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Abstract

Der Einsatz von Methoden der Systembiologie bei der Suche nach potentiellen Targets

ist ein vielversprechender Ansatz, um biologische Vorkenntnisse für die Entwicklung

von e↵ektiven Medikamenten zu verbessern. Obwohl noch in den Anfängen steckend,

haben diese Methoden bereits bewiesen, dass sie in diesem Prozess der Medika-

mentenentwicklung nutzlich sein und die Entscheidungsfindung der Target-Auswahl

verbessern konnen. In meiner Arbeit werden Ansatze der Systembiologie verwendet,

um eine Methode zur Target-Auswahl über biologische Modelle von Gewöhnlichen

Di↵erentialgleichungen (ODE) zu entwickeln.

Es existieren bereits verschiedene auf ODE-Modellen basierende Ansatze zur Target-

Entdeckung. Zum Beispiel bietet TIde (50) einen weitreichenden Rahmen für die

Target-Vorhersage auf Modellen, die Pathologien beschreiben. Es bietet eine Reihe

von möglichen Modifikatoren, um den gesunden Zustand eines biochemischen Netz-

werkes wiederherzustellen, sowie die Targets auf die diese Modifikationen wirken.

Allerdings hat diese Herangehensweise einige inhärente Beschränkungen, da die meis-

ten relevanten ODE Modelle keine Krankheiten beschreiben, sondern normale physio-

logische Zustande. Weiterhin konnen komplexe Erkrankungen, wie beispielsweise

Krebs, verschiedene Ursachen haben, die nicht individuell modelliert werden konnen.

Daher ist das Ziel meiner Arbeit ein Tool zu erstellen, welches an einem gesunden

Modell Veranderungen simuliert (Mutationen, usw.) sowie potentielle Medikamente

findet, die den gesunden Phanotyp wiederherstellen. Diese Herangehensweise liefert

einen Rahmen zur Target-Vorhersage basierend auf “gesunde” Modellen. Die grund-

legende Idee meiner Arbeit ist es, ausgehend von einem Model zur Beschreibung

eines gesunden Organismus eine Reihe von modifizierten Modellen zu erstellen, um

mögliche Mutationen im System zu simulieren. Dies wird durch die systematische

Beeintrachtigung jeder Reaktion und jeder Spezies im Modell realisiert. Der mutierte

Modellsatz wird dann auf die Abweichung von den Charakteristika bewertet, die



besonders relevant für die Funktion des Systems sind. Danach werden die pathologis-

chen Systeme im Rahmen von TIde auf Behandlungen gescannt, die den gesunden

Zustand wiederherstellen. Zuletzt wird ein Satz von Modellen mit den verschiedenen

modellierten Mutationen ausgegeben sowie alle Behandlungen, die den ursprunglichen

gesunden Zustand wiederherstellen.

Um die Ergebnisse des Tools zu analysieren, wurde die Methode auf zwei verschiedene

Modelle des TGF-� Signalweges angewandt worden, die an vielen menschlichen Krank-

heiten, darunter Krebs, beteiligt ist. Die Ergebnisse stimmen mit den biologischen

Erkenntnissen uberein und bieten genugend Informationen, um potenzielle Targets

in einem gesunden System vorzuschlagen.



The incorporation of Systems Biology methods into target selection is a promising

approach to improve prior biological knowledge towards a better drug development.

Although still at their infancy, these methods have already proved to be useful in the

process of drug development and could therefore further improve decision making in

target selection. In my work, Systems Biology approaches have been used to develop

a method for target selection based on biological models described by Ordinary

Di↵erential Equations (ODEs).

Various approaches do already exist for drug target discovery based on ODE models.

For example, TIde (50) o↵ers a useful framework for drug-target prediction on models

describing pathologies, providing a list of possible modifiers that can restore the

biochemical network to a healthy state and the targets of these modifiers. However,

this kind of approach has some inherent limitations, as most relevant ODE models

do not describe diseases, but the normal physiological state. Furthermore, many

complex diseases, such as cancer, can have many di↵erent causes, which cannot

be modelled individually. Therefore, the main objective of my work is creating a

tool that simulates the possible alterations (mutations, etc.) that could modify a

healthy model, and to find possible drugs that can restore the healthy phenotype,

thus creating a framework for drug-target prediction based on “healthy” models.

The general idea behind my work is, starting from a model describing a healthy

organism, to create a set of modified models in order to simulate possible mutations

in the system. This is done by systematically impairing every reaction and species

in the model. The mutated model set is then evaluated for the deviation from the

characteristics considered most relevant for the functioning of the system. After this,

the pathological systems are scanned for treatments that can restore the healthy state

using the framework provided by TIde. The final output is a set of models, with

di↵erent modelled mutations and all the treatments that were able to restore the

original healthy conditions.

In order to analyse the results provided by the tool, the method has been applied

on two di↵erent models of the TGF-� signalling route, which is involved in many

human diseases including cancer. The obtained results are consistent with biological

evidence and provide enough information to hypothesise potential drug targets in a

healthy system.
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1

Introduction

1.1 Drug Discovery

Drug development is a complex process involving biotechnology, molecular biology, pharma-

cology and medicine. It is roughly composed of six steps. The first step is the election of an

adequate system for the evaluation of drug candidates, which can be one or more proteins, genes,

other biomolecules, tissue cultures or a living organism. This election is crucial to the success

of the whole process, since it will be used as a reference for assessing the e↵ectivity of drug

candidates. It therefore has to simulate the in vivo e↵ects of the drug in an acceptable way and

avoid, as well as possible, the rejection of potentially useful drug candidates and the selection

of toxic or ine↵ective drug candidates. The second step is screening and selecting drug candi-

dates for their behaviour in the selected system. Large libraries of chemicals are screened and

selectivity and/or e�cacy of the compounds are evaluated. Selected drug candidates can also

be examined using cross-screening, for evaluating the activity of the drug on other systems and

predicting toxicity. Afterwards, drug candidates are optimised by using rational structural cri-

teria, to increase activity and selectivity, reduce toxicity and improve the drug kinetics (ADME)

of the drug in the living organism.

The fourth step are pre-clinical trials. Drug candidates are evaluated in vitro and in vivo

for their safety, undergoing pharmacodynamics and pharmacokinetics assays and to determine

adequate doses for trials on humans. If the drug candidate has an adequate performance in pre-

clinical trials, it goes through clinical trials. Clinical trials are composed of three phases: Phase

I, usually performed on healthy individuals (except for antitumoural drugs) to determine drug

safety; Phase II, performed on small groups of patients, to preliminarily determine e↵ectivity
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1. INTRODUCTION

and safety on patients; and Phase III, performed on big groups of patients to finally determine

e↵ectivity and safety of the drug. A drug candidate that performs acceptably in clinical trials,

can then be submitted for approval. If the drug is approved by the relevant authority, it is then

commercialised. Drug e↵ects are monitored post-commercialisation for e↵ectivity and safety, in

what is also called Phase IV.

Developing a drug is a long and expensive process. It lasts for around ten years and with

costs in the order of 1 billion dollars (109$) (1). Each further step in drug development supposes

an exponential growth of costs. A failure on the late clinical assays therefore means a high

economical damage for the company developing the drug. Because of this, a greater emphasis

has been put on refining the performance of the first steps, which are comparably much cheaper

and less time-consuming with respect to the whole process. (2)

1.1.1 Approaches to Drug Evaluation

The first step of drug development and probably the most crucial one for the success of the

process, is the election of an adequate system for the evaluation of the drug candidates. There

are basically two approaches to this election: pathology-centred and target-centred. Pathology-

centred approaches are based on biological models for the pathological condition, which can be

either complete organisms or tissue cultures.Alternatively, target-centred approaches are based

on drug targets, biological molecules thought to be relevant for the illness, whose behaviour is

intended to be changed through the use of drugs. (3)

1.1.1.1 Pathology-centred approaches

Pathology-centred approaches have been the preferred approaches for drug discovery for decades,

resulting in the discovery of thousands of drugs, which are still successfully used. These ap-

proaches regard the biological model as a black box, not considering the mechanisms behind

pathology and drug action, but the physiological e↵ect of the drug candidates in the considered

model. (3)

For this, a relevant biological model has to be chosen i.e. a bacteria for developing a new

antibiotic, tissue cultures or yeast for well-characterised illnesses or whole animals for evaluating

complex diseases. For massive screening of compounds, tissue cultures and unicellular organisms

are preferred over whole animals, although whole animals might be better predictors of drug

e↵ects on humans. Even though this approach does in principle not require understanding

the aetiology, it does however rely on the assumption that relevant molecular mechanisms in

2



1.1 Drug Discovery

the model are similar to that of the illness in human. This assumption can be incorrect, as

similar phenotypes can be caused by di↵erent mechanisms. Therefore, in most cases, at least a

superficial knowledge of the aetiology is needed for the choice of a biological model. However,

as it does not require a prior knowledge of the molecular mechanisms causing the illness, this

approach is therefore less susceptible to errors stemming from inexactitudes on understanding

of the illness. (3)

Due to their complexity, biological models can be good predictors for drug e↵ects. They

can take into account, not only the e�cacy and e↵ectivity of the drug, but also the side e↵ects,

toxicity and even the pharmacokinetics of the drug. Moreover, they can predict the e↵ects

of multi-target drugs, o↵-target e↵ects, drugs with unknown mechanisms, etc. Because of all

this, results obtained by pathology-centred approaches can be more easily translated into a

commercial drug. (3)

However, these approaches are not without disadvantages. They depend absolutely on the

existence of a relevant biological model, so they cannot be used for diseases for which there is no

such a model, which can be the case for complex diseases, such as psychiatric diseases. Another

disadvantage is the di�culty for the optimisation of a candidate drug without prior knowledge

of the mechanism of action, since no structural information is known of the drug target(s) and

therefore an improvement on the performance of the drug can only be done, either by random

modifications or using general rules for optimisation. (3)

As stated above, the choice of an adequate model is not trivial and it depends on many

variables, such as the pathology that is being studied, prior knowledge of good models for the

pathology and economical and ethical issues. Therefore, a balance between costs and perfor-

mance benefits of each possible biological model have to be taken into account. Nevertheless,

results obtained using these models are not necessarily reproducible in humans, even if the model

appears to be a good predictor of drug e↵ects. (3)

1.1.1.2 Target-centred approaches

Target-centred approaches regard the living organism as a series of biomolecules, genes and

pathways, some of them involved in the development of the studied pathology. The activity of

these components is altered as a result of illness, so that the objective is to modify their activities

back to normal, restoring healthy conditions. Alternatively, the objective can be to defeat the

robustness of a living organism, such as a pathogen or a tumoural cell. In either case, one or

more drug targets are chosen. Drug targets are biomolecules which are believed to be key in

3
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the functioning of one or more pathways and are therefore capable of modulating their activity.

Drug candidates are evaluated for their ability to modify the activity of these drug targets. (4)

Targets are biomolecules showing with a key role in disease development, so that modulating

its action provokes a significant therapeutic response. Targets can be either have a causative role

in the disease or the ability to modify or alleviate the disease process or its symptoms. Possible

targets can be determined by identifying molecules that are upregulated or downregulated in

disease conditions by using transcriptomics or proteomics assays, and further biological knowl-

edge; or alternatively by developing a mechanistic model on the causes of the disease, based

on all the information available. In the first case, it cannot be assured that the selected target

is causing the disease and is not just a consequence of it. The second approach, although it

incorporates knowledge from di↵erent sources and not only correlation values, it is not without

problems, as knowledge on disease development is still very limited. (4)

The main advantage of target-centred approaches is that they permit drug development for

diseases which cannot be easily studied on physiological models. Moreover, they facilitate the

optimisation of drug candidates, as these approaches are based on prior knowledge about the

illnesses, permitting rational design and modification of the drug candidates. However, because

of this dependence on prior knowledge, results derived from these analyses can be of di�cult

or no application to developing a therapy, as they can be based on erroneous data or, more

importantly, on partial data. To avoid this, targets must be validated before drug screening.

But target validation is very complex and depends upon the availability of valid predictive disease

models, requiring a demonstration that modulating the target behaviour permits a substantial

modification in disease in such a model. (4)

Target-centred approaches represent inherently a simplification of the drug action: one or

more biomolecules are used as the model for evaluating the a drug, predicting its action for

systems composed by thousands of biomolecules. It therefore does not take into account in-

teractions with most of the biomolecules, so that cross-screening assays must be performed to

predict possible drug toxicity or side e↵ects and automatically disregards other possible mech-

anisms to influence on the biomolecule, di↵erent to targeting such as transcription or pre- and

post-translational modulation. (4)

1.1.2 Attrition in Drug Development

Drug target-centred approaches substituted about 20 years ago pathology-centred approaches

as the main focus for drug research and design of new drug candidates, basing drug discovery
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1.1 Drug Discovery

on rational criteria and knowledge of the molecular mechanisms behind pathology. At the time

these approaches were introduced it was believed that their use would increase drug productivity,

compensating the deficit in pharmaceutical innovation predicted for the first decade of 2000

(4, 5). However, the e↵ect seems to have been the opposite (6).

The pharmaceutical industry is currently facing an unprecedented challenge for its business

model. Confidence of consumers has fallen, health-care budgets have diminished and key patents

are expiring. But the key problem is the decay in R& D productivity: although there has been

an increase on investment, the number of approved innovative drugs has not risen accordingly,

but remained stable for the last decade or even reduced, while most discovered drugs are based

on well-established targets (6). Roughly one in four compounds fails after submission, incurring

the full development costs but not conveying any economical benefit (2), attrition rates are very

high (7), while the average cost of developing a drug is rising rapidly. This has led some experts

to state that if there is no dramatic increase in R& D productivity, we may be moving to the

extinction of pharmaceutical industry as we understand it today, with fatal consequences for

human health (6).

Although many factors which could a↵ect R&D productivity have changed in the past 10

years (6) it has been observed that this decrease on e�ciency has coincided in time with the

introduction of target-based drug discovery. Therefore, it has been hypothesised that there

is a causal relation between these two events (3, 4). Among the arguments for this relation,

is the striking observation that, while target-based approaches have been the focus of drug-

discovery approaches, only a minority of the approved innovative drugs correspond to the result

of drug-target centred approaches, whereas the discoveries corresponding to pathology-centred

approaches are still majority. This could be due to the main limitations of target-centred

approach, as it is inherently reductionist and depends totally on our (limited) knowledge on

pathological processes. However, despite the evidence that target-centred approaches are not

proportioning the expected results, there are reasons to think that this is not a problem of the

approachper se, but of the way it is applied. Namely, how targets are chosen and validated. (4)

Target-centred approaches have proven to be very e↵ective for developing novel treatments

for validated targets (for example, the target of an already existing drug) (3, 4). Therefore,

various improvements have been suggested to respond the question of how to improve target

selection, with the objective of maximising e�cacy and minimising toxicity, the two main causes

for drug attrition (2). These improvements basically rely on emphasising a more thorough

previous study of the selected targets and on early validation of the target. Firstly, all available
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information relevant to the disease, the selected target and the relations between them has

to be gathered. This must include, not only the biological and biochemical information, but

also pharmaceutical and economical information, such as alternative treatments or feasibility

of clinical testing. Especially, one must exclude the possibility that pathological alterations

in the drug target are a consequence and not a cause of the disease, as many of the studies

used for target selection examine correlation, but not causativity. Secondly, there must be a

greater emphasis on early target validation. When a drug against the target is not available,

other approaches, such as interference RNA technology, can be used to examine target validity

(4). These changes would increase costs and duration of the early phases of drug development.

However, as inappropriate target selection (6) and selection of the drug candidates regardless

of the mechanism of drug-target interaction (3) have been cited as possible reasons behind low

productivity, this increase of spend on early phases could reduce total costs of drug developments

(as less drugs would be rejected at later stages), increase e�ciency and therefore increase R&D

productivity.

The incorporation of Systems Biology methods to target selection is a promising approach

to improve prior biological knowledge towards a better target selection. Although still on their

infancy, these methods have already been proved useful in the process of drug development and

could therefore be used to improve decision making in target selection.

1.2 Systems Biology

The sequencing of the human genome by Human Genome Project has opened an unprecedented

development on many aspects of biology. The so-called omic technologies, comprising among

others genomics, transcriptomics, proteomics or metabolomics, provide researchers with a previ-

ously unknown quantity of data on many aspects of biology, such as genetics, gene transcription

and translation and their regulation, metabolic and signalling pathways, etc. The results ob-

tained by these high throughput techniques are, in most cases, too complex to be interpreted

by an unaided human. Thus, there has been an e↵ort for developing bioinformatical tools, to

classify and interpret the data obtained by the use of these technologies. As a result of the com-

plexity of the handled data, it is in many cases not possible to formulate an a priori hypothesis

of what the behaviour of the system will be and therefore design an experiment to confirm

or reject the hypothesis; but rather, experiments are designed without a previous hypothesis,

to generate a great quantity of data, which will be analysed and used to generate hypotheses.
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Therefore, there has been a shift on research orientation, from a reductionist approach to discov-

ery (hypothesis-driven science), where researchers focus in very concrete topics, a biomolecule,

a gene, etc. to a maximalist discovery-driven science, genome-wide data centred. This shift has

finally led to the appearance of a new paradigm in biology which aims to close the gap between

hypothesis-driven science and discovery-driven science. This new paradigm is known as systems

biology.(8)

Systems biology is a novel approach to understanding biology in a holistic and integrated

way. It considers living beings as complex systems (and not as the sum of its components), where

relations between components are as important as the components themselves. The study of one

or more key individual components is abandoned in favour of focusing in the dynamic behaviour

of systems as a whole. Systems studied by this approach can comprise from the most general

level (ecosystems) to the most specific (biochemical pathways), each of them a compendium

of all levels itself, as these systems are not closed or unrelated but interact and interchange

continuously information with each other.(8)

The objective of systems biology is creating descriptions of these systems (models) that not

only account for their known behaviour, but also can accurately predict their behaviour under

additional conditions, before they have been experimentally assayed. Hypotheses generated

by the model can be verified or falsified using directed experiments, thus contributing to an

improvement of the model’s accuracy. This cycle of hypothesis generation and model refinement,

where models are iteratively improved in accordance to new experimental information has been

termed “cycle of systems biology” accordingly. (9)

This cycle is considered the fundamental core of systems biology and is the basis for the

integration between hypothesis-driven science and discovery-driven science. Descriptions of the

systems are generally based on data from high-throughput technology, but once the model has

been built, it is used for hypothesis generation, allowing small-scale research. The confirmation

or rejection of the hypotheses leads, in turn, to a refining of the model accordingly. The model

therefore comprises an integration of all available information, both on the macro and micro

level. (9)

This is, in definitive, the objective of systems biology: relating individual and systemic

properties, revealing the properties of complex biological systems and the laws behind them

with the ultimate objective of uncovering the fundamental principles behind life.(9)
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1.2.1 Computational Models in Systems Biology

A biological computational model is an abstract description of a biological process which repre-

sents an integration of the available data in an objective and unambiguous way. Models can be

formulated using di↵erent mathematical frameworks, depending on the biological characteristics

of the network. They are modular, formed by single small entities (proteins, genes, reactions,

modifications, etc.) and, as such, highly flexible and modifiable. They can be used to simulate

di↵erent conditions and perturbations in the given system and can be visually represented in an

easily understandable way. Because of all this, computational models are nowadays the basis of

systems biology understanding. They describe our knowledge on biological systems, their com-

ponents and interactions, as a whole. However, they are not only a description of the available

knowledge, but they can be useful to extend our knowledge: we can use them as a predictive

tool leading to testable hypotheses. (9)

1.2.1.1 Types of Computational Models

Biological systems can be modelled using di↵erent mathematical approaches, depending on the

biological system, the nature of the data and the subject of our research. These approaches can

be classified, for increasing levels of complexity of the solutions:

• Statistical mining models. Statistical mining models are based purely based on nu-

merical correlations, including no mechanistic data. These models di↵erentiate between

dependent and independent components, reducing the biological behaviour to a principal

components problem, thus elucidating how changes in certain variables a↵ect dependent

variables. Statistical mining is the most basic level of biological modelling and can be used

for physiological-level modelling. (8)

• Boolean networks. Boolean networks are systems of Boolean variables, i.e. variables

which can only adopt two states (true or false). In these models, states are deterministically

determined by the states of other variables in the network. Time is a discrete variable and

on each unit of time, the state values of the network are recalculated from the previous

state. These models are often used to simulate gene regulation. In these models, genes can

be either on (transcriptionally active) or o↵ (9) (transcriptionally inactive) and depending

on the activity of other genes, they can become on or o↵ after a number of time steps.
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• Discrete models. Discrete models are an extension of boolean models, allowing for

variables to have a finite number of states, making it possible to describe systems where

components can adopt more than two di↵erent states. (9)

• Ordinary di↵erential equation (ODE) models. In ODE models, variables and time

are continuous. The values of the variables are defined by ODEs, which describe the vari-

ation of the values over time. While the derivative of a variable can be easily calculated at

any time point, the state can only be calculated by integration, which in many cases is too

complex to be solved analytically, making numerical approximations necessary. Knowing

the initial concentration of the species and the kinetics of the reactions they participate

in, a biochemical reaction network can be explicitly modelled using ODE. Because of this,

ODE models can be useful for modelling metabolic and signalling networks. (9)

• Partial di↵erential equation models. Partial di↵erential equations are di↵erential

equations that incorporate multivariable functions. They can model processes that are

dependent on more than one variables, such as time and one or more spatial dimensions.

Because of that, they can be appropriate to model non-homogeneous biochemical processes,

where concentrations of a species varies within a compartment. (9)

• Bayesian models. Bayesian models are probability models based on conditioned (Bayesian)

probability. They are composed of a set of random variables, where relations between con-

sequences and their probable causes are established. Therefore, causes are modelled as

probabilistically dependent on their consequences. This makes them useful for modelling

biological systems where the consequences are more easily observed than the causes, such

as gene expression or cell signalling. (9)

• Stochastic models. Stochastic models are models that take into account random e↵ects

and their influence on system behaviour. In these models, the result of reactions is mod-

elled following a probability distribution and are therefore, nondeterministic. Because of

this, stochastic approaches can be useful for modelling biological systems with high ran-

dom influences, such as those where the number of interacting molecules is very low, so

interactions between them depend on random encounters. (9)

In this work, we focus on ODE models for the search of possible drug targets in biochemical

networks, because they are a balance between simplicity and quality of the results, as the simplest

modelling framework that provides continuous quantitative data.

9
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1.2.1.2 Development of Computational Models

The development of a model is not trivial. Many decisions that will a↵ect its usefulness and

potential applications have to be taken in advance, as models can be developed with di↵erent

focuses, di↵erent levels of detail and di↵erent mathematical approaches. In the end, the question

is how to design a model, so that it not require the use of non-identifiable parameters (parameters

which cannot be determined using available data), but still is able to describe the relevant system

in an accurate way and opens the possibility to predictions of model behaviour.

Developing a biological model usually begins with a compilation of the available data: un-

derlying mechanisms, available experimental results and other models describing the same or

similar systems. These data can be used to build a primary model which will be used as a

basis for further development. As knowledge in genomics, transcriptomics and proteomics has

developed, the increasing amount of data has made collecting this information a very laborious

work, since it is generally dispersed in literature. To aid in the building of primary models, a

number of databases have been developed e.g. Gene Ontology (10), KEGG (11), Brenda (12)

or Reactome (13), which centralise relevant information, such as relations between biological

concepts, interactions between molecules, data on reaction kinetics, etc. If there already exist

computational models describing the same pathway or similar pathways, it can be interesting

to use them as a start point for the development of the new model, taking advantage of the

knowledge they comprise, adding new information and correcting their main weaknesses. Com-

putational models are easily accessible in repositories, such as BioModels (14) and JWS online

(15). Tools like semanticSBML (16) can be extremely helpful for the retrieval and fusion of

models.

From all the compiled data, a primary or sca↵old model is built. Models are written using

the Systems Biology Markup Language (SBML) (17), which describes models as a set of species

in a compartment, which interact through reactions. Sca↵old models can be built using various

SBML compatible tools such as CellDesigner (18), a visual model editor and COPASI (19), a

more mathematical-centred editor, which also permits simulation of model behaviour.

After building the primary model, it has to be fitted to the existing experimental results. In

many cases, not all the parameters of the system have been determined as they cannot be found

on the literature. Therefore, these parameters have to be estimated. This is a critical step for

the elaboration of the model. The number of parameters that has to be estimated deeply a↵ects

the quality of the resulting model, as some of the parameters can be unidentifiable, i.e. they are

indistinguishable from other parameters and cannot be accurately estimated. The probability
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of having unidentifiable parameters increases with the number of parameters that need to be

estimated and decreases with increasing complexity of the network. The model undergoes a

series of optimisation steps, until it fits acceptably the existing experimental data. The fitted

model is then ready for hypothesis generation. (9)

1.2.2 Systems Biology and Drug Discovery

Drug discovery has traditionally been a systems-centred approach. Before the advent of scientific

medicine, remedies were discovered by observation of their e↵ects on diseased and healthy people,

the most complex and relevant model to drug discovery. After the late 1800s and early 1900s,

there was a modernisation of drug development process, where new compounds were obtained

by chemical synthesis and the use of human models substituted in favour of animal models,

therefore maintaining the systemic approach. Indeed, most of the drugs that we use today, such

as aspirin or Prozac, still derive from the use of this traditional systems approach. (20)

As explained above, coinciding with the rise in popularity of target-centred approaches in

drug discovery, there has been a worrying decrease in pharmaceutical R&D productivity. This

has been attributed to deficiencies in target identification or validation. Systems biology ap-

proaches o↵er a promising alternative for drug target identification, drug in silico testing or phar-

macokinetics and secondary e↵ects simulation. Computational tools are comparatively cheap

and permit the obtention of abundant data. The use of this technology could thus contribute

to a decrease in costs and an increase of e�ciency in these fields.

1.2.2.1 Modelling of Physiological and Disease Processes

There have been numerous e↵orts to modelling disease relevant processes. These e↵orts vary in

the scale (organism, tissue or cell), in the type of modelled process, level of detail or mathematical

framework and can be useful for simulating di↵erent aspects of pathology study. Computational

models have been used to simulate the relationship between disease and certain physiological or

genetic markers, tissue and cell level mechanisms causing disease, pathology-relevant biochemical

pathways, etc. For the creation of models specifically aimed towards drug target simulation, it

is necessary to incorporate a su�cient level of detail, such that the possible drug targets are

modelled accurately. For example, to evaluate for possible drug targets in a signalling route, it

is necessary that all the proteins in the route are explicitly modelled and not as a black box, for

the model to be a useful predictor of drug targets. (20)
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Computational models in general and signalling pathways in particular, have already given

some promising results, such as the ability to accurately predict the results of a clinical assay

(21). However, the use of computational models for drug target evaluation is still at its very first

steps. Successes of model predictions could be considered anecdotal, as computational models

have not been optimised for drug target evaluation, which is only possible with clinical data.

Therefore, models are not yet at a stage where decisions taking can be relied upon them, but

will remain for the next years only one of many inputs for decision making. (20)

1.2.2.2 Modelling of Signalling Pathways

Signalling pathways are biochemical pathways that transmit information content within a cell.

They inform the cell about the extracellular physicochemical conditions, including nutrients,

hormones and toxins and modulate the cell response towards these stimuli. They are generally

well conserved through evolution, consisting of a membrane receptor which activates an e↵ector

when binding a ligand, this e↵ector triggers a cascade of protein interactions, which in the end

regulate many aspects of cell physiology, including gene expression.

Signalling pathways have been related to many complex diseases, including cancer. There-

fore, a great e↵ort has been put on modelling the main signalling pathways. Some key human

signalling pathways have already been extensively studied, such as the Wnt (22), Jak/STAT

(23), NFB (24), TGF-� (25) and EGFR/ErbB (26). However, the use of signalling pathways

models for drug target prediction is at a very early phase, even when compared to other models

for disease. This is due to particular problems of model developing for signalling pathways. The

main limitation that has to be faced is the availability of data of su�cient quality to enable

modelling and qualifying the pathways structure and dynamics. Despite the development of

high-throughput techniques, the obtained data is generally not of adequate type and quality

for model development. However, there are still some encouraging results, as, for instance the

identification of ErbB3 as a possible therapeutic target of the ErbB route (27), which show the

potential of signalling pathways modelling for drug target evaluations. (28)

1.3 TGF-� Signalling

Transforming growth factor beta (TGF-�) isoforms are a group of polypeptide factors with an

important role in di↵erent aspects of cell homeostasis regulation in many vertebrates, including

humans (29). Among them, TGF-� 1 is considered the prototypical member of the family.
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This family contains over 35 structurally related factors which includes other TGF-� isoforms

(2 and 3) as well as related cytokines. TGF-� 1 is a secreted homodimeric protein that binds

specifically to membrane receptors, triggering a signalling response that regulates numerous

cellular responses, such as proliferation, di↵erentiation, migration and apoptosis. Malfunctioning

in the signalling pathway has been found to be implicated in several human diseases, including

cancer (30).

Because of the importance of TGF-� signalling in human disease, there has been a great

interest in studying the pathway using systems biology approaches. In fact, several mathematical

models have already been published that describe the TGF-� signalling pathway (25, 31, 32, 33,

34) with di↵erent levels of detail and focus on di↵erent aspects of TGF-� signalling.

1.3.1 TGF-� Signalling Pathway

In the canonical TGF-� signalling pathway, TGF-� isoform 1 (TGF-�1) binds to the two receptor

molecules, type I (T�RI) and type II (T�RII). These receptors are transmembrane proteins,

with an intracellular Ser-Thr kinase domain. Binding of the ligand induces the formation of

heterotetrameric T�RI-T�RI-T�RII-T�RII complex and the phosphorylation of T�RI GS-rich-

domain by the constitutively active T�RII. This enables the GS-domain-mediated recruitment of

the receptor-regulated Smads (R-Smads), Smad2 and Smad3 and their phosphorylation by T�RI

on two Ser residues at their C termini. Phosphorylated R-Smads form heteromeric complexes

with Smad4, the common mediator Smad, as well as homomeric complexes, of unknown function.

The heteromeric Smad4-R-Smad complexes function as secondary messengers of the TGF-�

signalling pathway and accumulate in the nucleus, where they regulate transcription of target

genes, both positively and negatively. (30, 35)

However, TGF-� signalling is not a linear, unregulated pathway. A third type of Smad pro-

teins, inhibitory Smads (I-Smads), may play an important role at pathway regulation, as they can

trigger signal termination. I-Smads can antagonise TGF-� signalling by distinct mechanisms.

They are competitive inhibitors of T�RI-TGF-� binding and inhibit interactions between R-

Smads and Smad4. They can recruit Smurf1 and 2, which induce T�RI ubiquitination and

degradation. Furthermore, they can directly repress Smad-induced transcriptional responses

(36). Since some of the components of these inhibitory pathways, such as Smad7 (an I-Smad)

(37) and Ski/SnoN (38), are upregulated by TGF-� signalling, they may be part of a negative

feedback mechanism. Nevertheless, the role of I-Smads in actual physiological conditions is still

rather controversial (35). Furthermore, there exist other alternative TGF-� signalling routes
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apart from the canonical TGF-� pathway. These pathways can be derived by the TGF-� re-

ceptors directly interacting with other non-Smad proteins, thus initiating a parallel signalling.

These routes can also modulate the activity of the canonical pathway, interact with other path-

ways and transmit the TGF-� signal directly to other pathways (cross-talking) (39).

1.3.2 TGF-� Signalling and Disease

As a consequence of the central role of TGF-� signalling in key processes, including the cell

cycle, this signalling pathway is connected to many human diseases. Malfunctioning of the

TGF-� signalling pathway has been connected to a number of human diseases, such as Marfan

syndrome (40), fibrotic conditions and malignancies (29): TGF-� shows an increased activity in

a number of fibrotic disorders, causing an accumulation of connective tissue in lung, kidney, liver

or other organs. Abnormal activity of this pathway has been linked to inflammatory disorders

as well. Studies on mutant mice have revealed that alterations in TGF-� signalling pathway

have deep e↵ects on the development or homeostasis of many organs, therefore showing that

alterations in signalling can be a cause for illness(29).

In cancer, TGF� has a complicated role. During early stages of tumourogenesis, it acts

as a cancer suppressor, inducing apoptosis and inhibiting cell proliferation. Because of this,

genetic inactivation of TGF-� signalling through Smads has been found to be inactivated in

human cancer. For example, about 50% of pancreatic carcinoma have been shown to have a

loss of Smad4 expression, while in colorectal cancer there can be a loss of a single copy of T�RI

(TGF-� receptor I). Moreover, many oncoproteins have been found to directly interact with or

post-translationally modify Smads, interfering with TGF-� signalling. (29)

However, at later stages of cancer development, TGF-� shows the opposite e↵ect. Tumour

cells usually show an increased production of TGF-�, promoting metastasis, angiogenesis and a

suppression of the immune response. This is known as the TGF-� switch in cancer progression,

which triggers epithelial-mesenchymal transition (EMT). EMT is a process through which ep-

ithelial cells generate transitory mesenchymal derivatives with increased motility that colonise

new sites. This process, vital in embryo development, is activated during cancer progression by

many di↵erent factors, including TGF-�, which regulate transcription factors activated during

embryogenesis. (29)

Targeting TGF-� signalling has been tackled as a possible therapy against certain tumours.

As a result of the complicated role of TGF-� in cancer, both approaches to cancer suppression,

enhancing and hindering signalling have been successfully used in preclinical and clinical assays:
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upregulation of Arkadia, a complex that enhances TGF-� signalling, provides tumour suppres-

sion in colorectal cancer in murine models (41), while PSK, a protein-bound polysaccharide

which strongly inhibits TGF-� through an unclear mechanism, has shown beneficial therapeutic

e↵ects in clinical assays for various types of tumours and is used as a treatment for gastric and

colorectal cancers in Japan (42). These two findings highlight the importance and complexity

of TGF-� signalling in tumour physiology.

These characteristics, together with the availability of numerous computational models, make

TGF-� signalling a very attractive target for the systems biology approaches.
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Aim of the project

The aim of this project is creating a semi-automatic framework for drug target identification

in computational models describing physiological processes. Starting from an ODE model that

describes the normal behaviour of biochemical network, the objective is to simulate potential

pathological conditions and propose di↵erent combinations of drugs that can restore the initial

behaviour of the model. The application of this tool leads to a systematical selection of those

network components that could be interesting drug targets against these alterations.
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Methods

3.1 ODE modelling

ODE models are mathematical descriptions of processes quantified by their change in time

based on an ordinary di↵erential equation (ODE) system. They are continuous, uniform and

deterministic. Because of that, they can be good predictors only when the number of molecules

in the system is large enough, so that these three assumptions are realistic. A large number of

molecules implies that the quantity can be modelled as a continuous variable, that molecules

can di↵use instantaneously within their compartments and that random e↵ects do not exert

a notorious influence in their behaviour. Most molecules in biological systems exist in very

high numbers, making ODE modelling suitable for many cases. However, other molecules,

especially transcription factors and signal transducers, tend to be in much lower numbers. The

concentration of these molecules can be on the order of only 10 molecules per cell (43). These

systems are generally subject to other approaches, such as stochastic modelling. (44)

3.1.1 Structure of biochemical ODE models

The basic elements of an ODE model are a set of variables and their change in time. In a biolog-

ical model, variables correspond to the existing species, with the numerical value corresponding

to their concentration, amount or activity. These variables are modified by a set of processes,

comprising biochemical reactions and transport mechanisms, which change the concentration or

activity values of the species. Variations on the variables values are modelled using a system of

ODEs. (44)
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An ODE is an equation containing a function of one variable and its derivatives, depending

on one independent variable x. An ODE can generally adopt two types of forms:

Implicit ODE:

F px, y, y1, ..., ypnqq “ 0

Explicit ODE:

ypnq “ fpx, y, y1, ..., ypn´1qq

In biological ODE models, equations generally adopt the explicit form: the dependent vari-

able is defined as the concentration or activity of a species, while the independent variable is

time t. For example, for a simple chemical reaction

S Ñ 2P (3.1)

the change in time of the concentrations can be described using the ODE system:

dS

dt
“ ´v

dP

dt
“ 2v.

(3.2)

The ODEs describe that the species P is produced at a rate which is twice of consumption rate

of S. Knowing the initial value of the variables S0 and P0, the concentration of the species can

be determined for any time t by solving the equations analytically.

For a biochemical network consisting of m species and r reactions, its behaviour as a system

can be generally described using the following system of equations, where n
ij

is the stoichiometric

coe�cient (number of molecules produced or consumed by a single reaction event) of the species

i in the reaction j and v
j

is the velocity of reaction j:

dS
i

dt
“

rÿ

j“1

n
ij

v
j

for i “ 1, ...,m.

With this information and the initial values for the species, the concentration or activity of

each species can be calculated at any time point solving the ODE system. Only very simple

ODE systems, such as (3.2), can be solved analytically. As systems are generally more complex,

the solution for the system has to be computed using numerical approximations. (9, 44)
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3.1.2 Simulations of ODE models

The most basic approach for the numerical approximation of an ODE is the Euler method. For

a variable y dependent on time t, this approach approximates the value of the ypt ` hq to

ypt ` kq « yptq ` h ¨ y1ptq,

where yptq is a known value of y and h is the step size, the di↵erence between the estimated

time point and the reference one. Since y1 is defined by the ODE system for every time point,

we can calculate yptq by step-wise iterating

y
n`1 « y

n

` h ¨ y1
n

for the whole parameter space. This method provides a way of calculating the value of any vari-

able for any value of t . But only approximately, because unlike analytical methods, numerical

methods introduce an error in calculations, which in this case is proportional to h2. Therefore,

the smaller that the step size h is, the more accurate results are. (9)

Euler’s method is not generally used as an ODE solver, but it is an interesting method to

show the general way how solvers work. It is also the basis for the construction of other methods.

Numerical methods used for ODE solving are nowadays more complex and exact. Examples of

solvers currently used in ODE modelling are approaches based on Runge-Kutta method, LSODA

(45) and CVODE (comprised in SUNDIALS package) (46).

3.1.3 Stoichiometric matrix

The stoichiometric coe�cients determine the relations between species within a biochemical

network. They influence not only the individual properties of each reaction, but also a↵ect

the global structural properties of the whole network. For example, in a simple reaction, such

as (3.1), the stoichiometric constants determine the production rate of P (dP
dt

) as double of

the consumption rate of S (´dS

dt

). In more complex systems, the stoichiometric constants can

determine global properties, such as the existence of a non-trivial steady-state. (9, 44)

When dealing with such complex systems, it can be very useful to express the stoichiometric

coe�cients of every species in every reaction of the network as a matrix, in what is called the

stoichiometric matrix. For example, for the network
v1é S1

v2Ñ 5S2

v3 ê
2S3
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the stoichiometric matrix is

N “
¨

˝
1 ´1 ´1
0 5 0
0 0 2

˛

‚,

where the columns describe the stoichiometries of every reaction and rows that of every

species. In order to determine the signs, the convention for reversible reactions is assigning as

positive reactions “from left to right” and “from top to down”. For irreversible reactions, the

sign is assigned accordingly with the direction of the reaction. (44)

The stoichiometric matrix contains information on the structure of the network, such as

combinations of fluxes that can result in a steady state, dead-ends, ramifications or relations

between species. Moreover, it is useful for handling big biochemical networks, since it permits

separating the structure of the model, determined by the matrix, from the kinetic information.

(9, 44)

3.1.4 Reaction kinetics

Mass-action kinetics are the most widely used reaction kinetics for this work. They are based

on the Law of Mass Action, discovered by Guldberg and Waage in the 19th century(47). This

law states that the reaction rate is proportional to the probability of collision of the reactants,

which is in turn proportional to their concentration powered to their absolute stoichiometric

constant. For example, for the simple reaction

S1 ` 2S2 Ñ P,

the reaction rate is

v “ kS1S
2
2 ,

where k is the proportionality constant known as kinetic constant. (44)

In the case that the reaction is reversible, both forward and backwards reactions are taken

into account, so that the reaction rate of

S1 ` 2S2 é P

is defined as

v “ k`S1S
2
2 ´ k´P.
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This can be expressed described using the ODE system

dS1

dt
“ ´k`S1S

2
2 ´ k´P

dS2

dt
“ ´k`S1S

2
2 ´ k´P

dP

dt
“ k´P ´ k`S1S

2
2 .

The general mass action kinetics for a reaction with substrate concentrations S
i

and product

P
j

is

v “ k`
π

i

S
|m

i

|
i

´ k´
π

j

P
|m

j

|
j

,

where m is the stoichiometric constant of the reactant and k´ “ 0 for irreversible reactions.

Mass action kinetics are good predictors of the behaviour for non-catalysed reactions. This

makes it a very useful approach for modelling, for example interactions between proteins. But

for enzymatic reactions, which are of great importance in biology, other kinetic models have to

be used.

The most widely used model for enzyme kinetics is Michaelis-Menten. In Michaelis-Menten,

the mechanism of an enzymatic reaction is modelled as

E ` S
k1é
k´1

ES
k2Ñ E ` P, (3.3)

where E is an enzyme, S is its substrate and P the product. Therefore, using mass action

kinetics, the system can be described by the equations

dS

dt
“ ´k1E ¨ S ` k´1ES

dP

dt
“ k2ES

dE

dt
“ pk´1 ` k2qES ´ k1E ¨ S

dES

dt
“ k1E ¨ S ´ pk´1 ` k2qES,

(3.4)

Since this system cannot be solved analytically, a few assumptions are taken to simplify it.

If k1, k´1 °° k2 and Spt “ 0q °° E, we observe that a quasi steady state is reached for the

enzymatic complex, so that

dES

dt
“ k1E ¨ S ´ pk´1 ` k2qES “ 0.
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This can be reordered as

ES “ E
total

S

S ` k´1`k2

k1

,

where E
total

“ E ` ES. Since v “ dP

dt

“ k2ES and ES is maximal if all enzyme is in complex

(E
total

“ ES), the maximal velocity of the reaction can be described as v
max

“ k2E
total

. The

reaction rate yields the following equation:

k2ES “ k2E
total

S

S ` k´1`k2

k1

Ñ v “ v
max

S

S ` k´1`k2

k1

which can be simplified to

v “ v
max

S

S ` K
m

,

where K
m

“ k´1`k2

k1
« k´1

k1
.

The change of S (3.3) can then be described as:

dS

dt
“ ´ v

max

S

S ` K
m

dP

dt
“ v

max

S

S ` K
m

.

Michaelis-Menten equation thus permits a simplification of the whole ODE system shown

in (3.4) to a system that is only dependent on one variable, substrate S and two constants,

maximal velocity (v
max

) and the Michaelis constant (K
m

), which is equivalent to the quantity

of substrate that fulfils v “ v

max

2 . This equation can be adapted for reversible reactions and,

interestingly for drug target search, di↵erent kinds of enzyme inhibition can be easily modelled in

the equation as changes in the constants v
max

and K
m

, depending on the inhibition mechanism.

(44)

Apart from mass action and Michaelis-Menten kinetics, other kinetic laws can be found in

ODE models. For example, a reaction can be described as a constant flux or as dependent on

non-reactant species, showing essential and non-essential activations or repressions e↵ects. A

variety of di↵erent kinetic functions are included in modelling software for the description of

other complex behaviours, including allosterism, cooperativity, substrate or product inhibitions,

etc.
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3.2 Parameter estimation

3.2 Parameter estimation

The mathematical description of a biochemical network consists of four types of information

which can be defined as vectors or matrices: the vector Sptq which describes the concentration

values at any time point, the stoichiometric matrix N , the vector v, which describes the kinetic

equations that determine the shape of the functions of S versus time and the parameter vector

p, which contributes to the numerical value of v. The first three components are often well-

known, while a part of the values of p usually has to be determined. This parameter vector

comprises concentrations of external species a↵ecting the system and kinetic parameters, such

as proportionality, maximal velocity or Michaelis-Menten constants. In principle, although these

parameters could be experimentally determined, in many cases this is not possible, as data may

be too sparse or of the wrong type. Furthermore, parameter values may contain measurement

errors and di↵erences in measurement conditions have been found to lead to high variances in

parameter values within the literature. Because of this, most parameters have to be estimated

after the ODE model has been built. (9, 44)

This is done by fitting the model to the experimental data. If the model was adequately

designed and experimental data were complete and exact, this procedure would allow for a

determination of the true parameter set. This is not possible, however, as experimental data

always contain a certain amount of noise. Therefore, computational methods are used to estimate

approximate parameter values that can be used for biological modelling. (44)

The process of parameter estimation is based on two assumptions. Firstly, the experimental

data must be deterministically produced by the processes described in the ODE model, with a set

of unknown parameters. Secondly, experimental data contains some independent and normally

distributed noise. Therefore, since a perfect fitting is not possible, as implied by the second

assumption, parameter estimation is performed with the objective of obtaining a parameter set

such that the experimental data are the most likely to be produced. (44)

3.2.1 Concept of objective function

Experimental data of a biological system can be expressed as a time course, a plot of one or

more dependent variables of the system versus time. In a biological context, these variables

can be the concentration of a species, the flux through a reaction, or a ratio of more than one

variables. The time course is used as the reference to which the model is fitted during parameter
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estimation. At the parameter estimation, the parameters are optimised so that it holds that

ypt
p

q « ypt
p

q for all values of p

where y is the experimental value determined by the time course, y is the value predicted by

the model and t
p

is the time for every measurement. (9)

This optimisation is based on the use of an objective function, which determines the quality

of the model fit to the experimental data. The objective function is a measure of the deviation

of the model from the experimental data. It depends on the time course data y and the model

simulation data yptq, for every variable i and time point p, and adopts the form of a sum of

squared residuals:

f “
Iÿ

i“1

Pÿ

p“1

py
i

pt
p

q ´ y
i

pt
p

qq2
�

(3.5)

The value of the objective function is the reference for selecting between all possible parame-

ter sets. This is done by performing an optimisation, scanning the parameter space (all possible

combinations of parameter values) in the search of minima in the function that lead to a model

fitting which is considered as satisfactory. (9)

3.2.2 Local and Global Optimisation

Model fitting leads to a optimisation problem where the objective function (3.5) is evaluated for

local or global minima. A local minimum is a parameter set p that satisfies the condition that

no other parameter set in the vicinity leads to a lower value of f . If there exists no other value

in the parameter space for which f is lower, this point is called a global minimum. The scan for

minima of f can be restricted to a region of the parameter space, by introducing constraints in

the optimisation, such as defining intervals of allowed values for the parameters. (44)

For solving the optimisation problem, computational tools called optimisers are used. There

exist two basic kinds of optimisers: local and global optimisers. Local optimisers search for local

minima by evaluating the vicinity of a starting point for vector p and improving step by step the

optimisation, until no value for p o↵ers a lower value of the objective function. Global optimisers

investigate the whole parameter space, in order to find the most optimal solutions. As this can

be impossible due to the number of needed simulations, global optimisation is normally achieved

by scanning the parameter space by a series of random jumps. As the search of global minima
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is, in principle, not dependent on the starting point for the optimisation, this method tends to

be more robust, while local optimisation requires a smaller number of simulations to achieve

an acceptable solution, making them more e�cient. Besides them, there exist other hybrid

methods for objective function optimisation which combine the advantages of both methods.

Popular optimisers for parameter estimation include BFGS (48), which is a local optimiser, and

simulated annealing (49), which is a global optimiser. (9, 44)

3.2.3 Identifiability

In parameter estimation, di↵erent parameter sets can produce the same value of the objective

function. This means that a single parameter set cannot be chosen as optimal and numerical

optimisations might yield di↵erent parameter sets. This condition, where at least one parameter

cannot be assigned to a single value, is known as non-identifiability. (44)

Non-identifiability can be of two di↵erent kinds: structural or practical. Structural non-

identifiability stems from the mathematical structure of the model. This provokes that, for any

possible experimental data, regardless of their quantity, type or their level of detail, more than

one parameter sets can equally reproduce the same simulation results with respect to measurable

variables. This can happen, for example, if two parameters a and b always appear in the model

as the product c “ a ¨ b. In this case, any combination of a and b with the same value of c

will lead to the same result of the simulation. Structural non-identifiabilities can therefore be

resolved by modifying the mathematical structure of the model.

Practical non-identifiabilities arise when, although the model may be theoretically identifi-

able, experimental data are not of su�cient quality to determine the approximate values of all

parameters. This is more likely to happen if the model is overparameterised, i.e. if it contains

a higher number of parameters than those needed to model the experimental results. (44)

3.2.4 Model Fitting and Prediction

During parameter estimation, the ODE model is fitted to the time course dataset, so that the

resulting model is able to accurately reproduce the results for the same experimental conditions.

This does not automatically make the model a valid tool for the prediction of novel results, and

a model that fits perfectly the available data might be a very poor predictor under di↵erent

conditions. This can be caused by an overfitting of the model. Overfitted models are models

that reproduce the experimental results better than the true model, which is the model that

theoretically determines the results. As a consequence of this, they will fit better the known
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experimental data than those provided by further experiments. Overfitting can be caused a high

amount of noise in data and insu�cient number of data points so that random e↵ects have a

great influence on data distribution. The use of an unnecessarily high number of parameters

(overparameterisation) can also favour the overfitting of the model. (44)

Since one of the objectives of ODE modelling is the generation of new predictions, over-

fitting should be avoided. Overfittings can be detected by cross-validation. Cross-validation

is performed by dividing the experimental dataset in two subsets: one used for model fitting

and the other for prediction testing. The model is optimised for the first data subset, while

the second data subset is not used in model construction, but for assessing the accurateness of

the predictions of the model.This procedure can be repeated for many datasets to evaluate the

quality of predictions of the model. (44)

3.3 TIde: SBML based drug-target identification

TIde (50) is an open-source program for the systematic scanning of drug targets in ODE models

which are implemented in the Systems Biology Markup Language (SBML) (17). TIde is avail-

able both as an online web-program at http://lynx.biologie.hu-berlin.de/TIde/default/

index and as a part of the semanticSBML package, on http://sourceforge.net/projects/

semanticsbml/

This program is a useful framework for the simulation of drug e↵ects in ODE biochemical

models and for drug target detection. This whole work is based on the framework provided by

TIde, chosen as a reference for drug-target identification because of its flexibility, automatability

and the simplicity of the approach. Therefore, the parts of the framework on which this work is

based will be explained in detail.

3.3.1 Drug target identification as a parameter estimation problem

The general approach of TIde for drug target search consists in converting the evaluation of

possible drug targets within an ODE model to a general parameter estimation problem. The

program incorporates possible drugs to the network as new parameters and proceeds to the

optimisation providing as the final output a list of potential drugs, their target and molecular

mechanism. (51)

For the formulation of the problem, an accurate description of both the pathological and

the healthy state of a biological system are needed. In this framework, the pathological state
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3.3 TIde: SBML based drug-target identification

is modelled explicitly as an ODE model. This model can describe, for example, the working

metabolism of a pathogenic organism, biochemical processes in a cancer cell or abnormal activity

of a signalling route in a disease. The healthy state that we want to achieve through drug

targeting is described using a time course, i.e. concentrations of species at certain time points.

For the case of cancer or pathogen organisms, this time course can describe alterations in the

system’s dynamic response leading to cell death. For other diseases, the time course can describe

the normal behaviour of the system. To calculate the deviation between the pathological model

and the healthy time course, an objective function is defined. This function is minimised when

the pathological model fits the healthy data, i. e. when the behaviour of the model is considered

to be that of a healthy system. (51)

Starting from the pathological model, TIde models a set of possible drugs by manipulating

the kinetics of the model to include inhibitors targeting all reactions in the system, with various

mechanisms of action. The concentration of the inhibitor set is stated as an unknown parameter,

creating a vector of parameters p which has to be estimated. The resulting model is then

fitted to the time course data, by evaluating the objective function for minima. The existence

and complexity of acceptable drug combinations depends on many factors. These include the

structure and dynamics of the biochemical network, the concentration and number of allowed

drugs and the complexity of the objective function. Therefore, in order to solve the problem,

di↵erent optimisation strategies can be followed, depending on the complexity of the problem.

This optimisation finally results in a list of inhibitor concentrations that su�ciently satisfy the

healthy conditions. (51)

3.3.2 Modelling of Theoretical Drugs

In the TIde framework, the parameters of the optimisation problem represent the action of

potential drugs systematically targeting every possible drug target in the biochemical network.

In most cases, these parameters are not included as a part of the model and therefore, the model

has to be manipulated to include the new variables. This is done in the following way:

For every selected reaction, the kinetics are modified by including all possible modifiers

(inhibitors or non-essential activators), with di↵erent modes for action, which depend on the

type of kinetic. Kinetics are identified by numerical evaluation and modified employing an

internal library, built based on the Systems Biology Ontology (SBO) (52). New kinetics of the
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system are introduced as superimposed kinetic formulae of the form

v1 “ v
1 ` A

k

A

1 ` I

k

I

for constant flux, mass action law and other kinetics, where v1 and v are the new and original

reaction rates, respectively, A is the concentration of non-essential activator, I the inhibitor

concentration and k is the binding constant of the modifier. For Michaelis-Menten kinetics,

further inhibitors with di↵erent modes of action are introduced as

v1 “ v
max

S

S ` K
m

˜
1` I

comp

k

comp

1` I

unc

k

unc

¸ ¨
1 ` A

k

A

p1 ` I

non

k

non

qp1 ` I

unc

k

unc

q

where I
comp

is a competitive inhibitor, I
non

is a non-competitive inhibitor and I
unc

is an un-

competitive inhibitor. For all cases, the binding constant of the modifiers is equal to 1 (k “ 1).

(51)

These superimposed equations permit incorporating various possible modifications to the

systems kinetics without a↵ecting the structure, as the resulting ODE model is equivalent to

the non-manipulated one when the concentration of all modifiers is 0 and to normal activa-

tion/inhibition kinetics when only one modifier in the system has a non-zero concentration.

(51)

3.3.3 Description of the healthy state

In this framework, the ODE model is used to describe the pathological state of a biochemical

system with an adequate level of detail and accurateness. The model is evaluated for a set of

modifier concentrations which simulate a drug treatment, in order to restore a healthy state.

These healthy state conditions are provided by the user as a set of concentration time points

y
i

pt
j

q for di↵erent species i at di↵erent times j. The time course describes the molecular charac-

teristics of the healthy state, including those species which are altered as a result of the disease

and other important metabolites, to assess whether the simulated treatment shows side-e↵ects.

In the end, an objective function is constructed, describing the conditions that have to be fulfilled

so that the original model can be considered to be in healthy state. (51)

For each time point y
i

pt
j

q of the time course, three possible conditions can be acceptable. If

the substance i needs to be below a certain concentration y
i

pt
j

q, a solution will be considered

acceptable if y
i

pt
j

, ✓q † ypt
j

q, where y
i

pt
j

, ✓q is the concentration of the species i in the model
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y for a drug set ✓. If the concentration of i has to be below a certain value, an acceptable

solution will fulfil y
i

pt
j

, ✓q ° y
i

pt
j

q. Lastly, if the concentration of i has to be within an interval

py
i

pt
j

q ´ �
i

pt
j

q, y
i

pt
j

q ` �
i

pt
j

qq, an acceptable solution will fulfil y
i

pt
j

q ´ �
i

pt
j

q † y
i

pt
j

, ✓q †
y
i

pt
j

q ` �
i

pt
j

q. (51)
The objective function incorporates these conditions and measures the deviation of the model

from the healthy state. In the TIde approach, the objective function is as the sum of squared

normalised residuals

f “
ÿ

i

ˆ
µ
i

pt
j

q ´ X
i

pt
j

q
�
i

pt
j

q

˙2

.

Summands of the objective function are added depending on the healthy conditions that

have to be fulfilled:

• If the concentration of a species has to be minimised beyond a certain threshold, the value

of µ
i

pt
j

q is 0, while X
i

pt
j

q “ y
i

pt
j

, ✓q, so that the lower the concentration is, the lower

is the value of f . The threshold of acceptability ypt
j

q is incorporated as variance �
i

pt
j

q,
so that when y

i

pt
j

, ✓q “ �
i

pt
j

q, the summand is equal to 1. This is incorporated to the

objective function as:

f “ ¨ ¨ ¨ `
ˆ
0 ´ y

i

pt
j

, ✓q
y
i

pt
j

q

˙2

` . . .

• If the concentration of a species has to be maximised beyond a certain threshold, the value

of µ
i

pt
j

q is 0, while X
i

pt
j

q “ 1
y

i

pt
j

,✓q . Thus, the higher the concentration is, the lower is

the value of f . The inverse of the threshold of acceptability 1
ypt

j

q is used as variance �
i

pt
j

q,
so that when y

i

pt
j

, ✓q “ �
i

pt
j

q, the summand is equal to 1. This is incorporated to the

objective function as:

f “ ¨ ¨ ¨ `
˜
0 ´ 1

y

i

pt
j

,✓q
1

y

i

pt
j

q

¸2

` . . .

• If the concentration of a species has to be within a interval py
i

pt
j

q ´�
i

pt
j

q, y
i

pt
j

q `�
i

pt
j

qq,
the value of µ

i

pt
j

q is the central value y
i

pt
j

q of the interval, while X
i

pt
j

q “ y
i

pt
j

, ✓q, so
that the nearer the concentration is to y

i

pt
j

q, the lower is the value of f . The di↵erence

�
i

pt
j

q between the limits of the interval and its centre, is used as variance, so that when

y
i

pt
j

, ✓q “ y
i

pt
j

q ˘�
i

pt
j

q, the summand is equal to 1. This is incorporated to the objective

function as:

f “ ¨ ¨ ¨ `
ˆ
y
i

pt
j

q ´ y
i

pt
j

, ✓q
�
i

pt
j

q

˙2

` . . .
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3.3.4 Determination of successful drug treatments

The objective function f takes the follows a �2 distribution assuming that the residuals
´
µ

i

pt
j

´X

i

pt
j

q
�

i

pt
j

q
¯

are independent and standard normally distributed. Therefore the similarity between the model

and the healthy state could be determined by performing this statistical test with the correspond-

ing degrees of freedom. However, as there is no reason to assume that residuals are standard

normally normally distributed, another criterion for the acceptability of a drug treatment is

defined.

Since the objective function has the structure of a sum of squared elements (which are always

positive), it can be assured that if f “ n, it holds that
´
µ

i

pt
j

´X

i

pt
j

q
�

i

pt
j

q
¯2

§ n for every value of

pi, jq. Because of that, if f § 1 it follows that
´
µ

i

pt
j

´X

i

pt
j

q
�

i

pt
j

q
¯

§ 1 for every value of pi, jq,
which means that all the healthy conditions described as summands of the objective function

are fulfilled. Therefore, a drug combination will be accepted as successful if f § 1. (51)

TIde provides several di↵erent optimisers for the simulation of drug treatments and the esti-

mation of the drug combinations that can lead a pathological model to healthy state, including

BFGS (48), simulated annealing (49), Nelder Mead (53) or a genetic algorithm (54). However,

due to the high speed of simulations, brute-force optimisation is also possible. In brute-force op-

timisation, the value of the objective function for the whole parameter space is directly scanned

for every drug through an interval, provided a maximum and minimum concentration threshold

and a number of simulation steps. Brute force optimisation is very robust and can also be

used for testing combinations of drug pairs for small models, while for testing for higher order

combinations other more e�cient algorithms such as the optimisers mentioned above have to be

used. (51)

3.4 Drug target identification in healthy models

TIde provides a useful framework for the identification of drug targets in ODE models of patho-

logical system. But in many cases, it is not possible to study an illness using this method, as

models of diseases are specific to one disease. There is therefore a total dependence on the exis-

tence of pathological models. While for some cases, such as infectious diseases, models relevant

to the disease might be available, this is generally the case for multifactorial diseases, as they

32



3.4 Drug target identification in healthy models

cannot be described by a single model. Multifactorial diseases have a great impact on human

health and including disorders such as cancer, diabetes, obesity or hypertension. There might

exist models which describe the healthy state of the biological system, but these models cannot

be used for drug target identification using this approach, as they do not include a description

of the pathological state to use as a starting point of the drug search. In this work, I adapt

this framework to provide a solution for this problem of how to predict possible drug targets on

models that describe the healthy state of a system, in order to study multifactorial diseases.

My approach is based on the assumption that models describing healthy systems can be used

for the simulation of mutations that lead to a pathological state. This is done by systematically

impairing every reaction and species in the model creating a set of perturbed models, which

model potential pathological conditions. The pathological model set is evaluated for an objective

function describing the characteristics of the initial healthy model which are thought to be most

relevant for the functioning of the system. After this, the pathological systems are scanned for

drug treatments that can restore the original value of the objective function, and thus rescue the

phenotype of the model. The final output is a set of models, with di↵erent kinds of perturbations

and all the drug treatments that have been able to restore the original healthy condition.

This methodological approach has been developed as a Python script (see Appendix 1),

which makes use of the libTI2 libraries of the semanticSBML package.

3.4.1 A priori simulation of pathological models

At the start of the approach pipeline, the healthy model is manipulated in the manner described

in section 3.3.2 to include the kinetics of all possible drug modifiers: inhibitors and non-essential

activators for constant flux, mass action law and other kinetics and competitive inhibitors,

non-competitive inhibitors, uncompetitive inhibitors and non-essential activators for Michaelis-

Menten kinetics. Furthermore, an additional type of inhibitor is incorporated, that does not

a↵ect the kinetics of existing reactions, but adds new ones. These inhibitors are inactivators

that specifically and reversibly bind a species of the model, producing an inactive form:

S ` I é S
inhibited

k “ rSsrIs
rS

inhibited

s “ 1

The concentration of inactivator is modelled as a constant, so that at a every time point, if

rIs “ 1, 1
2 of the targeted species are in inactive form and fulfilling that rSs “ rS

inhibited

s-
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After all the di↵erent types of modifiers and new species have been incorporated to the model,

a set of knock-out models is created. This is done by iteratively inhibiting every reaction and

species in the model. Reactions are knocked-out by fixing the concentration of the corresponding

(non-competitive) inhibitor to the arbitrarily high value of 99999999, which makes the reaction

function at 10´8 of its normal velocity. Species are knocked-out in a similar way, by fixing the

concentration of the corresponding inactivator to 108, so that only approximately 10´8 of the

species is at free state. Additionally, when knocking-out a component of the model a↵ects the

system in an unrepairable way, softer (knock-down) conditions are employed. In these conditions,

both (non-competitive) inhibitors and inactivators are fixed at a concentration of 1, so that the

knocked-down reaction functions at 1
2 of its normal velocity or 1

2 of the knocked-down species is

at an inactive state.

Since the concept of a biological species (for example, a certain protein) does not have

to exactly correspond to that of the species in the model, this approach allows for inputting

which species in the model are to be simultaneously knocked-out, by fixing the same values of

inactivator modifiers for every one of them. Furthermore, as di↵erent number of reactions can

be catalysed by the same enzyme, this system also allows for simultaneously knocking out the

desired number of reactions.

3.4.2 Description of the healthy state

The healthy state of the system is described as an objective function. In this approach, the

values of the time course are taken from the output of the initial model, which describes the

healthy state that we want to restore. The choice of the values, i.e. which species and which time

point to consider, is not trivial, but must stem from knowledge on which are the most important

features of the model that are essential for the correct functioning of the system. have to be

considered. This framework allows for introducing as many time points as desired and can

evaluate the values of the variables at these time points as well as their integrals from t “ 0.

A balance between accurateness and simplicity must be kept at the time course generation, so

that the chosen time course can su�ciently describe the healthy state that we want to restore,

but without introducing unnecessary constraints.

Once the time course for optimisation has been chosen, an objective function has to be con-

structed. The choice of the objective function is not trivial either, since the a priori simulation

of pathological states can a↵ect the relevant concentrations of the system in di↵erent ways.

This is an additional di�culty in comparison to the use of pathological models for drug target
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predictions, as in this case only the healthy time course values are known, but not whether the

concentration in the new modelled will be over the threshold or below it. Because of this, one

must decide how to construct the objective function. There are three possibilities:

• Only considering variations of the measurables in one direction. In this case, the objective

function will be constructed so that, for every time point, it either maximises or minimises

the value of the species beyond the health-threshold. If for all time points the species

already surpasses that threshold, the objective function will consider the model as healthy,

even though it might be radically di↵erent from the original ODE model.

• Defining the objective function as an acceptable interval. In this case, models with great

variations (regardless of the direction) in the values of the time course will be considered

as pathological. However, the broadness of the acceptable interval cannot be deduced from

the original ODE model, so it must be based either on literature data or arbitrarily defined

(for example, as a variation of ˘20% of the healthy value).

• Consider variations of the measurables in both directions. This framework allows for the

simultaneous use of multiple objective functions. Therefore, one can define one objective

function so that it maximises the values of the observables and another one for minimisation

of the values for every time point.

For the assays performed in this work, I have preferred the third approach to construct the

objective function, since it requires no previous assumption (or knowledge) of which interval

around the original value can be considered acceptable and can be used both for models that

show increased and decreased values of the observables. The idea behind the approach is the

following:

A set of 2n objective functions is constructed, where n is the number of time points in the

time course. For each time point, two objective functions are defined, one that aims for the

maximisation of the observables and another that aims for their minimisation. These objective

functions are used for evaluating the e↵ect of the mutation on every time point. The objective

functions with a value over 1, describing the observables that have been modified by the mutation

and whether they are increased or decreased, are then considered for optimisation. In this

tool, I have implemented this idea for one time point and two objective functions, so that they

respectively describe the minimisation and the maximisation of one observable at one time point.

Therefore, only one of them will show values over 1, and will be considered for the optimisation.
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3. METHODS

3.4.3 Determination of successful drug treatments

After the objective function is defined, the program proceeds to evaluating every knock-out

model in the set for the search of possible drugs that can restore the healthy state of the

biological system. This is performed with a parameter estimation, where the parameter vector

comprises concentrations of all modelled drugs, except for those a↵ecting the same reaction or

species that has been knocked-out. Drug scans in pathological models in this work are performed

by using a brute-force 1-dimensional optimisation. A maximum and a minimum concentration

for the drugs is defined and a number n of steps, so that every drug is individually assayed for

n concentrations in a uniform logarithmic scale between the defined minimum and maximum.

Since some reactions or molecules can be targeted by the same drug, this approach allows for

inputting which reactions or species in the model share common drug a�nities, so that they are

targeted simultaneously by using the same concentrations of drugs.

If at least one drug treatment is found to satisfy that the objective function f † 1 for two

consecutive time points, the simulation is considered successful and a list of drugs that satisfy

this condition and their concentration at f “ 1, is provided. If no drug treatment is successful,

the simulation is re-run using the knock-down model for the same reaction/species, which shows

a less marked e↵ect on the behaviour of the system. If the simulation does not find a successful

treatment for the knock-down either, the model is considered unrestorable.
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4

Results

4.1 Simple pathway example

4.1.1 Description of the model

As a proof of concept for the applicability of my framework, I have created an ODE model

describing a simple pathway, using the tool COPASI(19). The model is composed of 8 species

and 10 reactions and consists of a linear part which bifurcates into a bi-branched pathway, joining

again at the end. The linear part describes the synthesis of the species S1 and its successive

transformation into S2 and S3. At this point the pathway splits into two sub-pathways, the first

of them comprising species S4 and S5 and the second, S6 and S7, where S5 is a non-essential

activator of S3 Ñ S6 and S7 is a non-essential activator of S3 Ñ S4. The pathway converges at

S8, which is then degraded. All reactions in the pathway are irreversible. Seven of them follow

mass-action kinetics, one is a constant flux, and the remaining two are described by user defined

laws. A graphical representation of the model is shown on Figure 4.1, and their reaction kinetics

can be seen on Table 4.1.

Figure 4.1: Visualisation of the example pathway - Figure generated with CellDesigner(18).
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4. RESULTS

Reaction Rate Law Kinetic expression

1 Ñ S1 Constant flux V1 “ 0.1

2 S1 Ñ S2 Mass action V2 “ 0.1 ¨ S1

3 S2 Ñ S3 Mass action V3 “ 0.1 ¨ S2

4 S3 Ñ S4 Own rate law V4 “ 0.1 ¨ S3 ¨ p1 ` 0.1 ¨ S7q
5 S4 Ñ S5 Mass action V5 “ 0.1 ¨ S4

6 S3 Ñ S6 Own rate law V6 “ 0.1 ¨ S3 ¨ p1 ` 0.1 ¨ S5q
7 S6 Ñ S7 Mass action V7 “ 0.1 ¨ S6

8 S5 Ñ S8 Mass action V8 “ 0.1 ¨ S5

9 S7 Ñ S8 Mass action V9 “ 0.1 ¨ S7

10 S8 Ñ Mass action V10 “ 0.1 ¨ S8

Table 4.1: Reactions of the example pathway - The reactions of this pathway follow mostly

mass action kinetics, with the exception of reaction 1, a constant flux, and reactions 4 and 6, where

the reaction rate depends both on the substrate and the products of reactions 7 and 5, respectively.

For simplicity, all reactions share a common reaction constant k “ 0.1.

Numerical simulations of the model, as visualised in Figure 4.2, show that the system reaches

a steady state approximately at t “ 100. This is possible since the only synthesis and degradation

reactions in the pathway have the same rate for S8 “ 1.0. In this state, the concentrations of

S1, S2 and S8 is equal to 1, S4, S5, S6, S7 “ 0.5 and S3 “ 0.48. Since the degradation of S3 is

activated by species S5 and S7, in steady state its concentration is kept at lower levels than that

of its substrate and products.

4.1.2 Results

Applying my framework to this example pathway results in a set of knock-out and knock-down

versions of the model, where either one species or one reaction is inhibited. As described in

Section 3.4.3, knock-down models are only created in case the corresponding knock-out is not

restorable by any possible treatment. The change of S8 concentration at an arbitrarily large

(t “ 500) time point was chosen as the reference for assessing the influence of perturbations on

the steady-state values of the system. The information on the mutant models is shown on Table

4.2.

A total of 25 mutant models were generated of which 17 showed a change of S8pt“500q. These

models are classified as pathological, as they could theoretically describe an illness stemming

from alterations in the pathway. A drug scan was performed for the 15 pathological models,
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4.1 Simple pathway example

Figure 4.2: Simulation of the behaviour of the system - Simulation performed with COPASI

(LSODA(45) solver). Figure generated with LibreO�ce Calc.
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Model name Change of S8 (t “ 500)

Knock-out reaction 1 (KOre1) ´100.00%

Knock-down reaction 1 (KDre1) ´50.00%

Knock-out reaction 2 (KOre2) ´100.00%

Knock-down reaction 2 (KDre2) 0.0%

Knock-out reaction 3 (KOre3) ´100.00%

Knock-down reaction 3 (KDre3) 0.0%

Knock-out reaction 4 (KOre4) 0.0%

Knock-out reaction 5 (KOre5) ´51.19%

Knock-out reaction 6 (KOre6) 0.0%

Knock-out reaction 7 (KOre7) ´51.19%

Knock-out reaction 8 (KOre8) ´28.77%

Knock-out reaction 9 (KOre9) ´28.77%

Knock-out reaction 10 (KOre10) 4452.38%

Knock-out S1 (KOS1) ´100.00%

Knock-down S1 (KDS1) 0.0%

Knock-out S2 (KOS2) ´100.00%

Knock-down S2 (KDS2) 0.0%

Knock-out S3 (KOS3) ´100.00%

Knock-down S3 (KDS3) 0.0%

Knock-out S4 (KOS4) ´51.19%

Knock-out S5 (KOS5) ´51.19%

Knock-out S6 (KOS6) ´51.19%

Knock-out S7 (KOS7) ´51.19%

Knock-out S8 (KOS8) ´100.00%

Knock-down S8 (KDS8) 0.0%

Table 4.2: Simulated mutants for the example model - Bold are those models for which at

least one treatment could restore the original value of S8 (t “ 500)
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4.1 Simple pathway example

using two objective functions:

f “
˜
S8pt“500q
S8pt“500q

¸2

f “
˜
S8pt“500q
S8pt“500q

¸2

where the first objective function evaluates whether the concentration of S8 is over 1.0, while

the second evaluates whether S8 † 1.0. S is the value of S8pt“500q for the original model

S8pt “ 500q “ 1.0. Inhibitors and non-essential activators were simulated for each reaction and

inactivators for every species. A brute force optimisation (min: 0.01, max: 10000 steps: 50) for

drug concentrations was performed. For 10 of the pathological models at least one drug was

found to restore the original phenotype for a concentration between 0.1 and 10000.

The results of my analysis are shown on Tables 4.1 and 4.3. The first noteworthy character-

istic is that all mutant models show a downregulation of S8 output, except for KOre10. This is

expected, as all species and reactions in the model participate in the synthesis of S8 with the

exception of KOre10, which describes the degradation of S8. As the e↵ect of mutations is oppo-

site in these two groups, one would expect that drugs that can restore the healthy phenotype in

one group cannot restore it for the other, and vice versa. This is the case in this example, and

as a consequence of that, I can classify drugs for their capability of restoring healthy behaviour

in either of the two mutant groups (see Figure 4.3)

Figure 4.3: Summary of the results - Shown in red are the species or reactions whose mutation

cause a downregulation of S8 output, in green the species or reactions whose mutation cause an

upregulation. Lighter shades indicate that the model is a knock-down while darker shades indicate

knock-out models. The arrows symbolise the target point of successful drug treatments, with red

arrows restoring red mutants and green arrows, green mutants. Arrows pointing downwards indicate

inhibitors (for reactions) or inactivators (for species), while arrows pointing upwards indicate non-

essential activators (for reactions).
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Model name Successful drugs (e↵ective concentration)

KDre1 reaction10 inhibitor (1.03)

KOre5
reaction1 activator (1.14)

reaction10 inhibitor (1.09)

KOre7
reaction1 activator (1.14)

reaction10 inhibitor (1.09)

KOre8
reaction1 activator (0.35)

reaction10 inhibitor (0.40)

KOre9
reaction1 activator (2.13)

reaction10 inhibitor (1.09)

KOre10

S8 inactivator (49.75)

reaction1 inhibitor (50.20)

S4 inactivator (487.98)

S6 inactivator (487.98)

S5 inactivator (496.54)

S7 inactivator (496.54)

S1 inactivator (1216.25)

S2 inactivator(1216.25)

reaction2 inhibitor (1210.86)

reaction3 inhibitor (1210.86)

S3 inactivator (2387.29)

KOS4
reaction1 activator (1.14)

reaction10 inhibitor (1.09)

KOS5
reaction1 activator (1.14)

reaction10 inhibitor (1.09)

KOS6
reaction1 activator (1.14)

reaction10 inhibitor (1.09)

KOS7
reaction1 activator (1.14)

reaction10 inhibitor (1.09)

Table 4.3: Successful treatments for each pathological model
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4.1 Simple pathway example

Two reactions determine the overall flux through the system. Reactions 1 and 10, the

synthesis of the first component of the pathway and the degradation of the last, respectively,

are vital for modulating the activity of the pathway, as proved by the fact that out of eight

models with downregulated S8 seven can be restored by a non essential activator of reaction

1 or an inhibitor of reaction 10. If this model represented a real pathway, the results would

suggest concentrating on these two reactions for the search of possible drug targets, since they

can restore almost all possible alterations in the network. In this search, the focus should be

especially put on reaction 10, as inhibitors are easier to construct than activator drugs.

For the only model (KOre10) with upregulated S8, multiple drugs have been found to be

able to restore the initial state. But this can be misleading, because this model does not reach

a steady state, since the degradation flux is impaired, so that it is not possible that for t “ 500

V1 “ V10. Drugs can diminish the concentration of S8, but do not prevent its accumulation, so

the necessary treatments depend on the chosen time point. This phenomenon, the disappearance

of steady state due to mutations, should be taken into account when elaborating the objective

function for a real analysis to ensure that the basic behaviour of the model is maintained and

not only the value at one time point. Additionally, for high concentrations the model was found

to be restorable by drugs that theoretically should not have any impact downregulating S8, such

as reaction 6 or reaction 9 non-essential activators. As these results could not be reproduced

on COPASI and only appeared for certain tolerance parameters of the solver, I determine that

these results are artifacts of the numerical optimisation and did not take them into account.

An interesting observation is that mutations on reactions and on species have di↵erent ef-

fects. For example, KOre4 does not show any change on S8 output, while K0S4 clearly has

S8 downregulated. KDre1 shows a reduction in 50% of output, while KDS1 does not. These

di↵erences stem from the fact that measures are taken at a t “ 500, when the system has already

reached its steady state. For the case of KOre4 and KOS4, knocking out reaction 4 produces a

slowing-down of the production of S8, but the flux of concentrations is finally deviated through

the other branch. This is not possible for KOS4 because a only a part of the S3 is converted

into S4, while the rest enters into a dead-end, accumulating as inactive S4, so that the system

cannot reach the steady state. Knocking-down S1 causes a temporal descent of flux through the

pathway, but as reaction 2 depends on the concentration of S1, it is accumulated, thus over-

coming the inactivation of half of the species and reaching the steady state. However, knocking

down reaction 1 directly a↵ects the steady state, as it is the only reaction that increments the

total concentration of species.
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The fact that mutations on reactions and on species do not have the same impact high-

lights the need of treating metabolic pathways and signalling pathways di↵erently. Metabolic

pathways, on the one hand, consist of a series of metabolites, connected by reactions which are

catalysed by enzymes (proteins). These enzymes are encoded in the genome, so that mutations

in this context a↵ect primarily the reactions. Signalling pathways, on the other hand, consist

of interactions between proteins, so that mutations would a↵ect in principle the species, and in

some cases the reactions, as a mutation can a↵ect the interaction between species (i. e. chang-

ing the binding site of a protein). Therefore, biological perturbations in metabolic pathways

will be more adequately modelled by reaction knock-outs and knock-downs, while in signalling

pathways, species (and some reaction) mutants will model possible pathological conditions.

4.2 Implementation for a biologically relevant example: TGF-�

signalling pathway

As a biological application for my tool, I have investigated TGF-� signalling with the objective of

finding possible pathologies produced by perturbations in this biological network and treatments

that can restore them. I have chosen this pathway due to its complex relationship with cancer

and other diseases in human beings (see Section 1.3.2) and the availability of computational

models. In my considerations, the models by Zi et al. 2011(34) and Wegner et al. 2012(25) have

been used as the reference framework for the study of this pathway, because of their novelty and

their level of detail. Both models are available on BioModels (14).

4.2.1 Description of the Zi et al 2011 TGF� model

The TGF-� model of Zi et al. 2011 is a computational model of TGF-� pathway on human ker-

atinocytes (HaCaT), created with the objective of describing the di↵erent responses of cells to to

continuous and pulsating TGF-� stimulation. The model consists of 21 species, 3 compartments

and 29 reactions, most of which follow mass action kinetics.(34)

The activation of the signalling route by TGF� results in the accumulation of Smad proteins

in the nucleus, of which the phosphorylated dimers Smad2-Smad4 and Smad3-Smad4 (not in-

cluded) act as secondary messengers of the signalling pathway binding to the target genes and

regulating their transcription, both positively and negatively. Because of this, nuclear Smad2-

Smad4 (PSmad2 Smad4 n) is used as the output of the pathway. As it has been suggested

that long-term signalling e↵ects might be of critical importance for cell fate determination(34),
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4.2 Implementation for a biologically relevant example: TGF-� signalling
pathway

Figure 4.4: Visualisation of Zi et al 2011 TGF� model - This model describes the bind-

ing of TGF-� (TGF´) to its two receptor molecules T1R surf and T2R surf , forming the large

receptor complex (LRC surf). This complex is internalised and activated, catalysing the phospho-

rylation of Smad2c. Phosphorylated Smad2 (PSmad2c) forms heteromeric complexes with Smad4

(PSmad2 Smad4 c), as well as homomeric complexes (PSmad2 PSmad2 c). These complexes are

imported and accumulate in the nucleus, as the species PSmad2 Smad4 n and PSmad2 Smad4 c,

which trigger a negative feedback-loop (reaction28), which degrades LRC surf . Taken from Zi et

al 2011(34)
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4. RESULTS

Figure 4.5: Time course of PSmad2 Smad4 n (nM) vs. time (min) for TGF ´ � “ 0.05nM

- Simulation performed with COPASI (LSODA(45) solver). Figure generated with LibreO�ce Calc.
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4.2 Implementation for a biologically relevant example: TGF-� signalling
pathway

I have used a long time for the time course. This model reaches a quasi-steady state of

PSmad2 Smad4 n « 24.0 nM at t ° 150 min for an initial concentration of TGF-� of 0.05

nM (see Figure 4.5 ). Therefore, I have constructed the following objective functions for the

description of the healthy state, taking as reference time point the arbitrarily high t “ 500 min:

f “
˜
PSmad2 Smad4 npt“500q
PSmad2 Smad4 npt“500q

¸2

“
ˆ
PSmad2 Smad4 npt“500q

2.33

˙2

f “
˜
PSmad2 Smad4 npt“500q
PSmad2 Smad4 npt“500q

¸2

“
ˆ

2.33

PSmad2 Smad4 npt“500q

˙2
(4.1)

where PSmad2 Smad4 npt“500q is the output for the healthy model.

4.2.2 Results

Applying my framework to the Zi et al 2011 TGF� model results in a set of knock-out and

knock-down versions of the model, where either one species or one reaction is inhibited. The

information on the mutant models is shown on Table 4.2. A total of 43 mutant models were

generated (see Table 4.4).

A drug scan was performed for them, using the objective functions as shown in Eq. 4.1 and

a correspondences file describing the which species are knocked-out together, because they are

forms of the same protein (see Appendix 2). Using a brute force optimisation (min: 0.01, max:

10000, steps: 50) at least one drug was found to restore the original phenotype for 33 of the

models. For simplicity, the obtained results were plotted as a matrix and are shown on Figure

4.6.

Both, models and drugs, can be divided roughly into two groups. Each group of drugs can

restore one group of mutant models but not the other. This behaviour strongly resembles that of

the example pathway, where drugs could be classified between those that restore downregulated

models and those that restore upregulated models. However, in this case there are models that

are unexpectedly restored by drugs that do not have an action on similar models. For example,

KDT2R, a downregulated model with a �PSmad2 Smad4 npt“500q “ ´0.10%, can be restored

by PSmad2n inactivator, which also restores other upregulated models includingKOre28, with

a �PSmad2 Smad4 npt“500q “ 172.36%. This feature could stem from the complexity of the

biochemical network so that the same drug can have di↵erent e↵ects in di↵erent models due to

interactions between the mutated gene and the drug target. But as every model, regardless of
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Model name Change of PSmad2 Smad4 n (t “ 500)

Knock-out reaction 1 (KOre1) ´76.34%

Knock-out reaction 2 (KOre2) 6.15%

Knock-out reaction 3 (KOre3) ´30.33%

Knock-out reaction 4 (KOre4) 4.06%

Knock-out reaction 5 (KOre5) ´99.07%

Knock-out reaction 6 (KOre6) 6.13%

Knock-out reaction 7 (KOre7) ´13.82%

Knock-out reaction 8 (KOre8) 7.20%

Knock-out reaction 9 (KOre9) ´100.00%

Knock-down reaction 9 (KDre9) ´3.68%

Knock-out reaction 10 (KOre10) ´100.00%

Knock-down reaction 10 (KDre10) ´24.03%

Knock-out reaction 11 (KOre11) 3.32%

Knock-out reaction 12 (KOre12) 163.46%

Knock-out reaction 13 (KOre13) 0.00%

Knock-out reaction 14 (KOre14) 8.54%

Knock-out reaction 15 (KOre15) ´100.00%

Knock-down reaction 15 (KDre15) ´7.14%

Knock-out reaction 16 (KOre16) ´55.51%

Knock-out reaction 17 (KOre17) ´58.79%

Knock-out reaction 18 (KOre18) ´100.00%

Knock-down reaction 18 (KDre18) ´27.62%

Knock-out reaction 19 (KOre19) 0.32%

Knock-out reaction 20 (KOre20) ´5.74%

Knock-out reaction 21 (KOre21) ´13.89%

Knock-out reaction 22 (KOre22) ´34.06%

Knock-out reaction 23 (KOre23) 474.52%

Knock-out reaction 24 (KOre24) 234.07%

Knock-out reaction 25 (KOre25) 0.17%

Knock-out reaction 26 (KOre26) 0.15%

Knock-out reaction 27 (KOre27) ´23.23%

Knock-out reaction 28 (KOre28) 172.36%

Knock-out reaction 29 (KOre29) 0.11%

Knock-out Smad2 (KOSmad2) ´100.00%

Knock-down Smad2 (KDSmad2) ´29.50%

Knock-out Smad4 (KOSmad4) ´100.00%

Knock-down Smad4 (KDSmad4) ´31.51%

Knock-out TGF´� (KOTGF´�) ´100.00%

Knock-down TGF´� (KDTGF´�) ´3.68%

Knock-out T1R (KOT1R) ´100.00%

Knock-down T1R (KDT1R) ´0.47%

Knock-out T2R (KOT2R) ´100.00%

Knock-down T2R (KDT2R) ´0.10%

Table 4.4: Simulated mutants for the Zi et al 2011 TGF� model - Bold are those models

for which at least one treatment could restore the original value of PSmad2 Smad4 n (t “ 500)
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4.2 Implementation for a biologically relevant example: TGF-� signalling
pathway

Figure 4.6: Successful treatments for mutant models of Zi et al 2011 TGF� model -

Each cell describes the combination of a drug (columns) with a mutant model (rows). Shown in

blue are unsuccessful treatments and treatments that could restore healthy conditions on di↵erent

shades of red. Darker shades of red indicate drugs e↵ective at lower concentrations, lighter shades

indicate drugs e↵ective at higher concentrations. Hierarchical clustering of the drugs and models was

performed using pairwise-complete linkage method and Pearson correlation as a distance measure.

Analysis and visualisation have been performed in generated with GenePattern(55)
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their output change, is included in the analysis, drugs with very weak and non-linear e↵ects may

appear to be e↵ective for mutants of the other group if they are very near to normal conditions.

To exclude this e↵ect of the use of all models in the analysis, as well as for simplifying results, I

evaluated the behaviour of the models to define a threshold of pathogeny, a threshold to define

which models are regarded as pathological or similar enough to the healthy state.

Figure 4.7: �PSmad2 Smad4 npt“500q (%) for upregulated models - This Figure shows the

change in output for the set of upregulated mutant models, ordered from the lowest output to the

highest. The figure generated has been generated with LibreO�ce Calc.

As it can be observed on Figure 4.7, most of the models with upregulated TGF-� signalling

show a �PSmad2 Smad4 npt“500q lower than 50%. Only four models have a output change

higher than 100%, and a marked di↵erence between the fourth and the fifth models with highest

output change, and between the fifth and the sixth, is observed. As it can be seen on Figure

4.8, for the models with downregulated TGF-� signalling there are three models with a output

change lower than -40% and a set of seven models with very similar output change, between

30% and 20%. Therefore, there are two possible options for defining the threshold of disease:

the stricter threshold defining as diseased those models with output change higher than 100%

or lower than -40%, and a less demanding threshold, defined as �PSmad2 Smad4 npt“500q °
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pathway

Figure 4.8: �PSmad2 Smad4 npt“500q (%) for downregulated models - This Figure shows

the change in output for the set of downregulated mutant models, ordered from the lowest output

to the highest. The figure generated has been generated with LibreO�ce Calc.
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50%_�PSmad2 Smad4 npt“500q † ´10%. To maximise the number of analysed cases, I decided

to employ the second threshold.

Figure 4.9: Successful treatments for pathological models of Zi et al 2011 TGF� model

TGF� model - Similar analysis as in Figure 4.6. Cells in black indicate drugs which act on elements

that are knocked out or knocked down in the model. Analysis and visualisation have been performed

in generated with GenePattern(55) and manually modified to include those combinations that have

not been assayed.

The results of the filtered analysis are shown on Figure 4.9. It can be observed that there

are still some drugs with the e↵ect of restoring both upregulated (upper part of the matrix)

and down-regulated models (lower part) for some cases, such as activation inhibitor re16,

noncompetitive inhibitor re17, activation inhibitor re20, noncompetitive inhibitor re23 and

activation inhibitor re5. As these results could be reproduced using COPASI, I determined

that they are caused by changes in the interaction between the drug target and the mutation.

For example, activation inhibitor re16 and noncompetitive inhibitor re17, which in normal

conditions induce the accumulation of Smad4 in the nucleus and therefore an augment of the

output, have the opposite e↵ect in the case of KO23. This can be explained by the fact that
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nuclear Smad4 cannot dimerise, which downregulates the output. But, apart from these excep-

tions, drugs can be generally classified as being able to restore one group of models.

Upregulated models can generally be restored using inactivators for species in the signalling

route, such as the receptors and Smad compounds. Understandably, those that directly target

nuclear Smad compounds have a stronger e↵ect on the output. They can also be restored by

inhibitors of the reactions necessary for output generation, such as reactions 9, 10 and 18, and

activators of the degradation of key species (i. e. reactions 11 and 18) and of the reactions that

stop output generation (i. e. reactions 2, 6 and 12). Strangely, the inactivator of TGF � endo

seems to have an e↵ect on this model group, although this species is not the substrate of

any reaction and its accumulation does not a↵ect in any way the system. This result could

not be reproduced using COPASI. Therefore, I considered this result to be an artifact of the

optimisation.

For downregulated models, the list of possible drugs is shorter. KOre5, the model with the

lowest output can only be restored by three possible drugs. This list of drugs includes activators

of reactions key for signalling, i.e. reactions 10, 18 and 23, and inhibitors of those that describe

degradation of important species, i.e. reactions 24, 12 and 28. The results are summarised on

Figure 4.10, which shows the mutant models that have a greater change of PSmad2 Smad4 n

and the drugs that can restore them.

4.2.3 Description of the Wegner et al 2012 TGF� model

The TGF� model of Wegner is the second biologically relevant model that has been analysed

using my framework. It describes TGF-� signalling on mouse hepatome cells (AML12) and

has been created with the objective of describing the di↵erent feedback loops in the model and

analysing their impact in the overall signalling in detail. Moreover, the model determines that

for a realistic set of parameter values, TGF-� signalling leads to an oscillating response, in

contrast to the Zi model. The model consists of 53 species, 2 compartments and 91 reactions,

and the majority of the reactions follow mass action kinetics whereas phosphorylation and

dephosphorylation of RSmad are described by Michaelis-Menten type kinetics.(25)

In these model, activation of the signalling route by TGF� results in the accumulation of

phosphorylated Smad2-Smad4 and Smad3-Smad4 dimers (pRSmad Smad4 n) in the nucleus,

triggering gene expression, which in this model is explicitly described as geneProduct. As this is

the final output of the pathway, geneProduct is used as the species of reference for quantifying

TGF-� signalling. In order to construct the objective function, I select a late time point as in
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Figure 4.10: Summary of the results for Zi et al 2011 TGF� model - Same analysis as in

Figure 4.3
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Figure 4.11: Summary of Wegner et al 2012 TGF� model - This model describes the binding

of TGF-� to its two receptor molecules TGF�RI and TGF�RI. This complex is internalised and

activated, catalysing the phosphorylation of Smad2 and Smad3 (RSmadc), which can be facilitated

by the Smad anchor for receptor activation (SARA). Phosphorylated RSmad (pRSmadc) forms

heteromeric complexes with Smad4 (pRSmad Smad4 c). These complexes are imported and accu-

mulate in the nucleus as the species pRSmad Smad4 n where they trigger gene expression. This also

activates multiple feedback pathways: SARA, a positive feedback mediator and Smad7, Smurf1{2,
Ski and SnoN mediate negative feedback reactions. Smurf2 has an additional e↵ect as a promoter

of nuclear SnoN degradation when SnoN is bound to pSmad2 (not shown in the Figure). Addi-

tionally, the model includes Arkadia, a protein that degrades Smad7 and SnoN bound to RSmad.

This Figure has been taken from Wegner et al 2012(25)
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Figure 4.12: Time course of geneProduct (µM) vs. time (min) for TGF ´� “ 0.01µM - Sim-

ulation performed with COPASI (LSODA(45) solver). Figure has been generated with LibreO�ce

Calc.
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4.2 Implementation for a biologically relevant example: TGF-� signalling
pathway

the analysis of Zi et al. 2011 model. But since this model shows a marked oscillation for t ° 100

min of approximately 0.009 ˘ 0.003 (see Figure 4.12 ), choosing a unique time point could lead

to a shift on the oscillation being considered as an upregulation of the model. Therefore, I

have constructed the objective function as a function of the integral of geneProduct, taking as

reference time point the arbitrarily high t “ 500 min:

f “
˜
geneProduct intpt“500q
geneProduct intpt“500q

¸2

“
ˆ
geneProduct intpt“500q

3.99

˙2

f “
˜
geneProduct intpt“500q
geneProduct intpt“500q

¸2

“
ˆ

3.99

geneProduct intpt“500q

˙2
(4.2)

where

geneProduct intpt“500q “
t“500ª

0

geneProductptqdt

and geneProduct intpt“500q is the value for the healthy model.

4.2.4 Results

A total of 120 mutant models were generated and a drug scan was performed, using the ob-

jective functions 4.2 and a correspondences file (see Appendix 2). After a linear brute force

optimisation (min: 0.01, max: 10000, steps: 50) 105 of the models were found to be restorable.

The information on the mutant models is summarised on Figures 4.13 and 4.14 and the results

of the drug scan are shown on Figure 4.15

The results obtained from the Wegner et al 2012 TGF� model are of great complexity due

to the size of the model. Therefore, to simplify the output and ensure that only the drugs with

strong e↵ects are taken into account, I evaluated the behaviour of the models to again define a

threshold of pathogeny.

As it can be observed on Figure 4.13, most of the models with upregulated TGF-� signalling

show a �geneProduct intpt“500q lower than 35%. Only five models have a output change higher

than 100%, and there is great di↵erence between the fifth and the sixth models and between the

17th and the 18th models with highest output change. For the case of downregulated models

(Figure 4.14), there is a big shift in downregulation between models 5 and 6 and between models 9

and 10. Therefore, there are again two possible options for defining the threshold of pathogeny:

the stricter threshold �geneProduct intpt“500q ° 100% _ �geneProduct intpt“500q † ´90%

and a less demanding threshold, �geneProduct intpt“500q ° 35% _ �geneProduct intpt“500q †
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Figure 4.13: �geneProduct intpt“500q (%) for upregulated models - This Figure shows the

change of output for the set of upregulated mutant models, ordered from the lowest output to the

highest. Figure has been generated with LibreO�ce Calc.
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pathway

Figure 4.14: �geneProduct intpt“500q (%) for downregulating models - This figure shows the

change of output for the set of downregulated mutant models, ordered from the lowest output to the

highest. Figure has been generated with LibreO�ce Calc.

Figure 4.15: Same analysis as in Figure 4.6. -
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´25%. To keep consistency with the analysis of the Zi model, I decided again to employ the least

strict threshold. The results of the filtered analysis are shown in Figure 4.16 and summarised

in Figure 4.17.

As it can be observed, drugs fall again into two groups, with the ones that restore upregu-

lated models in the upper part and those that restore downregulated models in the lower part.

upregulated models are, in general, restored by inactivators of the species essential for TGF-�

signalling, such as the receptor complexes and pRSmad Smad4 n, as well as by activating their

degradation or inhibiting their synthesis. The possible array of drugs that restore the downreg-

ulated models is much smaller, and six of the most downregulated models can only be restored

by a non-essential activator of Ski synthesis. The other models can, in general, be treated by

targeting species implicated in negative feedback, i.e. Smad7 and Smurf1{2, or by drugs with

opposite e↵ect to the ones against upregulated models.

Especially interesting is the case of Ski. This species is part of the negative feedback mecha-

nism of TGF-� signalling, as it binds to activated Smad heterodimers and blocks gene expression.

Therefore, one would not expect an activator of its synthesis to restore downregulated models.

However, when Ski binds to nuclear Smad4, it blocks Smad7 productions, and this e↵ect seems

to be relevant enough so that it can restore most of the downregulated models, even models

with an output reduction near to 100%, such as KORec comp1 (see Figure ??).

4.3 Biological insights gained from my framework

The two models on TGF-� signalling that I have analysed in this work focus on di↵erent aspects

of the network. While the Zi model focuses on the basic aspects of signalling, which are shown

in detail; the Wegner model is more complex as it describes the feedback mechanisms, but does

not show the central pathway with the same level of detail. Their output is di↵erent as well.

The first one only shows the accumulation of PSmad2 Smad4 n, which approaches a steady-

state and the second one models the relation between pRSmad Smad4 n accumulation and

gene expression, which shows an oscillatory behaviour. Therefore, the results obtained from

both models are not identical, but comparable.

4.3.1 Potential drug targets in TGF-� signalling

Our results have shown that there are two main kinds of drugs, those that can restore upregulated

models and those that can restore downregulated models. However, not all drugs proposed by
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4.3 Biological insights gained from my framework

Figure 4.16: Successful treatments for diseased models of Wegner et al 2012 TGF�

model - Same analysis as in Figure 4.9.
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Figure 4.17: Same analysis as in Figure 4.3 -
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4.3 Biological insights gained from my framework

Figure 4.18: Restorement of the pathological model KORec comp1 by the non-essential

activator of Ski synthesis - Time courses of the integral of geneProduct versus time for the healthy

model (blue), the pathological model KORec comp1 (red) and the same model, with a concentration

of 7488.95 of fluxSki activator, which satisfies that the objective function f “ 1. Figure has been

generated with LibreO�ce Calc.
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the tool are equally useful: non-essential activators and drugs targeting reactions that are not

catalysed by an independent enzyme are generally more complicated to develop and thus, less

valuable results. Therefore, I suggest a list of drug targets that I think are most interesting from

a biological point of view:

• Inhibitors of RSmad phosphorylation for diseases with upregulated TGF-� sig-

nalling. The analysis on Zi model predict that inhibiting this reaction (reaction 18) will

restore normal phenotype for diseases with downregulated TGF-� signalling.

• Inactivators of Receptors, RSmads or Smad4 for diseases with upregulated

TGF-� signalling. The analysis on both models predicts that drugs targeting any of

these molecules will be e↵ective on diseases with upregulated it TGF-� signalling.

• Inactivators of Smurf2 or Smad7 for diseases with TGF-� signalling downregu-

lated The analysis on Wegner model predicts that drugs targeting any of these molecules

will be e↵ective on diseases with downregulated TGF-� signalling.

• Inactivators of PPM1A for diseases with downregulated TGF-� signalling.

PPM1A is a Ser/Thr protein phosphatase that dephosphorylates nuclear phosphorylated

RSmad monomers(56). This reaction is modelled as reaction 24 in Zi model. The analysis

predicts that an inhibitor of this reaction will be able to restore normal phenotype for

diseases that downregulated TGF-� signalling.

The results provided by my framework are purely theoretical. Furthermore, they require

certain assumptions to be accepted for the construction the objective function. These assump-

tions may deeply a↵ect the results of the analysis. In this case, I have chosen to disregard all

considerations on the shape of the response curve of TGF-� signalling, taking only one time

point for the first model and the integral at a time point for the other model as reference. As I

have observed that mutant models not only change the output of the system in a quantitative

manner, but also a↵ect the shape of the response curve, this could have an impact on the use-

fulness of certain drugs in human disease. However, as the employed models are not optimised

for drug discovery for this analysis, I have decided to use less stringent conditions, maximising

the amount of obtained output to avoid disregarding useful inhibitors that do not perform op-

timally for the mathematical model. As a next step, experiments should be conducted to check

the proposed drug targets and confirm or reject the assumptions on which the analysis is based.
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4.3 Biological insights gained from my framework

4.3.2 Experimental confirmation of the results

I have examined the existing literature for drugs targeting the specified components of the

biochemical network. The only protein for which I found drugs targeting it was TGF-� Receptor

I, which is specifically targeted by SB-431542, an inhibitor of its kinase activity. This drug, which

is simulated as an inhibitor of reaction 18 on the Zi model, has been shown to be an e↵ective drug

against TGF-� dependent tumours in cell culture. This drug attenuates the tumour-promoting

e↵ects of TGF-�, including EMT, cell motility, migration and invasion(57). The fact that this

drug is regarded as a potent antitumour agent(57) serves as a proof-of-concept for the validity

of my framework.

To expand on this evidence, I propose an experimental approach for the confirmation of our

results:

1. Creating a set of knock-downs, using iRNA technology, for genes related to the TGF-�

signalling pathway.

2. Evaluation of signalling response curve with respect to time for every knock-down.

3. For every knock-down, a set of drugs is assayed and, if possible, dose-response at an

arbitrary time is studied.

4. Signalling response curves with respect to time for every knock-down are studied when ex-

posed to the optimal concentrations of drugs, and compared to healthy signalling response

curve.

Knock-downs of the following genes are proposed for the assay:

• PPM1A. Predicted on Zi model to upregulate TGF-� signalling.

• Smad7. Predicted on Wegner model to upregulate TGF-� signalling.

• Smurf1{2. Predicted on Wegner model to upregulate TGF-� signalling.

• Smad4. Predicted on Zi model to downregulate TGF-� signalling.

• TGF´$� Receptor I (TR1).P redictedonWegnermodeltodownregulateTGF´� signalling.

The following drugs are proposed for the assay, in agreement with the suggestions for drug

targets presented in 4.3.1:
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• SB-431542, inhibitor of RSmad phosphorylation.

• Antibodies targeting TGF-� Receptor II (Anti-TR2), targeting TGF-� signalling.

• Interference RNA for Smurf2 and Smad7, targeting TGF-� feedback.

• Interference RNA for PPM1A.

The following assays are thus proposed:

• Treating KDPPM1A with SB-431542.

• Treating KDPPM1A with Anti-TR2.

• Treating KDSmad7 with SB-431542.

• Treating KDSmad7 with Anti-TR2.

• Treating KDSmurf1{2 with SB-431542.

• Treating KDSmurf1{2 with Anti-TR2.

• Treating KDSmad4 with PPM1A iRNA.

• Treating KDSmad4 with Smad7 iRNA.

• Treating KDSmad4 with Smurf2 iRNA.

• Treating KDTR1 with PPM1A iRNA.

• Treating KDTR1 with Smad7 iRNA.

• Treating KDTR1 with Smurf2 iRNA.

The performance of these assays would serve as an experimental confirmation or rejection for

our findings in TGF-� signalling, which suggest the drug targets described in 4.3.1 are useful for

treating various TGF-� signalling related diseases. Such results would serve as ultimate proof

of the applicability of my framework in drug target discovery.
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Discussion

5.1 What has been achieved

In this work I have presented a framework for the identification of e↵ective drug targets against

potential diseases on the basis of biochemical networks modelled by ordinary di↵erential equa-

tions. The workflow of my framework comprises two steps, needing as only inputs an ODE

model describing a healthy system and an objective function describing the main features that

characterise the system as healthy. In the first step, the model is manipulated by systematically

impairing every reaction and species, thus creating a set of models that simulate the action of

possible mutations. In the second step, the models of this mutant set are subject to a drug scan,

and di↵erent drug treatments with the ability of restoring the healthy behaviour of the system

are determined. As a result, the tool provides the set of manipulated models and a list of the

drugs that could restore the healthy behaviour for these models.

The results provided by this tool are purely theoretical, as they are only based on model

structure and kinetics, not taking into account existing drugs, druggable proteins or protein

annotations. It therefore produces a big quantity of output, which can then be interpreted

based on general knowledge of the system. The results are consistent with biological evidence and

provide enough information to hypothesise potential drug targets, as well as possible mutations

that might a↵ect the system. Moreover, one can obtain comparably fast and it does not require

special resources. The analysis for the biggest model that I have studied here, lasts one to two

days running on a single CPU, a very short time in comparison to the development of a drug.

Because of all this, my tool can be potentially useful for helping to prioritise useful drug target

candidates at the first step of drug development.
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This framework expands on the work done on TIde (50). While TIde can be used for drug

target selection in models that describe pathological conditions, my framework models these

conditions automatically starting from a model of the healthy state. This provides a conceptual

advantage for drug target search in multifactorial diseases, including disorders of the relevance of

cancer or diabetes, which have a great impact in human health. In these multifactorial diseases,

di↵erent mutations can cause similar phenotypes, so that only one model cannot account for

the possible alterations in the system. In my framework, I overcome this di�culty by analysing

all possible mutations in the healthy system, thus o↵ering a list of drugs that are e↵ective for a

great number of mutants.

Moreover, my framework shows essential di↵erences with respect to other approaches for drug

target selection, which can be used to obtain complementary information on the biological sys-

tems. It provides a di↵erent output in comparison to other approaches, including stoichiometric

approaches, flux analysis approaches and structural approaches. Stoichiometric approaches (58)

identify choke points on the network, determining which reactions are essential for the synthesis

and degradation of all metabolites, which are thus interesting for drug targeting. However, as

they do not incorporate kinetic information, they cannot calculate which molecules are more

sensitive to drug targeting. These approaches therefore provide a big quantity of output, but

cannot evaluate targets for their e�cacy and thus, as unable to prioritise more e�cacious tar-

gets. My framework however, as it incorporates kinetic information, is able to disregard those

drug targets with a weak e↵ect on the network, and prioritise working drug targets according

to the minimal concentration needed for model restoration.

Flux balance analysis-based approaches (59) evaluate the influence of drugs on the fluxes

through the network. However, they cannot study the dynamic response of the system to the

drug, and do not o↵er quantitative results of species concentrations, which my tool does. As the

evaluation of fluxes instead of concentrations can lead to di↵erent results for the same model

(51), these approaches can be used for the confirmation of the biological relevance of the results

obtained by my tool.

Lastly, structural approaches integrate protein structural and sequence information into

target prediction, which can be useful for determining which proteins are most likely druggable.

These approaches, however, do not study the dynamic response of the system or prioritise drug

targets according to their e�cacy, which my tool does. Further improvements on my framework

would include the integration of these sources of information, allowing for the evaluation of fluxes

within biochemical networks, the incorporation of structural information of the components of
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the route and the determination of their druggability, including the information provided by

drug databases, such as Drugbank (60) and STITCH 2 (61).

5.2 Application of the framework to biological problems

The study on TGF� signalling pathway provides an example of the application of my tool to

a real biological problem, showing its usefulness for providing a list of potential drug targets

with the capacity of modulating the activity of a network. However, there are important issues

that remain to be addressed. First and foremost, there are numerical problems with some

inhibitors which produce spurious results. These problems can be manually detected and solved

by changing the tolerance parameters of the numerical solver. However, generally detecting and

handling this problem by adapting the solver options to the model is beyond the scope of this

work.

The second issue is determining the most adequate definition for the objective function

which describes the healthy state of the model. In this work I have used an open criterion for

the definition of the objective function, basing it on the value of one species at one time point

instead of describing the whole response curve from (t “ 0). This has been done in order to

maximise the obtaining of output, and avoid eliminating potentially useful targets. However,

other stricter criteria are possible, as the tool allows defining the objective function for multiple

species and time points. Whether stricter or more open approaches are better suited for the

retrieval of biologically relevant results is an issue that can only be addressed by experimental

validation of the results.

A third issue that needs to be addressed is determining which models can be analysed by

this framework. Models are created with the aim of describing certain characteristics of the

studied system. None of the models I have employed for demonstrating its applicability have

been specifically designed with the objective of drug discovery, yet I have been able to obtain

results with a possible relevance to drug discovery. In general, this depends on the level of

mechanistic detail of the model, as a more mechanistic model will have species and reactions

that closely correspond to real proteins or reactions catalysed by proteins, so that the set of

mutant models will correspond to possible mutations in the genes that code them. For example,

for the case of TGF-� signalling, the study of feedback mechanisms is much more useful if these

mechanisms are individually modelled and not as a general reaction. Therefore, in this case, the
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results obtained from the Wegner model for drug targeting on the feedback mechanisms might

be of higher relevance than for the Zi model.

Lastly, the impact of uncertainties in the models needs to be assessed. Most of the parameters

in a model are not experimentally determined, but through a process of parameter estimation

which fits the model into the experimental data. The process has a certain degree of uncertainty,

since it is possible that more than one parameter set provides equally good model fittings. Since

the probability of non-identifiability increases with higher model complexity, it especially a↵ects

very detailed models, which are the most appropriate subject for my framework. Uncertainty

might thus have an impact on the quality of the results obtained by my framework, as the

biological relevance of the parameters cannot be assured. Therefore, to assess the importance of

these uncertainties, I propose applying the framework for a set of models accounting for a range

of possible parameters set, in order to detect which results appear consistently for all parameters

sets. This approach has been implemented with di↵erent variations before (51, 62? ? ). As we

do not have a reason to favour one parameter set over the others, this can serve for prioritising

drug targets which are e↵ective at a wider range of conditions.

5.3 The cycle of systems biology and drug discovery

The final objective of my framework is making a set of predictions about which molecules in

the system should be targeted in order to rescue a potential disease. These predictions have

no backing experimental evidence behind them, and the model on which predictions are based

might not be optimised for drug discovery. Therefore, additional experiments are needed to

check the feasibility of my framework’s predictions. The model and the objective function thus

enter the cycle of systems biology, the cornerstone of computational modelling and systems

biology. In the cycle, the predictions generated by the model and its objective function are

experimentally tested. Given that the results confirm the initial predictions, the model will

be considered a useful tool for drug target prediction and the objective function an accurate

description of the main characteristics of healthy state. However, if the experiments do not

support the predictions, either the model, the objective function, or both, have to be modified

so that the predictions they generate are in accordance with new evidence. In the particular

case of TGF-�, the testing of the hypothesis generated in Section 4.3.2 will shed light on the

fitness of the models employed for drug scanning, as well as evaluate whether an open or a strict

criterion should be used for classifying a system as healthy.
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We are still at the very first steps of applying systems biology to drug discovery. Computa-

tional models are not trustworthy enough to become the main tools for drug target selection.

Drug scan tools have provided interesting results (see (27)) but, as far as I know, no successful

drug has been developed using these tools. For these first steps, computational modelling might

only have a secondary role for drug target selection, in comparison to the omic technologies.

But systems biology has a cyclic nature: models and approaches will be refined by incorporating

more and more experimental data, becoming more reliable and informative. Therefore, biological

knowledge will be incorporated in an integrated way, with the final objective of understanding

diseases and how to cure them.

—————————————————————
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Appendix 1

Source code of the tool:

1 #!/usr/bin/env python

2

3 import sys , re , copy

4 import libTI2.global_options

5 import libTI2.model

6 import libTI2.laotide

7 import libTI2.solvers.lsodasolver

8 import math

9 import scipy.stats

10 import libsbml

11 from optparse import OptionParser

12

13 def addtime(model):

14 model.parameters.append("time")

15 model.parameter_values["time"] = 0.0

16 model.differential_equations["time"] = " 0 + 1.0"

17

18 def load_timecourses_to_fit_to(timecoursefilename):

19 f = open(timecoursefilename ,"r")

20 lines = f.readlines ()

21 f.close ()

22 delimiter = ","

23 time_key = "t"

24 allkeys = lines [0]. strip("\n").split(delimiter)

25 time_key_index = allkeys.index(time_key)

26 substance_keys = allkeys [: time_key_index ]+ allkeys[time_key_index +1:]
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27 timecourses_to_fit_to = {}

28 for line in lines [1:]:

29 if len(line.strip("\n"))==0 or line.startswith("#"):

30 continue

31 vals = []

32 for x in line.strip("\n").split(delimiter):

33 if x=="":

34 vals.append(None)

35 else:

36 if "[" in x and "]" in x:

37 entry = x.strip(" []").split(";")

38 vals.append ([ float(x) for x in entry])

39 else:

40 vals.append(float(x))

41 timecourses_to_fit_to[vals[time_key_index ]] = dict(zip(

substance_keys ,vals[: time_key_index ]+vals[time_key_index +1:]))

42 return timecourses_to_fit_to

43 def calculate_timepoint(timecourses):

44 sum_time = 0.0

45 count = 0

46 for timepoint in timecourses:

47 sum_time += timepoint

48 count += 1

49 timepoint = sum_time/count

50 return timepoint

51 def integral_timecourse(timecourses , model):

52 int_species = []

53 for timepoint in timecourses:

54 new_dict = {}

55 for expression in timecourses[timepoint ]:

56 for species in model.species:

57 if species in expression:

58 new_expression = expression.replace(species , species+"

_int")

59 int_species +=[ species]

60 new_dict[new_expression] = timecourses[timepoint ][ expression]

61 timecourses[timepoint] = new_dict

62 return int_species

63

64
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65 def doc_analysis(doc_filename , definitions_dict , model , inhibitor_groups

=False):

66 doc_file = open(doc_filename , "r")

67 doc_list = doc_file.readlines ()

68 doc_file.close ()

69 for line in doc_list:

70 if ":" not in line:

71 continue

72 definition = line.split(": ")[0]

73 definitions_list = line.split(": ")[1]. strip("\n").split(", ")

74 if definitions_list == []:

75 print "ERROR: Missing Species or Reaction on line number "+

str(doc_list.index(line)+1)+" of "+ doc_filename.split("/

")[-1]+".\n This line will be ignored."

76 elif definition in model.species or definition in model.

inhibited_reaction_equations:

77 print "ERROR: Species and Reaction Groups cannot have the name

of an existing species. Line "+str(doc_list.index(line)+1)+"

of "+ doc_filename.split("/")[-1]+" will be ignored."

78

79 else:

80 is_species = False

81 is_reaction = False

82 not_exists = False

83 for form in definitions_list:

84 if form in model.species:

85 is_species = True

86 elif form in model.inhibited_reaction_equations:

87 is_reaction = True

88 else:

89 not_exists = True

90 if not_exists:

91 print "ERROR: A value on line number "+str(doc_list.index(

line)+1)+" of "+ doc_filename.split("/")[-1]+" does not

correspond to any Species or Reaction in the model .\n

This line will be ignored."

92 elif is_species and is_reaction:

93 if inhibitor_groups:

94 print "ERROR: Inhibitor Groups cannot target both species

and reactions. Therefore , line "+str(doc_list.index(

line)+1)+" of "+ doc_filename.split("/")[-1]+" will be
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ignored."

95 else:

96 print "ERROR: Correspondences file cannot contain both

species and reactions in the same line. Therefore ,

line "+str(doc_list.index(line)+1)+" of "+

doc_filename.split("/")[-1]+" will be ignored."

97 elif is_species:

98 if inhibitor_groups:

99 definitions_dict[definition+"_inhibitor"] = [form + "

_inhibitor" for form in definitions_list]

100 else:

101 definitions_dict[definition] = definitions_list

102 elif is_reaction:

103 if inhibitor_groups:

104 definitions_dict["activation_inhibitor_"+definition] = ["

activation_inhibitor_"+form for form in

definitions_list]

105 definitions_dict["noncompetitive_inhibitor_"+definition]

= ["noncompetitive_inhibitor_"+form for form in

definitions_list]

106 else:

107 definitions_dict[definition] = definitions_list

108

109 def add_other_components(model , definitions_dict , inhibitor_groups =

False):

110 if inhibitor_groups:

111 array = [model.inhibitor_names]

112 else:

113 array = [model.species , model.inhibited_reaction_equations]

114 for componentlist in array:

115 for component in componentlist:

116 is_already_in_dict = False

117 for form in definitions_dict:

118 if component in definitions_dict[form]:

119 is_already_in_dict = True

120 break

121 if not is_already_in_dict:

122 definitions_dict[component] = [component]

123

124 def addinhibitors(model , sbmlmodel):

125 newinhibitors = []
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126 inactives = []

127 compartment_dict = {}

128 species_volume = {}

129 readmodel = sbmlmodel.getModel ()

130 for compartment in readmodel.getListOfCompartments ():

131 compartment_dict[compartment.getId()] = str(compartment.getVolume

())

132 for species in readmodel.getListOfSpecies ():

133 species_name = species.getId()

134 if species_name in model.species:

135 if species.isSetInitialConcentration ():

136 volume = "1.0"

137 else:

138 volume = compartment_dict[species.getCompartment ()]

139 inhibitor = species_name+"_inhibitor"

140 inactive = species_name+"_inactive"

141 adddifferentialeq(model , species_name , inhibitor , inactive ,

volume)

142 addtolists(model , inhibitor , inactive)

143

144 def adddifferentialeq(model , species , inhibitor , inactive , volume):

145 model.new_differential_equations[species] += " - 1.0 * ( "+species+"

/ "+volume+" ) * ( "+inhibitor+" ) + 1.0 * ( "+inactive+" / "+

volume+" )"

146 model.new_differential_equations[inactive] = " 1.0 * ( "+species+" /

"+volume+" ) * ( "+inhibitor+" ) - 1.0 * ( "+inactive+" / "+volume

+" )"

147

148 def addtolists(model , inhibitor , inactive):

149 model.new_species.append(inhibitor)

150 model.inhibitor_names.append(inhibitor)

151 model.species.append(inactive)

152 model.new_species_values[inhibitor] = 0.0

153 model.species_values[inactive] = 0.0

154 model.new_species_values[inactive] = 0.0

155

156 def defineintervals(minimal , maximal , stepnumber):

157 step = (math.log(maximal)-math.log(minimal))/( stepnumber -1)

158 concentrations = [minimal]

159 for i in range(stepnumber -1):

160 concentrations += [math.exp(math.log(concentrations[i])+step)]
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161 return concentrations

162

163 def addintegral(model , species):

164 model.species.append(species+"_int")

165 model.species_values[species+"_int"] = 0.0

166 model.new_differential_equations[species+"_int"] = " 0 + 1.0 * ( "+

species+" )"

167

168 def knockout(model , corr_dict , species):

169 model.model_name = "KO"+species

170 for form in corr_dict[species ]:

171 if form in model.species:

172 kospecies(model , form)

173 if form in model.inhibited_reaction_equations:

174 koreaction(model , form)

175

176 def kospecies(model , species):

177 inhibitor = species+"_inhibitor"

178 model.new_species_values[inhibitor] = 100000000.0

179

180 def koreaction(model , reaction):

181 inhibitor = "noncompetitive_inhibitor_"+reaction

182 model.new_species_values[inhibitor] = 99999999.0

183

184 def knockdown(model , corr_dict , species):

185 model.model_name = "KD"+species

186 times = {}

187 for form in corr_dict[species ]:

188 if form in model.species:

189 kdspecies(model , form , times)

190 if form in model.inhibited_reaction_equations:

191 kdreaction(model , form)

192

193 def kdspecies(model , species , times):

194 inhibitor = species+"_inhibitor"

195 if species not in times:

196 times[species] = 1

197 inhibition = float (2** times[species] - 1)

198 model.new_species_values[inhibitor] = inhibition

199 times[species] += 1

200
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201 def kdreaction(model , reaction):

202 inhibitor = "noncompetitive_inhibitor_"+reaction

203 if model.new_species_values[inhibitor] == 0.0:

204 model.new_species_values[inhibitor] = 1.0

205

206 def restore(model , corr_dict , species):

207 for form in corr_dict[species ]:

208 if form in model.species:

209 inhibitor = form+"_inhibitor"

210 model.new_species_values[inhibitor] = 0.0

211 if form in model.inhibited_reaction_equations:

212 inhibitor = "noncompetitive_inhibitor_"+form

213 model.new_species_values[inhibitor] = 0.0

214

215 def analysis_loop(model , solver1 , solver2 , inhibitor_dict , chicut_value ,

corr_dict , value , concentrationsTIde , outputfile):

216 restorable = False

217 print model.model_name

218 outputfile.write(model.model_name+"\n")

219 constantx = [model.species_values[s] for s in model.species]

220 x = [model.new_species_values[s] for s in model.inhibitor_names]

221 solver1.solve(starting_species_concentrations =( constantx+x))

222 outputfile.write(str(solver1.rssq)+"\n")

223 root = math.sqrt(solver1.rssq)

224 percentage = (root - 1.0) *100.0

225 print str(percentage)+"%"

226 outputfile.write(str(percentage)+"\n")

227 if solver1.rssq > 1.0:

228 solver = solver1

229 print "Upregulated model"

230 outputfile.write("Upregulated model\n")

231 if solver1.rssq == 1.0:

232 print "Normal model"

233 outputfile.write("Normal model\n")

234 return True

235 if solver1.rssq < 1.0:

236 solver = solver2

237 print "Downregulated model"

238 outputfile.write("Downregulated model\n")

239 for inhibitorgroup in inhibitor_dict:
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240 effective = one_dimensional_analysis(solver , model , inhibitor_dict

, inhibitorgroup , chicut_value , corr_dict , value ,

concentrationsTIde , outputfile)

241 if effective is None:

242 break

243 if effective:

244 restorable = True

245 outputfile.write("\n")

246 return restorable

247

248 def one_dimensional_analysis(solver , model , inhibitor_dict ,

inhibitorgroup , chicut_value , corr_dict , value , concentrationsTIde ,

outputfile):

249 i = 0

250 two_values_left = {}

251 two_values_right = {}

252 successful = False

253 ko_in_group = False

254 for inhibitor in inhibitor_dict[inhibitorgroup ]:

255 if tidemodel.new_species_values[inhibitor] != 0.0:

256 ko_in_group = True

257 elif "_inhibitor_" in inhibitor:

258 index = inhibitor.find("_inhibitor_")

259 reaction = inhibitor [11+ index :]

260 if reaction in corr_dict[value]:

261 ko_in_group = True

262 if ko_in_group:

263 return successful

264 while i < len(concentrationsTIde):

265 for inhibitor in inhibitor_dict[inhibitorgroup ]:

266 model.new_species_values[inhibitor] = concentrationsTIde[i]

267 constantx = [model.species_values[s] for s in model.species]

268 x = [tidemodel.new_species_values[s] for s in tidemodel.

inhibitor_names]

269 solver.solve(starting_species_concentrations =( constantx+x))

270 if solver.rssq is None:

271 for inhibitor in inhibitor_dict[inhibitorgroup ]:

272 model.new_species_values[inhibitor] = 0.0

273 return solver.rssq

274 if solver.rssq > chicut_value:

275 if concentrationsTIde[i-1] not in two_values_left and i!= 0:
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276 two_values_left = {}

277 elif len(two_values_left) == 2 and concentrationsTIde[i-2] in

two_values_left:

278 del two_values_left[concentrationsTIde[i-2]]

279 two_values_left[concentrationsTIde[i]] = solver.rssq

280 if solver.rssq < chicut_value:

281 if concentrationsTIde[i-1] not in two_values_right:

282 two_values_right = {}

283 two_values_right[concentrationsTIde[i]] = solver.rssq

284

285 if len(two_values_right) == 2 and len(two_values_left) > 0:

286 successful = True

287 four_values_dict = dict(two_values_left.items() +

two_values_right.items())

288 chicut , std_err = calculatechicut(four_values_dict ,

chicut_value)

289 if chicut < concentrationsTIde [0]:

290 print inhibitorgroup +" is effective for restoring " +

model.model_name + " for a concentration lower than "+

str(concentrationsTIde [0])

291 outputfile.write(inhibitorgroup +" is effective for

restoring " + model.model_name + " for a concentration

lower than "+str(concentrationsTIde [0])+"\n")

292 else:

293 print inhibitorgroup +"("+str(chicut)+"): is effective

for restoring " + model.model_name

294 outputfile.write(inhibitorgroup +"("+str(chicut)+"): is

effective for restoring " + model.model_name + "\n")

295 break

296

297 elif len(two_values_right) == 2:

298 successful = True

299 print inhibitorgroup +" is effective for restoring " + model

.model_name + " for a concentration lower than "+str(

concentrationsTIde [0])

300 outputfile.write(inhibitorgroup +" is effective for

restoring " + model.model_name + " for a concentration

lower than "+str(concentrationsTIde [0])+"\n")

301 break

302 i += 1

303 for inhibitor in inhibitor_dict[inhibitorgroup ]:
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304 model.new_species_values[inhibitor] = 0.0

305 return successful

306

307 def calculatechicut(four_values_dict , chicut_value):

308 x = [math.log(s) for s in four_values_dict]

309 y = [four_values_dict[s] for s in four_values_dict]

310 gradient , intercept , r_value , p_value , std_err = scipy.stats.

linregress(x,y)

311 chicutlog = (1 - intercept)/gradient

312

313 chicut = math.exp(chicutlog)

314 return chicut , std_err

315

316 def summarize(content , summary_filename):

317 summary = open(summary_filename , "w")

318 counter = 0

319 while counter < len(content):

320 a = re.match("\d", content[counter ])

321 if a:

322 chi = float(content[counter ])

323 root = math.sqrt(chi)

324 percentage = (root - 1.0) *100.0

325 i = 0

326 if math.fabs(percentage) >= 10.0:

327 summary.write(content[counter -1])

328 summary.write(str(root)+"\n"+str(percentage)+"%\n")

329

330 while 1:

331 result = re.match("\w", content[counter+i+2])

332 if not result:

333 break

334 else:

335 i += 1

336 if i == 1:

337 summary.write("No drug can restore model\n")

338 else:

339 summary.write(str(i-1)+" drugs can restore model\n")

340 counter += i + 2

341 counter += 1

342 usage = "usage: %prog [options] input_file output_directory

time_course_1 time_course_2"
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343 parser = OptionParser(usage=usage)

344

345 parser.add_option("-i", "--int",

346 action="store_true", dest="int", default=False ,

347 help="the time courses refer to the integrals of the

variables (default: False)")

348 parser.add_option("-c", "--corr",

349 action="store", dest="corr", default=False ,

350 help="directory of the file describing the reactions

and species that are simultaneously knocked -out")

351 parser.add_option("-d", "--coinh",

352 action="store", dest="inh", default=False ,

353 help="directory of the file describing the reactions

and species that are coinhibited")

354 parser.add_option("-l", "--low",

355 action="store", type="float", dest="low", default

=0.01 ,

356 help="lowest drug concentration employed in the

optimization (default: 0.01)")

357 parser.add_option("-j", "--high",

358 action="store", type="float", dest="high", default

=10000. ,

359 help="highest drug concentration employed in the

optimization (default: 10000.0)")

360 parser.add_option("-s", "--step",

361 action="store", type="int", dest="step", default =50,

362 help="number of steps employed in the optimization (

default: 50)")

363

364 (options , args) = parser.parse_args ()

365

366 if len(args) != 4:

367 print "Incorrect input command"

368 sys.exit()

369 sbml_filename = args [0]

370 output_path = args [1]

371 timecourse_filename1 = args [2]

372 timecourse_filename2 = args [3]

373

374

375 chicut_value = 1

83



6. APPENDIX 1

376 corr_dict = {}

377 inhibitor_dict ={}

378 reactions_list =[]

379

380 model_name = sbml_filename.split("/")[ -1][:-4]

381 go = libTI2.global_options.global_options ()

382 go.initialize ()

383

384 savedmodel = libTI2.model.model.Model(sbml_filename)

385 sbmlmodel = libsbml.readSBML(sbml_filename)

386

387 addtime(savedmodel)

388

389 tidemodel = libTI2.laotide.laotide_model(savedmodel , replace_parameters

=True , insert_inhibitions=True)

390

391 timecourses1 = load_timecourses_to_fit_to(timecourse_filename1)

392 timecourses2 = load_timecourses_to_fit_to(timecourse_filename2)

393

394 timepoint = calculate_timepoint(timecourses1)

395

396 del tidemodel.model_instance.sbmldoc

397 del tidemodel.model_instance.aih

398

399 if options.corr:

400 doc_analysis(options.corr , corr_dict , tidemodel)

401

402 if options.coinh:

403 doc_analysis(options.inh , inhibitor_dict , tidemodel , inhibitor_groups

= True)

404

405 add_other_components(tidemodel , corr_dict)

406

407 addinhibitors(tidemodel , sbmlmodel)

408

409 add_other_components(tidemodel , inhibitor_dict , inhibitor_groups = True)

410

411

412 concentrationsTIde = defineintervals(options.low , options.high , options.

step)

413
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414 if options.int:

415 int_species1 = integral_timecourse(timecourses1 , tidemodel)

416 int_species2 = integral_timecourse(timecourses2 , tidemodel)

417 int_species = set(int_species1+int_species2)

418 for species in int_species:

419 addintegral(tidemodel , species)

420

421 solver1 = libTI2.solvers.lsodasolver.lsodasolver(tidemodel.species ,

422 tidemodel.species_values ,

423 tidemodel.new_differential_equations ,

424 False ,

425 parameters=tidemodel.inhibitor_names ,

426 timecourses_to_fit_to=timecourses1)

427 # additional_options ={" rtol ":"1.0d-15"," atol ":"1.0d

-18"})

428

429 solver2 = libTI2.solvers.lsodasolver.lsodasolver(tidemodel.species ,

430 tidemodel.species_values ,

431 tidemodel.new_differential_equations ,

432 False ,

433 parameters=tidemodel.inhibitor_names ,

434 timecourses_to_fit_to=timecourses2)

435 # additional_options ={" rtol ":"1.0d-15"," atol ":"1.0d

-18"})

436

437

438 if output_path [-1] != "/":

439 output_path += "/"

440

441 outputfilename = output_path + model_name + "_Output.txt"

442 summary_filename = output_path + model_name + "_Summary.txt"

443

444 outputfile = open(outputfilename , "w")

445 outputfile.write("TIde Analysis Output for Model "+model_name+"\n\n")

446 constantx = [tidemodel.species_values[s] for s in tidemodel.species]

447 x = [tidemodel.new_species_values[s] for s in tidemodel.inhibitor_names]

448 solver1.solve(starting_species_concentrations =( constantx+x))

449 for value in corr_dict:

450 knockout (tidemodel , corr_dict , value)

451 restorable = analysis_loop(tidemodel , solver1 , solver2 ,

inhibitor_dict , chicut_value , corr_dict , value , concentrationsTIde
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, outputfile)

452 if not restorable:

453 print "No drug can restore "+tidemodel.model_name

454 outputfile.write("No drug can restore "+tidemodel.model_name+"\n\n

")

455 restore (tidemodel , corr_dict , value)

456 knockdown (tidemodel , corr_dict , value)

457 restorable = analysis_loop(tidemodel , solver1 , solver2 ,

inhibitor_dict , chicut_value , corr_dict , value ,

concentrationsTIde , outputfile)

458 if not restorable:

459 print "No drug can restore "+tidemodel.model_name

460 outputfile.write("No drug can restore "+tidemodel.model_name+"\

n\n")

461 restore(tidemodel , corr_dict , value)

462 outputfile.close ()

463 read_outputfile = open(outputfilename , "r")

464 content = read_outputfile.readlines ()

465 read_outputfile.close ()

466 summarize(content , summary_filename)
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Appendix 2

Correspondences file used for the analysis of the Zi et al 2011 TGF� model, indicating the

species that are knocked-out together (right) under a common name (left):

1 TGF_beta: TGF_beta_ex , TGF_beta_ns , TGF_beta_endo

2 T1R: T1R_surf , T1R_endo , LRC_surf , LRC_endo

3 T2R: T2R_surf , T2R_endo , LRC_surf , LRC_endo

4 Smad2: Smad2c , PSmad2c , Smad2n , PSmad2n , PSmad2_PSmad2_c ,

PSmad2_PSmad2_c , PSmad2_PSmad2_n , PSmad2_PSmad2_n , PSmad2_Smad4_c ,

PSmad2_Smad4_n

5 Smad4: Smad4c , Smad4n , PSmad2_Smad4_c , PSmad2_Smad4_n

Correspondences file used for the analysis of the Wegner et al 2012 TGF� mode:

1 Arkadia: Arkadia_c , Arkadia_n

2 promoters: freePromoters , inactivePromoters

3 Smad2: pSmad2_c , pSmad2_n , pSmad2_Smad4_c , pSmad2_Smad4_c ,

pSmad2_Smad4_n , pSmad2_Smad4_n , pSmad2_Smad4_Ski_n ,

pSmad2_Smad4_Ski_n , pSmad2_Smad4_SnoN_n , pSmad2_Smad4_SnoN_n ,

pSmad2_SnoN_n , pSmad2_SnoN_n , pSmad2_SnoN_n , Smad2_c , Smad2_n ,

Smad2_SARA , Smad2_Ski_c , Smad4_Smad2_n

4 Smad4: pSmad2_Smad4_c , pSmad2_Smad4_n , pSmad2_Smad4_Ski_n ,

pSmad2_Smad4_SnoN_n , pSmad3_Smad4_c , pSmad3_Smad4_n ,

pSmad3_Smad4_Ski_n , pSmad3_Smad4_SnoN_n , Smad4_c , Smad4_n ,

Smad4_Ski_n , Smad4_Smad2_n , Smad4_Smad3_n , Smad4_SnoN_n

5 Smad3: pSmad3_c , pSmad3_n , pSmad3_Smad4_c , pSmad3_Smad4_c ,

pSmad3_Smad4_n , pSmad3_Smad4_n , pSmad3_Smad4_Ski_n ,

pSmad3_Smad4_Ski_n , pSmad3_Smad4_SnoN_n , pSmad3_Smad4_SnoN_n ,

pSmad3_SnoN_n , pSmad3_SnoN_n , pSmad3_SnoN_n , Smad3_c , Smad3_n ,

Smad3_SARA , Smad3_Ski_c , Smad4_Smad3_n
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6 Smad7: Rec_Smad7 , Smad7_c , Smad7_n , Smad7_Smurf1_c , Smad7_Smurf1_n ,

Smad7_Smurf2_c , Smad7_Smurf2_n

7 TGF_R1: TGF_RI , Rec_active , Rec_active , Rec_Smad7 , Rec_Smad7

8 TGF_R2: TGF_RII , Rec_active , Rec_Smad7 , TGFbeta_TGF_RII , TGFbeta_TGF_RII

9 SARA_: SARA , Smad3_SARA , Smad2_SARA

10 Ski: Ski_c , Ski_n , pSmad2_Smad4_Ski_n , pSmad2_Smad4_Ski_n ,

pSmad3_Smad4_Ski_n , pSmad3_Smad4_Ski_n , Smad2_Ski_c , Smad3_Ski_c ,

Smad4_Ski_n

11 SnoN: SnoN_c , SnoN_n , pSmad2_Smad4_SnoN_n , pSmad2_Smad4_SnoN_n ,

pSmad2_SnoN_n , pSmad2_SnoN_n , pSmad2_SnoN_n , pSmad3_Smad4_SnoN_n ,

pSmad3_Smad4_SnoN_n , pSmad3_SnoN_n , pSmad3_SnoN_n , pSmad3_SnoN_n ,

Smad4_SnoN_n

12 Smurf1: Smurf1_c , Smurf1_n , Smad7_Smurf1_c , Smad7_Smurf1_n

13 Smurf2: Smurf2_c , Smurf2_n , Smad7_Smurf2_c , Smad7_Smurf2_n
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