the beginning, the system reaches the
steady state, where M1 is active and OSN, OSNi, M2 are not, the differentiation
related state. Upper right: When M1 is active and OSN gets transiently activated
with OSNi and M2 inactive, the system reaches the same steady state where only
M1 is turned on. Bottom: When M1 and OSNi are active, the system reaches the
steady state where OSN and M2 are active, the pluripotency related state.

We generated the time courses, i.e. the graphical representation of the gene’s activities over time,

for 3 different sets of initial values in SQUAD. Every time course is run until the gene activities

reach their steady state. In the upper left of Figure 4.6 we can see the time course when all
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genes are deactivated at the beginning corresponding to the state 0000 in the Boolean state space

mentioned before. In the same way that 0000 reaches the steady state 0010 corresponding to

a differentiated state, the time course simulation as well shows a simple saturation kinetic for

M1 reaching its steady state value at about 1, the other species remaining nil. In the upper right

right of the same Figure , the system reaches the same steady state when starting from the initial

conditions that correspond to the state 1010, i.e. where OSN and M1 are active at the beginning

and OSNi and M2 are not. In that case, the dynamical behavior is slightly different. While OSNi

stays deactivated, M2 will transiently turn on but decreases afterwards synchronously with OSN

while M1 recovers from a transient decrease to its initial steady state value of approximately

1. The last graphic at the bottom of Figure 4.6 finally shows the time course for the initial state

corresponding to 0110, i.e. the state where M1 and OSNi are active and which can be interpreted

as the initial state for the reprogramming of a differentiated cell. These initial conditions finally

lead to the activation of OSN and M2 and the deactivation of M1 and OSNi. As well as the

state 0110 in Figure 4.4 reaches the pluripotency related steady state 1001 by activating M2 first

and then OSN in the second step when M1 has been downregulated, the dynamic of this initial

state in SQUAD shows a similar behavior. In fact, when taking a closer look at the SQUAD

simulation, we can see that M1 quickly decreases at the beginning, going over into a slower

decrease while the opposite holds for OSNi which decreases in a sigmoidal manner. For our

parameter set, this difference is only slightly visible but we can probably increase it with a

different parameter set leading to the assumption that maybe OSNi stays active in the beginning

for a longer time constantly activating OSN and M2 and inhibiting M1 and and then decreases

quickly upon M2 upregulation.

In the following, we will extend our analysis from the standardized qualitative dynamical model

to an ODE model where we implement the ODE system on our own.

ODE model in Copasi

As depicted in 2.3.2 and 3.4 we implemented the epigenetic model from Figure 4.3 in Copasi

with the corresponding rate equations leading to a set of 4 ODEs (see A). The conditional

definition of the equation for OSNi is due to the fact, that OSNi only underlies an inhibition of

the general form

d[OSNi]
dt

=
Vmax

Km +[M2]n
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thus, it is independent of its own concentration and even if M2 is high, it will be decently

expressed. However, if OSNi is not even present in the cell, i.e. its initial concentration is 0,

then it won’t ever possibly be activated, which is why we had to introduce the condition that if

OSNi equals zero, the change of concentration of OSNi vanishes as well.

To reduce the number of variables we neglected the basal transcription rates in a first approach

accepting that without activator, the gene will not be expressed at all. Since lack of activation

or direct inhibition in our network yields epigenetic modification, this assumption is justified

because epigenetically silenced genes are not transcribed anymore. We used the parameters

represented in table A.3 in the appendix A.2. Most parameters are just set to 1 except for the

Hill coefficients of inhibition which we set to 2 and the degradation rates that were adjusted to

0,1. The higher Hill coefficients for inhibition than for activation reflect somehow the stronger

effect of inhibitors that we assumed in the Boolean modeling as well by combining activation

and inhibition by an AND gate.

Figure 4.7 shows the resulting time courses for different initial values, either for all factors

starting at 0 (upper left), for transient activation of OSN in a differentiated state, i.e. OSN and

M1 are high, M2 and OSNi low, or at the beginning of reprogramming with high expression of

M1 and OSNi and no expression of M2 and OSN. For the time course in the upper left, where all

species are 0 at the beginning, the only species that changes is M1 increasing to its steady state

value in a hyperbolic saturation kinetic while the other species remain nil. Thus, we end up in the

differentiation related steady state where M1 is expressed and the other species are inactive. The

graphic in the upper right shows the time course for high M1 and OSN, and low M2 and OSNi

initial concentrations, i.e. for a transient activation of OSN in differentiated cells. While OSNi

that lacks these cells stays low during the time course, one can observe, that the concentration

of M2 transiently increases through the activation by OSN but decays again upon progressive

decrease of OSN. In the opposite biphasic shape, M1 first declines by the action of high OSN,

than regenerates after the OSN decay, the system thus ending up in the same differentiation

related steady state as before where M1 is highly expressed, while the other factors are kept

inactive. Lastly, the bottom time course shows the reprogramming experiment, i.e. high initial

values of M1 and OSNi with M2 and OSN being nil. While M2 turns on quickly through the

high initial expression of OSNi which is ultimately lowered by M2, M1 decreases allowing OSN

to slowly augment. The system ends up in the pluripotency related steady state where OSN and

M2 are upregulated and M1 and OSNi are turned off.

The discussed time courses are surprisingly similar to the ones that we got with the implementa-

tion of the network structure in SQUAD (see Figure 4.6 just with different time scales due to the

arbitrary units of time as we don’t have any information on the exact expression timing. In fact,
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it is quite astonishing that the results are this similar because as we explained before, SQUAD

only uses the network structure to build a qualitative ODE system while in the ODE approach we

developed our own ODE system based on a combination of Hill and Michaelis-Menten satura-

tion kinetics. To get similar results by the two approaches is an indicator for the trustworthiness

of both the model’s implementation and the mathematical methods used.

Figure 4.7.: Time courses generated with Copasi for the same initial values as in 4.6. The gene
expression and time are in arbitrary units. Upper left: Time course for the initial
conditions where all factors are zero at the beginning. Upper right: Initial con-
ditions OSN and M1 are expressed, M2 and OSNi are zero. Bottom: Time course
corresponding to the reprogramming experiment where OSNi and M1 are expressed
at the beginning and OSN and M2 are not.

4.3. The miRNA model, a repressive switch for the

pluripotency core network

The idea to construct a network model for the dynamics of pluripotency including miRNAs

evolved with recent findings that certain of these small RNAs sequences influence the repro-
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gramming efficiency of Oct4, Sox2 and Klf4 [135] or directly interact with core transcription

factors of the pluripotency network thereby repressing the ESC state [46, 136].

We build a network structure out of the data we got from Alexander Hahn from the Genomatix

group. They had evaluated literature and sequence data to establish network structures for each

of the four reprogramming genes that Yu et al. used in 2007 to reprogram human somatic cells

to iPSCs [6] namely OCT4, SOX2, NANOG and LIN28. They then looked for the overlap of

these networks, i.e. genes that are present in more than 2 of the singular structures. This overlap

is represented in Figure 4.8.

Figure 4.8.: The overlap of genes included in the regulatory networks of OCT4, SOX2, NANOG
and LIN28 based upon literature and sequence data as provided by Alexander Hahn
from Genomatix.

As we wanted to understand the dynamics of a network responsible for pluripotency, we first

eliminated all the external genes that were only inputs to other genes, i.e. weren’t affect by any

other gene of the network. These genes can be important when considering how to manipulate

specific factors of the core network externally but considering the pure dynamics and the analysis

of steady states, they do not provide us with further information. Our aim was to build a small

network structure including OCT4, SOX2, NANOG, KLF4 and 2 relevant miRNAs that were
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recently found to play an important role in the determination of pluripotency miR-145 [46] and

miR-21 [45]. Thus from Figure 4.8 that was manipulated to only contain internal connections

between genes we picked only these relevant factors. To get as few species as possible we

furthermore eliminated REST from the remaining network. As one can see in Figure 4.9, SOX2,

NANOG and OCT4 activate REST that inhibits miR-21 which in turn inhibits the three core

factors. For simplification, Figure 4.9 only shows the interactions between the core factors,

REST and miR-21 and not the ones between the core factors themselves. Interpreting the graphic

to make the network easier, we can assume that OCT4, SOX2 and NANOG directly inhibit

miR-21 leaving REST out of the network. As we won’t be looking at exact dynamics and exact

time-dependent behavior of the network, this assumption is justified because it doesn’t matter

to us whether REST is upregulated in first place to inhibit miR-21 or if the core factors directly

repress the miRNA.

Figure 4.9.: Interactions between OCT4, SOX2, NANOG and miR-21 are mediated by REST
which therefore can be left out of the network structure as it is explained in the text

As a next step, to simplify the interactions between the species as far as possible, we eliminated

the inhibition of miR-21 by OCT4 and NANOG and let only SOX2 repress miR-21. This may

be not trivial to assume but as the network of core factors is supposed to act like a switch,

OCT4, SOX2 and NANOG are either all expressed or all inhibited. Furthermore, our Boolean

implementation of inhibitions consists in the fact that one inhibition is enough to surpass all the

activations and turn a gene off. Understanding these 2 facts, we can thereby admit that in our

case, it is not important whether OCT4, SOX2 and NANOG act all three on miR-21 or if it is

one of them exclusively. We will demonstrate this effect later in this section when we analyze

the robustness of the network by comparing the state spaces of different versions of it.
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We then looked for direct inputs to manipulate the network and we found BMP4 and FGF2 to

directly act on SOX2 and NANOG respectively. While BMP4 has been found to repress the

expression of SOX2, FGF2 was shown to stimulate NANOG expression levels [137, 111]. In-

cluding these interactions into the manipulated network graph yields our final network structure

that is shown in Figure 4.10.

Figure 4.10.: The final GRN structure for the miRNA network including BMP4 and FGF2 as
inputs to manipulate the network. Positive interactions are represented by pointed
arrows while negative interactions (inhibitions) are indicated by T-shaped arrows.

We first applied the Boolean modeling approach which is introduced in sections 2.3.1 and 3.2.

Thus we modeled the state space of the network with BooleanNet and represented it in Cy-

toscape. This method is explained in detail in the materials and methods section in 3.2. The

dimerization of OCT4 and SOX2 for the activation of target genes is not modeled as a proper

species but as an AND gate. Instead of creating a new dimer species that would double the num-

ber of states in the state space, we just translated the dimerization into the Boolean language by

setting the rule for the target gene to: T G = G1 AND G2 where TG is the target gene and G1

and G2 are the dimerizing TFs (e.g. OCT4 and SOX2). For more details, see also the materials

and methods in chapter 3. The resulting whole state space is shown in Figure 4.11.
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Figure 4.11.: Whole state space of the miRNA network model. States are represented by nodes,
transitions are represented by edges between the nodes. A circular node indicates
a transitional state, a triangular node indicates a steady state. The different colors
of the nodes depend on their pluripotent character. The more pluripotency markers
(OCT4, SOX2, NANOG, KLF4) are turned on in a state, the more the color of the
nodes turns from green to red and the other way around. We can easily discern 8
clearly separated networks leading to 8 different steady states, 4 of which are re-
lated to a differentiated state (the green ones that are attained in the 4 big networks)
and 4 that are related to a pluripotent state (the red ones in the left bottom, that are
only attained from a few states). For further explanation, see text.
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As the network consists of 8 species, there are 28 = 256 states in state space that are indicated

by nodes in the state space graph. The edges between the nodes represent transitions between

the states. The nodes in the graph have a color and a shape code to make it easier to discern

whether the state is related to a differentiated or a pluripotent state in biological reality without

having to know the exact value configuration of the state. Hence, circle shaped nodes indicate

transitional states while triangular nodes indicate steady states. At the same time, the nodes are

color coded depending on the number of pluripotency related genes that are expressed. When all

four pluripotency related genes are expressed, the node will be red, if none is expressed, it will

be green. The intermediate states take intermediate colors between the two which are generated

by the automatic color mapping in Cytoscape.

We can discern at first sight, that the graph consists of 8 subnetworks, 4 of them regrouping

all of the states except for 8 states that divide into 4 subnetworks each consisting of 2 states

only. The 4 big subnetworks all lead to one of the differentiation related steady states 00001101,

00001100, 00001110 and 00001111. In fact these states have two things in common: in all of

them, the pluripotency related genes are repressed while the two miRNAs are expressed. They

only differ in the expression of the two input genes BMP4 and FGF2. All combinations of these

two input genes lead to 4 different steady states, the same being valid for the whole subnetworks,

i.e. all nodes in one subnetwork have the common feature that they have the same expression

pattern of the two input genes. In a similar way, the pluripotency related steady states split into

the states 11100000, 11100001, 11110000 and 11110001 which have the common features that

OCT4, SOX2 and NANOG are always active, the miRNA and BMP4 are repressed and KLF4

and FGF2 can switch their expression profile. The miRNAs and BMP4 acting as pluripotency

repressors, it is trivial to say that in a pluripotency related steady state, they have to be inhibited.

Moreover, since KLF4 has an input only from miR-145 which is deactivated in the pluripotent

state and from its self-activation, in this situation it can be thought of as an input node to the

network just like FGF2. Depending on their initial state, they both either remain activated or

stay deactivated.

In fact, when leaving BMP4 and FGF2 out, the 4 differentiation related subnetworks would

merge into one, the same being valid for the pluripotency related networks when we further

eliminate KLF4 we would only get two subnetworks in the whole state space, one leading to

a differentiation related steady state, the other one to a pluripotency related one. This can be

seen in Figure 4.12 where we represented the state space of the miRNA model reduced by the

two inputs BMP4 and FGF2 and by KLF4. We can clearly discern the two steady states 11100

where the core pluripotency genes are active and the miRNAs are not and 00011 where only

the miRNAs are active repressing the pluripotency genes. These two steady states span two
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subnetworks, one of which, the pluripotency related one, only consists of 2 states, the other one

containing the remaining states. Only the pluripotency related steady state itself and the state

11000 corresponding to activation of SOX2 and NANOG directly lead to pluripotency. When

we take a closer look at the state 00100 (green node at the top slightly left of the middle axis of

Figure 4.12) which corresponds to the activation of NANOG while all other species are inactive,

it will transition towards the state 11111, the miRNAs being expressed since NANOG has no

repressive control over them. Finally the system will reach the differentiated steady state 00011,

because the miRNAs switch off the pluripotency genes. Thus, while in the pure core network,

either OCT4 and SOX2 or NANOG had to be expressed, in this case NANOG alone is not

sufficient anymore.

Moreover, we represented different transitions between the subnetworks, between nodes that lie

at a hamming distance of 1, these transitions accounting for differentiation or reprogramming.

There are several transitions that directly lead from the pluripotency related steady state towards

states of the differentiation subnetwork, thus representing a disturbance applied on the pluripo-

tent state to trigger differentiation. Activation of anyone of the 2 miRNAs is a possibility for

such a transition corresponding to the transitions 11100 –> 11110 and 11100 –> 11101, as well

as knockout of either OCT4 or SOX2 as can be seen in the transitions 11100 –> 01100 and

11100 –> 10100. However, there are no hamming transitions that lead from the differentiation

related steady state into the pluripotency subnetwork. In fact, we would at least have to input

4 changes into the state 00011 to reach at least 11000 that will then transition into 11100, i.e.

both miRNAs would have to be repressed and at least OCT4 and SOX2 activated. Nevertheless,

there is the possibility for stochastic reprogramming from one of the transitional states of the

subnetwork which will be further discussed in 5.
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Figure 4.12.: state space with hamming distances for the reduced miRNA model that lacks
BMP4, FGF2 and KLF4. The state vectors are arranged in the order OCT4, SOX2,
NANOG, miR-145, miR-21. The upper subnetwork leads to the differentiation re-
lated steady state 00011, the lower subnetwork consisting of 2 states only leads to
the pluripotency related steady state 11100. The dashed lines indicate transitions
between states with hamming distance 1.

In fact, when taking a closer look at the network, it is possible to reduce the model even more still

preserving the same qualitative behavior. If we proceed in the same way as for the epigenetic

model and merge the pluripotency genes in one species as well as the two miRNAs on top

of leaving out the input species including KLF4, we will end up in a model with only 2 species

mutually inhibiting each other with one of them possessing a self-activation. This model yields a

state space with the steady states 10 and 01, the former corresponding to the pluripotency related

state which can only be reached by itself, the ladder representing the differentiation related

steady states which attracts both other states of the network, i.e. where both species are active or
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inactive at the same time. The network and the state space can be seen in Figure 4.13. This state

space clearly illustrates the switch like behavior of the miRNAs. In fact, switching the miRNAs

on in the pluripotency related steady state, leads to the state 11 which ultimately converts into

the differentiation related steady state, while switching off the miRNAs in the differentiation

related steady state does not directly lead to the pluripotent state but results in reactivation of the

miRNA. To reach the pluripotency state 10 from the differentiation related steady state 01, one

either has to repress the miRNA and at the same time deliver the reprogramming genes OSN or

to act on one of the states of the bigger subnetwork that is not a steady state either deactivating

the miRNAs in the state 11 or delivering the reprogramming genes in 00. However, since most

of the cells in a cell population statistically are located in the steady state, this would partly

explain the low reprogramming efficiencies because the transition probability is higher for one

of the statistically less likely states, i.e. states that are no steady states.

Figure 4.13.: state space (right) for the simple mutual inhibition miRNA network (left)

4.4. Including pathways into the pluripotency core network

We have outlined the role of signaling pathways in ESC pluripotency in 2.2.3. Since manipu-

lation of ESCs and generation of iPSCs has become very attractive for possible pharmaceutical

use lately and small molecules that act on signaling pathways are abundant, it will be very inter-

esting to know the exact implications, interactions and dynamics of these pathways in relation to

the pluripotency core network. More or less recently published results [106, 111, 65, 138] will

be used here to create a hypothetical GRN that relates the two branches of TGFß pathway and

the FGF pathways and their interaction with the core regulatory master genes of pluripotency.

It appears that these pathways play essential roles in the determination of pluripotency and self

renewal as depicted in 2.2.3.

We combined again the pluripotency core network as shown in 4.1 to one species that is au-

toactivating and which we call OSN. The GRN and its Boolean state space are shown in Figure
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4.14. In addition to the state space, we also represented a selection of transitions that have a

hamming distance of 1 keeping only 8 representatives from the originally 192 transitions for

better visibility and understanding.

When looking at the network, we can discern 5 different subnetworks, separated from each other,

but only 2 steady states, 000011 and 111100, the former representing the differentiation related

steady state where BMP4 and SMAD1/5/8 are active while the other factors are repressed, the

ladder representing the pluripotency related steady state where the core regulatory genes of

pluripotency as well as TGFß, SMAD2/3 and FGF2 are expressed while BMP4 and SMAD1/5/8

are not. The remaining 4 subnetworks don’t end up in a single steady state but in an oscillating

attractor, i.e. cycles in the state space graph, which are made up for 3 subnetworks of 4 states

and for 1 subnetwork of 2 states. This last subnetwork does not have any transitions with a

hamming distance of only 1 to one of the subnetworks containing a steady state and is thus not

of great interest for the reprogramming process.

However, by the color code, red for states where more pluripotency genes are turned on, green

for states where they are turned off, we can recognize that the subnetworks containing cycles

and especially the states of the attractors are more or less related to one or the other tendency.

As an example, the subnetwork on the right of Figure 4.14 falls into an attractor that is made up

by the state transitions 000111 –> 010001 –> 001010 –> 100011 and back to the state 000111.

These states have in common that at most only one factor that can be related to pluripotency

is expressed at a time while there is at least 1 inhibitor of pluripotency expressed. Thus, all

the 4 states of this attractor are nearer to the differentiated steady state than to the pluripotent

one, which can be confirmed by the fact that two of the attractor’s states 100011 and 000111

can easily transition directly into the differentiation related steady state which only lies at a

hamming distance of 1 from both of the states. In fact, when knocking out OSN in the first

state or FGF2 in the second state, we can easily transition into the differentiation related steady

state. Another interesting transition from the subnetwork where the attractor is made up by

differentiation related states, is the one from 000100 to 100100 which is represented in Figure

4.14 as well in the subnetwork on the left. In fact, the state 100100 is part of the subnetwork

containing the pluripotency related steady state 111100 and thus will lead towards it.

When we now focus on the subnetwork at the bottom in the middle of Figure 4.14, we can easily

see, that the attractor is made up by the states 110101 –> 011100 –> 111000 –> 101110 that are

mainly related to pluripotency. Hence, it is not astonishing that there are states that can directly

transition to the pluripotency related steady state (although only one transition is indicated in the

Figure, there are many more that are just neglected for better comprehensibility). Nevertheless,

what may be a little more surprising is that the subnetwork also contains a state 100000 that
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is only at a hamming distance of 1 from the state 000000 contained in the subnetwork leading

to the differentiation steady state. However, we have to consider that the species that has to be

knocked out here is OSN which in reality represents the three reprogramming factors OCT4,

SOX2 and NANOG which would have to be downregulated each of them. This result would

have been expected from our analysis of the core network in 4.1 already.

The last subnetwork on the left hand side of Figure 4.14 can be seen as an intermediate between

the two subnetworks discussed previously which can also be seen by its mainly brown color that

is intermediate between red and green. In fact, the states of the cycle have no clear affinity for

one or the other tendencies, i.e. differentiation or pluripotency. Transitions are visible to both

subnetworks containing the steady states of the network.
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Figure 4.14.: Network structure (upper right) and state space (bottom) with some well chosen
transitions between nodes with hamming distance 1. The order with which the
species appear in the state vectors is OSN, TGFß1, SMAD2/3, FGF2, BMP4,
SMAD1/5/8. The first 4 factors are thought of and color coded to be activators
of pluripotency (red), the last two are inhibitors of pluripotency and induce dif-
ferentiation. The two subnetworks on top of the graphic include the two steady
states of the system, while the 4 subnetworks that are below all include cycles, i.e.
oscillating attractors.
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5. Discussion

This thesis constitutes a bilateral work in which on the one hand we presented mathematical

approaches and applicable software to model gene regulatory networks and on the other hand

analyzed different network structures related to pluripotency and the process of iPSC reprogram-

ming using these methods. Since with ESCs and iPSC reprogramming we were dealing with a

very recent research field we decided to keep the mathematical modeling and the software very

simple and comprehensible. In fact, experimental data that are required for detailed model

construction, ODE modeling and parameter fitting are scarce which is why we approached the

problem with a qualitative rather than a quantitative claim. We presented and mathematically

analyzed 4 networks in addition to the Chickarmane network that has already been treated in the

materials and methods section. In the following we are going to recapitulate the main ideas of

the methods for the mathematical modeling and the models that we analyzed.

In this work, we mainly focused on the Boolean modeling of GRNs and especially on the whole

state space modeling since we were aiming at finding out about the qualitative behavior of the

Boolean networks, i.e. their steady states, cyclic attractors, paths through the network which de-

termine its dynamics and possible transitions between subnetworks that could be related to ESC

differentiation or iPSC reprogramming. Thus, we developed a python script for BooleanNet that

was able to generate the state space of the network as a directed graph that could be represented

and manipulated in Cytoscape. We furthermore introduced the concept of hamming distances

for transitions between nodes in the state space that only differ in one digit, i.e. in the expression

value of 1 species. In combination with dynamical Boolean modeling using MS Excel as the

simplest and most straightforward tool to model Boolean networks, we were able to understand

the qualitative behavior of several different networks and generate dynamics that could be repro-

duced in different continuous models for one of the networks. These continuous models were

implemented in a standardized qualitative dynamical model using SQUAD or in an ODE model

using Copasi. Although these models are still of qualitative nature because experimental data

for the fitting of parameters to get significant results that are consistent with biological reality,

are scarce, we were able to generate some of the known qualitative dynamical behaviors as will

be discussed in the following.
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The first model that we analyzed was the core network of pluripotency as presented by Boyer

et al. in 2005 [60] that includes the 3 core genes OCT4, SOX2 and NANOG that together span

an interconnected self-activation network. We showed this network to have 2 steady states,

one being related to a differentiated cell where the core factors are inactive, the other one to a

pluripotent cell where the core factors are all permanently expressed. Transitions between these

two states were possible either through simultaneous activation of POU5F1 (expressing OCT4)

and SOX2 or single activation of NANOG expression leading to a state that will transition into

the pluripotency related steady state. Somehow, NANOG has a stronger effect in this network, it

acts as a gatekeeper of pluripotency while OCT4 and SOX2 on their own are not able to turn the

network on and thus allow the cell to become an iPSC. Overall the pluripotency core network

has the important property to keep its own activity once that it is activated thus allowing the cell

to stay pluripotent and self-renew indefinitely in culture.

As mentioned in 2.2.1, the core transcription factors were recently shown to be sensitive to small

disturbances and to act in a biphasic manner. In fact, while decent expression of the core factors

leads to a pluripotent state, overexpression of them was shown to induce differentiation. Re-

constructing this property in Boolean models nevertheless seems impossible because it would

require the species to take 3 possible values corresponding to the 3 expression levels, i.e. de-

activated, decently expressed and overexpressed, while the Boolean approach only accounts for

2 values per species. Moreover, to generate more complex dynamics that could reflect these

properties, we would have to integrate negative feedback that depend on the expression level of

the core factors. This has e.g. been done in Chickarmane and Peterson 2008 [68] in an ODE

modeling approach, where the OCT4 TF forms a dimer with CDX2 that acts as a repressor on

the POU5F1 and CDX2 expression. At the same time OCT4 also forms a dimer with GATA6

together repressing NANOG expression. Since dimerization is always a concentration depen-

dent process, they could generate a biphasic response of NANOG expression as a function of the

OCT4-SOX2 dimer concentration, thus partly explaining the repressive effect of their overex-

pression.

The second model that we have created puts into operation the idea of epigenetic silencing,

on the one hand of the reprogramming genes introduced into the cell, on the other hand of

the endogenous pluripotency related genes when the cell is in a differentiated state. We have

combined the endogenous core regulatory network and the reprogramming genes each into one

species and included 2 epigenetic modifiers, acting on each one of them. There is experimental

evidence that factors exist which fulfill similar tasks as our hypothetical modifiers, e.g. the

DNA methylases Dnmt3a/b or CGBP as described in 2.2.2. We ended up with a simplified

model containing only 4 species and 8 interactions shown in. We could show that the network
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possesses two steady states, one of which could be identified with fully reprogrammed iPSCs

where the endogenous pluripotency related genes maintain their activity, while the exogenous

genes are deactivated through epigenetic modifications. The other steady state corresponds to

a differentiated cell where the endogenous pluripotency genes are kept repressed by epigenetic

modifications. We could show that introduction of the reprogramming genes into the cell could

account for reprogramming of the differentiated into the pluripotency related steady state while

transient activation of the endogenous core network leads back to the differentiated steady state

which is one thing that is known to be true in the biological reality. To be able to reproduce these

dynamics with a rather simple model that involves epigenetic modifications which have lately

been hypothesized to be responsible for several questions and problems in iPSC reprogramming,

is a good indicator for the quality of the model.

Moreover we were able to reconstruct the static and dynamical behavior of the Boolean network

in a standardized qualitative dynamical and an ODE model, both of them generating very sim-

ilar time courses for the initial conditions that we are discussing here, i.e. the reprogramming

experiment and the transitional activation of OSN leading back to a differentiated state. It was

rather surprising for us that we were able to unify all of these different methods and get similar

results for all of them, allowing us to be rather assured of the quality of both the methods used

and the implementation of the model.

In addition, the model can also be interpreted in relation with the recently published results of

Hanna et al. in December 2009 [14] in the group of Prof. Jaenisch which state that all cells of a

cell population can be reprogrammed by the delivery of the reprogramming genes and that this

is a stochastic process. In fact, in our Boolean model, every cell will end up in one of the two

steady states, the pluripotency related or the differentiation related one. However, upon constant

delivery of the reprogramming genes, the differentiation related steady state and thereby all the

states that finally lead towards it will end up in the pluripotency related steady state with different

latency times, i.e. in a different number of steps, depending on their initial state.

All of these results show that the epigenetic model despite its simplicity may have a great poten-

tial to explain different problems and questions of iPSC reprogramming.

The third model included miRNAs that have been mentioned several times lately in the context

of ESC research as well. We started from a big network of factors that were found in literature

and sequence data to be closely related to the core network of pluripotency. We then step by step

simplified the model, reducing the number of species and interactions to finally end up with a

network that we started to apply our methods to. The first model revealed us the inconvenience

of input nodes in Boolean networks. In fact, the number of states in the state space, as well

as the number of subnetworks and steady states increases without providing us with any more
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information. As long as the input nodes don’t interact, it is thus better to simplify the model until

one got rid of every input node to only analyze the behavior of the interconnected GRN. After

having done that, we can still choose to include inputs to see which parts of the internal network

can be reached from the outside and with which consequences. Reducing the number of species

led us to a network with only 2 steady states that could be identified with differentiated or iPS

cells respectively. The two resulting subnetworks are very different in size, the differentiation re-

lated network regrouping all the transitional states except for two. Transitions through activation

or inhibition of one species only lead from the pluripotency related steady state to transitional

states of the other subnetwork, but there are no transitions from the differentiation related steady

state into the pluripotency related subnetwork. Nevertheless, since transitions from states of the

differentiation related subnetwork to the pluripotency subnetwork are possible, there is still the

chance for stochastic reprogramming which will be extended further in the discussion below. In

fact, while the majority of the cells of course are in one of the two steady states, due to mech-

anisms such as transcriptional noise, there are still low frequencies of cells in the other states

following a Gaussian distribution. Hence, the reprogramming out of these states is possible but

the efficiency is very low as will be explained below.

Moreover, one of the biggest qualitative changes compared to the mathematical analysis of the

core network from Boyer consists in the fact that the transcription factor NANOG alone is not

able anymore to trigger pluripotency when all the other species are deactivated. In fact, this

is due to the property that NANOG does not exert any negative control over the miRNAs in

contrast to OCT4 and SOX2. When combining the 3 core genes into 1 proper species and the

miRNAs as well, we end up in a system with only two species mutually inhibiting each other

and one of them having a self-activation loop. Thus, the repressive switch like behavior of the

miRNAs becomes even clearer.

The last model dealt with signaling pathways included into the core regulatory network since

pathways, especially the two branches of TGFß and FGF have often been attributed a role in

reprogramming and differentiation as depicted in 2.2.3. The state space of the model contains 2

steady states one of which can clearly be associated with pluripotency, where the core regulatory

genes are activated as well as TGFß, SMAD2/3 and FGF2 and the other one with differentia-

tion where only BMP4 and SMAD1/5/8 are active. Moreover the state space includes 4 cyclic

attractors, 2 of which have an intermediate state and 2 others where the cyclic states can again

be related to pluripotency and differentiation respectively. We are dealing with a more complex

behavior of the system than in the other networks but this is not astonishing, since the pathways

are involved in other cellular processes and don’t behave in a simple switch like behavior, i.e.

they are not exclusively designed for the purpose of pluripotency and self-renewal. Transitions
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are mainly possible between similar subnetworks and only few transitional states can cross this

barrier. Reprogramming in this context seems difficult and only feasible with simultaneous ac-

tivation of FGF2 and complete repression or knockout of SMAD1/5/8 which won’t be as easy

to do because the ladder is involved in many other cellular processes. We haven’t found a direct

inhibitor of SMAD1/5/8 which in combination with FGF2 would probably be effective for the

transition from the differentiated state into the pluripotency related subnetwork. However, the

timing seems to be important in this approach as well.

Based on the discussion of our results, we will now try to outline our view of the reasons for the

low reprogramming efficiencies or the long reprogramming times. In fact, which has become

clear during this discussion is that in our models, the way in the sense of the number of steps for

reprogramming of the differentiation related steady state into a pluripotency related steady state

is often too long, i.e. there are too many single steps that would have to be taken. Moreover,

we have to remember, that even if it was possible, it would be limited to the one model, i.e.

epigenetics or miRNAs or pathways, but biological reality is always an interplay of a lot of

different mechanisms. Thus, it becomes clear that reprogramming is a long and complicated

course of events that has to climb up the energetic hill of all of these features of the different

models. In this view of the process, the differentiated state and the pluripotent state are the two

states that have a maximal distance from each other. They somehow are the two extremes in

which the majority of a population of cells is situated.

However, when introducing the concepts of stochasticity and transcriptional noise which cannot

easily be done by Boolean modeling, we can describe a cell population to be in all possible states

of a network, each of them having a certain probability and frequency depending on its distance

to one of the two steady states. Each of these states has a higher transition probability to the

steady state which it is further from than the steady state that it is nearer to itself. Hence, when

we look at the states that are near the differentiation related steady state, these higher transition

probability states are somehow more poised for reprogramming when compared to the steady

state. However, the frequency of cells in one of these intermediate states is very low, because

the majority of cells are of course in one of the two steady states. This yields that overall the

reprogramming efficiency has to be low, because one of the two things always happens: either

a cell is in the differentiation related steady state where reprogramming is nearly impossible

because of the many steps that would have to be taken, or a cell is in one of the intermediate

states with higher probability, but since there are only very few cells in these states, the overall

efficiency is low again.

When trying to increase the reprogramming efficiency it seems necessary that we would either

have to enhance all mechanisms that account for pluripotency while repressing all of the ones
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that inhibit pluripotency or we would have to increase the number of cells in intermediate states

which could be achieved by an increase in the transcriptional noise.

Apart from all the results and features that we could extract from our models, there was one

different thing that seemed to be omnipresent as a guideline in our interpretation of the networks.

Whenever we generated results of a network, we soon were able to reduce the number of species,

thus to simplify the network structure and still preserve the steady states and the rough dynamic

behavior of the system. In our opinion this is due to the high connectivity of the pluripotency

core network where often species can be thought of as being equivalent which is shown by

a similar implementation in the Boolean model. This is another justification for the Boolean

modeling approach before transitioning to an ODE model because we would want the ladder to

be as simplified and relieved of parameters as possible.

Although we were able to reconstruct the static and dynamical behaviors of the other Boolean

networks in ODE systems, we only represented that approach for the epigenetic model because

it appears to us as the model with the most potential while being astonishingly simple. Moreover

we thought that more detailed analysis by ODE models for every network version would lead to

far and go beyond the scope of this work. Thus we mainly focused on Boolean state spaces that

present in an easy and comprehensible way many important information on the network.
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6. Outlook

This thesis gave a qualitative overview of several GRNs including different mechanisms of eu-

karyotic gene control that have been related to iPSC reprogramming and ESC differentiation.

From the beginning, it was thought to provide a broad overview of possibilities to model mecha-

nisms as different as epigenetic modifications and miRNA gene control while still keeping things

as simple as possible because the information in this recent research field are scarce and many

things are still not well understood avoiding a detailed description of molecular processes by

ODEs and parameter fitting to experimental data.

Nevertheless, in addition to the Boolean state spaces, we created standardized qualitative dy-

namical models and ODE systems to describe the qualitative behavior of the networks although

we only showed the results for the small epigenetic network. However, when the data situation

will improve in the next years, these models will probably be relevant and useful. We hope that

one day our models will be able to be fitted to the parameters and thus making plausible and

relevant predictions on the matter of the iPSCs reprogramming timing. In this context, it will

be of interest to have time-dependent protein concentration data for the core regulatory genes as

well as their epigenetic state during the reprogramming, data on miRNAs and species involved

in pathways.

However, until then, we have developed another idea of how to get data for the parameter fitting.

We analyzed ChIP-on-chip data together with microarray time courses with the network compo-

nent analysis (NCA) that is able to calculate the transcription factor strengths of each interaction

found by the ChIP-on-chip data [139]. An idea that will possibly be tackled in my future work

in the Ph. D. dissertation is to use data that are generated in this way and then somehow normal-

ized, to fit parameters of my models that include genes and transcription factors of the NCA as

long as direct protein concentration data are not available.

Another idea that only came a little too late during the writing of this thesis was the extension of

the python script for BooleanNet. In fact, it would be interesting what are the shortest paths from

the differentiation related steady state to the pluripotency related steady state that only uses a

minimal number of hamming transitions, i.e. transitions between nodes with a hamming distance

of 1. To continue with the Boolean modeling, I would also like to pursue the stochastic modeling
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with the asynchronous method to see to which extent it differs from the simultaneous Boolean

modeling and how it could possibly provide us with further information on the networks.

The final aim would be to merge the networks describing the different mechanisms thus creating

a holistic systems biology view on pluripotency and reprogramming. However, we have only

just begun to understand the basic principles involved in pluripotency and self-renewal, so it is

going to be a long but exciting journey.
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A. Model equations

A.1. Core network model

Boolean equations

The following rules are update rules, where species with a “*” designate the species at time t+1

and the species without star the ones at time t.

OCT4* = (OCT4 and SOX2) or NANOG

SOX2* = (OCT4 and SOX2) or NANOG

NANOG* = (OCT4 and SOX2) or NANOG

ODE system

A.2. Small epigenetic model

Boolean equations

OSN* = (OSNi or OSN) and not M1

OSNi* = OSNi and not M2

M1* = not (OSN or OSNi)

M2* = OSN or OSNi

SQUAD parameters

Decay rates are all set to 1,00 while gains are all set to 10,00. The edge weights are represented

in tab. A.1.
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Interaction Weight
M1 –| OSN 1,00
M2 –| OSNi 1,00
OSNi –> M2 1,00
OSN –> M2 1,00

OSNi –> OSNi 1,00
OSNi –| M1 2,00

OSN –> OSN 10,00
OSN –| M1 2,00

OSN –> OSN 10,00

Table A.1.: The weights of the interactions for the epigenetic model in SQUAD

ODE system

d[M1]
dt

= V 01+
V 11

(k11+[OSN]n11)(k21+[OSNi]n12)
− k51[M1]

d[M2]
dt

= V 02+
V 12∗ [OSN]n21

k12+[OSN]n21 +
V 22∗ [OSNi]n22

k22+[OSNi]n22 − k52[M2]

d[OSNi]
dt

=

0, M2 = 0

V 03+ V 13
k13+[M2]n31 − k53[OSNi], else

d[OSN]
dt

=V 04+
V 14∗ [OSN]n41

(k14+[OSN]n41)(k24+[M1]n42)
+

V 24∗ [OSNi]n43

(k34+[OSNi]n43)(k24+[M1]n42)
−k54[M2]

V01 V02 V03 V04 V11 V12 V22 V13 V14 V24 k11
0 0 0 0 1 1 1 1 1 1 1

k21 k12 k22 k13 k14 k24 k34 k51 k52 k53 k54 n21 n22
1 1 1 1 0.1 10 0.1 1 1 1 1 1 1

n41 n43 n11 n12 n31 n42
1 1 2 2 2 2

Table A.3.: The parameters of the small epigenetic ODE model used for the time course simula-
tion from Figure 4.7

The Hill coefficients corresponding to activation are all 1, the ones for inhibition all 2, i.e.

n21 = n22 = n41 = n43 = 1 and n11 = n12 = n31 = n42 = 2. For the rest, all degradation

parameters are set to 0.1, the basal transcription rates V0i to 0 and the other parameters to 1.
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A.3. miRNA model

Boolean equations

OCT4* = ((OCT4 and SOX2) or NANOG) and not (miR-145 or miR-21)

SOX2* = ((OCT4 and SOX2) or NANOG) and not (miR-145 or miR-21)

NANOG* = ((OCT4 and SOX2) or NANOG) and not miR-21

KLF4* = KLF4 and not miR-145

miR-145* = not OCT4

miR-21* = not SOX2

BMP4* = BMP4

FGF2* = FGF2

A.4. The signaling pathway model

OSN* = (OSN or SMAD2) and not SMAD1

TGF* = FGF2

SMAD2* = TGF

FGF2* = OSN

BMP4* = not FGF2

SMAD1* = BMP4
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