
MATHEMATISCH-NATURWISSENSCHAFTLICHE FAKULTÄT I
INSTITUT FÜR BIOLOGIE

Masterarbeit

ZUM ERWERB DES AKADEMISCHEN GRADES
MASTER OF SCIENCE

"Implementation of a simulation environment for the successive

integration of mathematical models for cellular processes exemplified for

central carbon metabolism in yeast"

"Implementierung einer Simulationsumgebung für die

sukzessive Integration von mathematischen Modellen

verschiedener Zellprozesse am Beispiel des

Zentralstoffwechsels von Hefe"

vorgelegt von
Jens Hahn

geboren am 20.06.1985

betreut von
Edda Klipp

edda.klipp@rz.hu-berlin.de

angefertigt in der Arbeitsgruppe Theoretische Biophysik - tbp

am Institut für Biologie

Berlin, im Dezember 2013

Contents

1. Zusammenfassung 1

2. Abstract 2

3. Introduction 3
3.1. A whole cell modelling approach for S. cerevisiae 3
3.2. The whole cell model as a modular entity 5

4. Material & Methods 7
4.1. The simulation framework . 7
4.2. External modules & software tools . 8
4.3. ODE solver in the simulation framework 11

5. Results 13
5.1. The framework for a whole cell modelling approach 13
5.2. A simulation step in the framework . 16
5.3. Central carbon metabolism in yeast . 29

6. Discussion 39
6.1. Implementation of a simulation framework 40
6.2. Different approaches to implement a metabolic model 42
6.3. Outlook for the whole cell modelling approach 44

7. Acknowledgements 49

References 50

List of Figures 56

List of Tables 56

A. Appendix 57

Eigenständigkeitserklärung 68

1. Zusammenfassung

1. Zusammenfassung

Die Bäckerhefe Saccharomyces cerevisiae steht seit Jahrzehnten im Zen-
trum der molekularbiologischen Forschung und macht diesen Organismus zu
einem der wohlbekanntesten Eukaryoten unserer Zeit. Dank leichter Kul-
turbedingungen und der einfachen Verfügbarkeit bietet kaum ein anderer
Organismus heute solch eine Bandbreite an experimentellen Daten und ist
daher für die mathematische Modellierung besonders interessant. Die große
Vielfalt an Informationen und Modellen verschiedenster Zellprozesse, machen
diesen Organismus zu einem ausgezeichneten Ausgangspunkt für die En-
twicklung des ersten eukaryotischen Ganzzellmodells.

Die Arbeit an einem solchen Modell kann durch eine spezifische Soft-
wareumgebung, angepasset an gängige Standardisierungsformate der Sys-
tembiologie und konzipiert für die Simulation von großskaligen Modellen,
maßgeblich erleichtert werden.

Die vorliegende Arbeit dokumentiert die ersten Schritte der Implemen-
tierung einer solchen Simulationsumgebung für mathematische Modelle und
beschäftigt sich mit der Charakterisierung der Möglichkeiten und Limitierun-
gen dieser, insbesondere in Hinsicht auf die Erstellung eines großskaliegen
Modells der Hefe S. cerevisiae. Die Erstellung eines Modells des Zentralstof-
fwechsels der Hefe dient hierbei als exemplarische Anwendung.

1

2. Abstract

2. Abstract

Today, the Baker’s yeast Saccharomyces cerevisiae is one of the best
known organisms. The close cellular relationship to other eukaryotic cells
and the easy culturing in the lab, makes this organism to a widespread model
organism for eukaryotic cells. Hence, a large spectrum of experimental data
and mathematical models of various cell processes in yeast are available to-
day. This makes this organism especially interesting for the implementation
of large-scale or even whole cell modelling approaches.

A specific simulation environment, adjusted to established standards in the
systems biology community and developed to simulate modular large-scale
models, can facilitate the work on such a large-scale modelling approach.

In this work, a first version of such a simulation environment for large-
scale modelling is presented. The benefits as well as possible limitations and
challenges of the underlying concept are discussed. The implementation of a
mathematical model describing the central carbon metabolism of the Baker’s
yeast S. cerevisiae demonstrates the application of the simulation framework
and its functionality.

2

3. Introduction

3. Introduction

3.1. A whole cell modelling approach for S. cerevisiae

Genome sequencing and high-throughput measurements have enabled biological research
on a system level [1]. These synergetic approaches try to connect the different parts
of a cell, which were investigated only isolated before. In vitro measurements of sin-
gle enzymes to build dynamic models made way for in vivo time course measurements
of metabolite concentrations on a whole cell level [2]. More and more comprehensive
experiments were performed in the last years, investigating the behaviour of the whole
system to changing conditions of the environment, e.g. change of carbon sources in the
medium [3]. Also the interaction between different cell processes were investigated more
closely, an example is given by Wittmann et al. [4], showing metabolite concentration
changes during the cell cycle in S. cerevisiae. Today, many experiments with yeast are
performed with synchronised cells to avoid average measurements of cells in different
cell cycle stages [5] and to give a more precise picture of the the actual state of the
individual cell system.

The given examples are just a few, showing the rise of a more holistic thinking in bio-
logical research in the last decades. The availability of these large-scale data sets enable
the implementation of computational models with a wider range of scope than just small
pathways or single processes. These models allow for the investigation of experimentally
unfeasible scenarios and can be used as a reference for the interpretation of experimental
results [6]. The implementation process of a whole cell model can also reveal missing
links in the understanding of the system and therefore lead to new experimental settings.

Since the complete genome sequencing of S. cerevisiae in 1996, yeast is strongly
connected to the success of synergetic approaches in systems biology and functional
genomics [7]. Yeast is easy to culture and obtain in quantity, it has furthermore a sta-
ble haploid and diploid form, allowing for various genetic applications. For about 31%1

of the protein-encoding genes in yeast (ORF) a robust mammalian homolog could be
identified [8]. These aspects of yeast have given rise to a vast amount of experimental
data, detailed gene and protein databases, and based on these to a large number of
mathematical and computational models. A eukaryotic whole cell modelling approach is
most possibly only doable for the Baker’s yeast S. cerevisiae, no other eukaryotic unicel-
lular organism satisfies better the requirements of available data and detailed knowledge
about its cell processes.

1p-value 10−10

3

3.1. A whole cell modelling approach for S. cerevisiae

The work with this large amount of information and computational data was con-
siderably facilitated by the introduction of standards and standardised formats for the
exchange of experimental data and mathematical models [9]. Firstly, Minimum Infor-
mation Required In the Annotation of Models (MIRIAM) [10] is to be mentioned, this
standard has increased the reusability of computational models by definition of a set of
rules and standardised annotations to unambiguously identify model components and
ensure the correct use of the certain model. Furthermore, the introduction of Uniform
Resource Identifiers (URI) allowed for automated database queries to obtain informa-
tion about the certain model and its components. The second important innovation
in systems biology was the introduction of XML-based (Extensible Markup Language)
exchange formats for the computational models themselves. Today the Systems Biology
Markup Language (SBML) [11] is, besides CellML [12], the established standard format
for computational models in systems biology. A whole cell modelling approach can only
be implemented exploiting the given standards to facilitate cooperation between different
researchers and to use the possibilities of automated data handling and exchange.

Several large-scale and whole cell projects were established in the last years. The
main challenge of a whole cell model is the connection of various different cell processes,
mostly described, by different mathematical descriptions, depending on the best suitable
description for the given process. Whereas metabolic reactions are mainly described by
DAE (differential algebraic equations), ODE (ordinary differential equations), or even
FBA (flux balance analysis), other processes are described by stochastic algorithms or
Boolean networks, e.g. gene expression [6]. A whole cell model therefore necessitates
a specialised software compatible with the certain needs of the model description. One
example is the well known E-CELL project [13], launched in 1996, this whole cell and
multi-cell simulation tool provides the possibility to generate models by using predefined
objects and simulation schemes. A similar functionality is provided by the virtual cell
[14], a web based tool to simulate PDEs (partial differential equations) generated au-
tomatically based on predefined submodules which can be linked together. The latest
whole cell modelling approach was made by Karr et al. [15] who designed a whole cell
model of Mycoplasma genitalium in MATLAB [16]. This model is especially interesting
because it is the first attempt to describe the complete cell at ones and does thereby
allow for various mathematical descriptions. A former whole cell approach for this small
organism was performed within the E-CELL project, in this approach an essential mini-
mum set of 127 genes of M. genitalium were defined. This small whole cell model, the
virtual self-surviving cell (SSC) [17], consisted of only 495 reaction rules and was able
to demonstrate a simplified picture of molecular processes in this prokaryotic cell.

4

3.2. The whole cell model as a modular entity

The demands on the simulation environment for our whole cell modelling approach
are much higher, yeast has over 6000 genes and various compartments needed to be
considered. Therefore, the simulation framework need to be adjusted to a large number
of different cell processes. Naturally, a simulation framework for a whole cell model of
this size need to be adjusted to the specific needs of large scale computational mod-
elling in systems biology. To guarantee compatibility and the support of the established
standards in the systems biology community, the software has to be closely connected
to these standards and the related tools.

3.2. The whole cell model as a modular entity

Figure 1: A modular approach
The implementation of the whole cell model us-

ing independent modules allows the comfortable ex-

change and addition of modules. The replacing does

also not require a modification of the whole network.

The implementation of a whole cell model
is always related to the partitioning of the
cell into functional units, e.g. metabolism,
gene regulation, and others. This func-
tional separation is not only based on the
mentioned utilisation of different math-
ematical descriptions, nonetheless, this
makes the separation in most cases in-
evitable. Advantages of this separation
are also the facilitated understanding and
presentation of the units, also the imple-
mentation itself benefits from this mod-
ularisation. For our modelling approach,
these functional units are further parti-
tioned into modules, small computational
models that describe single pathways or processes in the certain unit. The different
modules can be implemented by different groups of people independently which further
facilitates the cooperation and allows for the distribution of effort and expertise [18].
The modules as well as the units themselves can also be adjusted or even exchanged
completely without the need of changing the whole model. Furthermore, implemented
modules can be reused in other model approaches and existing computational models
can be used as building blocks, representing modules for a functional unit or even sub-
stitute completely for a certain unit in the whole cell model.

5

3.2. The whole cell model as a modular entity

We identified and tested different possible solutions for the implementation process
of such a functional unit, exemplified on the central carbon metabolism of yeast. The
implementation was also intended to identify shortcomings and limitations of the current
version of the simulation environment. Also to characterise required extensions in regard
to possible tools helping the implementation of new modules and identify problems in
the model architecture, e.g. analysis of model/module properties.

A new large-scale simulation framework
A simulation environment for a whole cell model can be defined mainly by the supported
mathematical descriptions of the modules and the method of combining them for sim-
ulation. Some tools like the already mentioned E-CELL project and the virtual cell [14]
provide small building blocks to assemble models for simulation. These tools cannot
easily be modified and extended in functionality, although some support the utilisation
of SBML or CellML model files. Other tools like the XS-system [19] allow the user
to define a chemical network, it creates automatically an ODE system with predefined
kinetics and simulates this system. A systems biology tool with the closest relation to
the simulation framework presented here was introduced by Hernández et al. [20], by
the name of M2SL. This simulation library is written in C++ and is designed to simu-
late multi-formalism and heterogeneous models together. Outside the systems biology
community, the simulation of modularised multi-formalism systems is also a challenging
problem, a general acrchitectural description is the high level architecture (HLA) intro-
duced by Kuhl et al. [21]. M2SL as well as HLA provide a function for the interaction of
decoupled simulations of particular components. Even though a simulation framework
for mathematical models is not comparable to a general purpose architecture, the un-
derlying principle is comparable.
Two basic concepts in regard of the handling of the modules in the simulation frame-
work are apparent. While tools like E-CELL and virtual cell merge the modules to a
large system and solve this newly build large model, other preserve the modularity, which
can be provide several advantages, especially for large and complex systems. Firstly,
the merging of multi-formalism systems is not easily doable and has to underlie severe
limitations, in an independent simulation process, these formalisms can be simulated by
specialised solvers and tools. Secondly, the simulation of small modules need less compu-
tational effort than the simulation of a large model. Additionally, the use of independent
simulations facilitates the parallelisation of the simulation processes considerably, they
easily be distributed to different computer cores.

6

4. Material & Methods

The fundamental component of the simulation environment is the function to merge
the modules or coordinate the module simulations, in either way. The quality of this
coordination or consolidation function decides about the quality and accuracy of the
whole simulation framework.

Despite the availability of simulation environments we decided to implement a new
framework for the simulation of the whole cell model. Firstly, to ensure the adjustment
to our requirements concerning the model itself and secondly, to guarantee full support
of the tools commonly used in the group of theoretical biophysics.

4. Material & Methods

4.1. The simulation framework

The framework of the simulation environment for the whole cell model is written in the
programming language Python [22]. This language is commonly used in the systems
biology community, therefore, several tools for computational modelling are available
and can be easily integrated. The plotting of simulation time courses or other numerical
values is performed using the package matplotlib [23]. Another advantage of this pro-
gramming language is the readability of Python code which improves the reusability for
future user. The object-orientation enables the conversion of different model formats to
Python module objects. Thereby, the module object can hold all information necessary
for the simulation in Python dictionaries, a data type referred to as associative array.
These arrays are indexed by keys or names, instead of only numbering the entries in
order of the first occurrence, which facilitates the call of different values considerably. A
Python module object holds the following information:

• Name of the module

• Initial values for all variables

• Parameter values

• Rates of the different reactions

• Equations for all variables

• Annotations for variables and compartments

7

4.2. External modules & software tools

The import of computational models supports 3 different exchange file formats:

• SBML:
The Systems Biology Markup Language [11] is a standardised exchange format for
mathematical models based on XML. It allows the storage of the chemical reaction
network, the stoichiometric matrix, kinetic formulas and numerical values for the
dynamic simulation of the model. Several tools in the systems biology community
support this file format to simulate, analyse and adjust the computational model.
One of these tools is the libSBML [24] library, which allows the easy import of
data from SBML files into Python, a corresponding Python script was provided by
Dr. Thomas Spießer.

• SBtab:
The SBtab [25] file format is a unifying spreadsheet format to store different types
of information. The use of predefined tables and columns allow for the automated
conversion of the stored information into Python data types. The SBtab parser
supports all common spreadsheet formats, e.g. Excel files [26]. Furthermore, the
tables can automatically read out using web tools to translate them directly into
SBML or vice versa. SBtab was developed by Wolfram Liebermeister et al. [25].

• Python script: To enable the direct import of the Python data structure used by
the module objects, the information can be stored directly in a Python script. An
example for the data structure is given in figure 21, showing the Lotka-Volterra
predator-prey model [27].

For the unambiguous identification of module variables regardless of the short name
used in the certain module, the modules need to be annotated. We decided to use
identifiers from the database and ontology of Chemical Entities of Biological Interest
(ChEBI) [28] for the identification of chemical components in the whole cell model. The
component containing compartments are identified by annotations from the Gene On-
tology project (GO) [29]. These annotations consist of the abbreviation of the database,
ChEBI or GO, respectively, and a unique number corresponding to the certain database
entry. These annotations allow also for a web query to obtain additional information
about the particular item.

4.2. External modules & software tools

The modularity of the whole cell model allows the utilisation of existing computational
models as building blocks. To demonstrate the implementation process of a large-scale
model for the whole cell approach, we used different existing models of metabolic pro-
cesses to create an exemplified large metabolic model for the yeast S. cerevisiae.

8

4.2. External modules & software tools

1. Glycolysis - Hynne et al. 2001 [30]
This model describes the anaerobe glycolysis in S. cerevisiae. The model uses only
ordinary differential equations and is fully parametrised. The kinetics are based
on the law of mass action but do also exploit more complicated rate laws, e.g.
Ordered Bi Bi kinetics [31]. The kinetic parameters are given in millimolar and
minutes, the simulated time courses show, the model levels out at an oscillating
steady state. Additionally to the basic glycolytic reactions of forming pyruvate
out of glucose, it consists of reactions for the uptake of extracellular glucose, the
formation of glycerol, glycogen (storage), and ethanol, as well as their export
over the plasma membrane. Besides, the experimental setting of the underlying
continuous-flow experiment required the addition of cyanide (CN−) to the model.
The model comprises 22 chemical species in 24 reactions and uses 2 compartments,
the extracellular medium and the cytosol. Figure 17 in the appendix of this work
shows the reaction network of this model.

2. Mitochondrial energy metabolism - Nazaret et al. 2009 [32]
This dynamical model is a simplified model of a generalised mitochondria. The
given ordinary differential equations represent mainly lumped reactions of the TCA
cycle, the respiratory chain and the related membrane proteins, e.g. ATP synthase
and adenine nucleotide translocator. The system reaches a stable steady state after
a short time of levelling. The model is fully parametrised, the kinetic parameters
are given in molar and seconds. The model comprises 10 chemical species and the
membrane potential over the inner mitochondrial membrane as variables, it holds
14 reactions. The reaction network of this model is shown in the appendix of this
work, Figure 18.

3. Mitochondrial energy metabolism - Wu et al. 2007 [33]
This ODE model of the mitochondrial energy metabolism is part of the virtual
physiological rat project, it provides different parameter sets for different experi-
mental settings or different rat tissues, respectively. The kinetic parameters are
given in molar and seconds. The rate laws utilise various different kinetics, rang-
ing from Michalelis-Menten [34] kinetics to Ordered Bi Bi kinetics. The model
describes the TCA cycle, several membrane transporters and diffusion processes as
well as the respiratory chain. The model holds 62 chemical species and the mem-
brane potential as variables, these are distributed over 3 different compartments,
the cytosol (external), the intermembrane space and the mitochondrial matrix. A
reaction scheme of this model is shown in Figure 19 in the appendix of this work.

9

4.2. External modules & software tools

4. Yeast metabolism - Stanford et al. 2013 [35]
This large dynamic model of yeast metabolism is based on the yeast consensus
metabolic network [36]. It comprises ordinary differential equations with kinetic
parameters given in the units molar and seconds. The kinetic rates were created
automatically using a parameter balancing tool introduced by Lubitz et al. in
2010 [37]. The tool created a set of thermodynamically consistent parameters
and kinetic rates using modular rate laws [38] for the rate equations. The model
consists of only 2 compartments, an extracellular and an intracellular part, holding
285 reactions and 295 species as variables. Several anabolic and catabolic processes
are presented, besides the glycolysis and the TCA cycle this model also describes
a basic biomass function including amino acid and fatty acid synthesis.

5. Yeast consensus metabolic network - Version 7.0 [36]
This model is not a dynamic mathematical model, instead a large metabolic net-
work map of S. cerevisiae based on the genome sequence and literature infor-
mation. It holds stoichiometric information of 3498 reactions and 2384 chemical
species in 14 Compartments.

Parameter balancing [37]
The parameter balancing tool which was used for the parametrising of the metabolic
model from Stanford et al. was also used for the implementation of a newly imple-
mented metabolic model based on the yeast consensus model version 7.0. The tool
automatically initialises the reactions using modular rate laws [38] and calculates a set
of thermodynamic consistent parameters. For the calculation it uses an SBtab table,
providing rate constants, formation energies and initial concentrations. The structural
network information has to be provided in an SBML file. It uses thermodynamic de-
pendencies of the rate constants, e.g. Wegscheider conditions, to estimate unknown
parameters and adjusts the given parameters to a global thermodynamically consistent
state. The calculation and adjustment of the parameter set employs Bayesian estimation
[39]. The adjusted parameters can be downloaded in an SBtab file, the re-parametrised
model is provided in an SBML file. The tool is part of semanticSBML [40].

COPASI - COmplex PAthway SImulator [41]
The creation of an SBML model file was facilitated by the software COPASI 4.11. This
application provides a graphical user interface for creation, simulation and analysis of
biochemical models. Furthermore, the import and export of SBML files is supported.
This tool was used to create the new metabolic model. The use of COPASI provided the
possibility to test the model on the fly while adding, modifying and removing reactions

10

4.3. ODE solver in the simulation framework

and species. Simulations were performed with the integrated ODE solver LSODA [42],
a solver with an automated switch between stiff (backward differentiation formula) [43]
and non-stiff (Adams-Moulton method) solver methods [44], depending on the behaviour
of the system.

4.3. ODE solver in the simulation framework

To test the accuracy and performance of different methods and solvers for the use in the
simulation environment, several different ODE solver libraries were integrated. These
packages differ not only in the employed solver methods, but also in the processing of
the ODE data.

The SBML ODE Solver Library (SOSlib) [45] and libSBMLsim [46] are both frame-
works utilising the libSBML library directly to get the data from the SBML file of the
module. These two are written in ANSI C [47] and pass the Abstract Syntax Trees
(AST), the mathematical representation of the data in libSBML, directly to the actual
solver routine. This allows a very fast translation of the data into a format that can
be used to integrate the ODEs. The libSBMLsim library provides additionally a Python
binding, that facilitated the use in the whole cell modelling simulation environment. It
also allows the integration of the equations with 15 different solving methods, among
others Adams-Moulton, backward differentiation formula (BDF), and Runge-Kutta [43].
The SBML solver library employs the solver CVODES [48], a solver from the SUNDIALS
solver package [49] with additional analysis functions, this solver provides the methods
Adams-Moulton and BDF.

The solver framework ODEint [50] and the simulation package Assimulo 2.4 [51] can
use the Python module data structure of the whole cell modelling environment. ODEint
is part of the scientific Python package SciPy [52] and represents the standard ODE
solver for Python. The employed solver is LSODA [42] from the solver package ODE-
PACK [53], as mentioned in the end of the last chapter, a solver with an automated
switch between a solver method for stiff or non-stiff problems, respectively. The last
solver framework is Assimulo, a Python binding for the SUNDIALS solver package [49].
We implemented the solver CVODE [54], a state of the art solver providing Adams-
Moulton and BDF methods for solving non-stiff or stiff problems, respectively.

11

4.3. ODE solver in the simulation framework

Adams-Moulton method for non-stiff problems [44]
The Adams-Moulton method is an implicit linear multistep method for the numerical so-
lution of ordinary differential equations. Instead of calculating the current approximated
value yn of a differential equation only by considering the last value yn−1 and its deriva-
tive (Euler’s method), a linear multistep method uses a linear combination of the last
calculated values and their derivatives to estimate the current value yn. Compared with
the Runge-Kutta method, which uses intermediate steps between the previous and the
current value for calculation, the advantage of a multistep method is that an increased
order of the method can be reached without increasing the number of calculations. In-
stead, the order is defined by the number of employed previous values for calculation
(steps).
The Adams-Moulton method can be described by equation (1) with a0 = 1, a1 = −1,
a2, · · · , am = 0. The right side of the equation is approximated by polynomial interpo-
lation, requires the use of an iteration algorithm[54]. If b0 = 0 equation (1) describes
the Adams-Bashforth method, an explicit method, because the value yn is only present
on the left side of the equation. An implicit method employs additionally the derivative
of the point to be calculated (b0 6= 0). Sometimes, an explicit and implicit method are
connected to a predictor-corrector method, here the explicit method is used for a first
approximation, the implicit method for the correction.

m∑
j=0

aj yn−j = h
m∑
j=0

bj f(xn−j, yn−j) (1)

Backward differentiation formula (BDF) for stiff problems [43]
The backward differentiation formula is also an implicit linear multistep method, it can
also be described by equation (1) with b1, · · · , bm = 0. Here, the left side of the equation
is approximated by polynomial interpolation, instead of the right side. This leads to a
change of the stability properties of the BDF method and makes it more suitable for
stiff problems.
A characteristic property of a stiff ODE system is the unnecessary decrease of the step
size for some, mostly explicit, solver methods. This decrease is only based on stability,
not on the accuracy of the method [44] and leads to a drop of the efficacy of the
employed solver methods.

12

5. Results

5. Results

5.1. The framework for a whole cell modelling approach

The whole cell modelling approach is based on the idea of modularity, in regard of the
use of small modules as building blocks for the model, as well as during the simula-
tion process. The modules are not connected or merged directly, instead, each module
performs an independent or decoupled simulation for a discrete small time interval. Af-
terwards a reconciliation function reconstructs a consistent cell state, by merging the
simulation results. This makes the consolidation function to the crucial component of
the simulation framework for the whole cell modelling approach.

Identification of cell components
The recovery of a consistent cell state requires the unambiguous identification of the
components in each module, since the consolidation function has to merge the concentra-
tion changes resulting from the independent simulations of each module. To ensure this
identifiability, we introduced annotations and identifier commonly used in the systems
biology community provided by public databases. Figure 2 shows the communication
and identification processes of the simulation environment, the modules can be imported
using different file formats, the framework automatically creates Python module objects
from these files and uses the identifier provided in the modules to identify the certain
components. This method guarantees the successful match of components in different
modules independent from the chosen identifier or short name in the module itself. Fur-
thermore, it allows for the unambiguous identification of components in databases and
prevents ambiguity errors due to indistinct naming of compounds in the modules.

A similar procedure is used to identify the localisation of the compounds. The con-
solidation function does not only need to identify a particular species, but also the
localisation of the species in the cell. Each component in the simulation framework is
therefore identified by a pair of annotations, one for the species itself and one for the
containing compartment. For metabolic compounds the Chemical Entities of Biological
Interest database (ChEBI) is used, the identification of compartments utilises Gene On-
tology (GO) terms. If a certain compound has no unambiguous identifier from one of
these databases, other standard terms can be used, e.g. Kyoto Encyclopedia of Genes
and Genomes (KEGG) [55]. To ensure a correct matching for the simulation a visuali-
sation of the coupled species was implemented by Dr. Martin Seeger. Figure 22 in the
appendix of this work shows an example for three modules imported and coupled via
matching of the components performed by the framework automatically.

13

5.1. The framework for a whole cell modelling approach

Figure 2: Import and connection of modules
The modules can be imported using a model written as Python scripts or use one of the exchange
formats SBML or SBtab, respectively. The matching of the same compounds in different modules is
performed automatically using unambiguous annotations for all components involved (e.g. ChEBI ids).
The table at the bottom of the scheme shows the identifier for adenosine 5’-triphosphate as an example
in an SBtab table.

14

5.1. The framework for a whole cell modelling approach

The current cell state, all metabolite concentrations and values to describe the con-
dition of the cell, are stored in the state vector. The state vector has the data structure
of a Python dictionary, every compound is identified by the particular standard id and
the standard annotation of the containing compartment:

E.g.: ATP in the cytosol =⇒ CHEBI:15422 GO:0005829

Models stored in Python module objects
To facilitate the work with several modules imported from different data sources, an
object oriented module data structure was introduced by Dr. Martin Seeger. The use
of module objects provides a fast and coherent processing of the modules. Instead of a
centralised simulation control in the framework, the modules can perform the simulations
independently. This facilitates not only the parallelisation of the simulation process, but
also the introduction of test and control methods for debugging. The framework serves
only as a control instance for the model, the initialisation process and simulations are
performed by the module objects themselves, afterwards, the module objects report back
to the framework which coordinates the next steps. The user can also work with the
module objects directly to perform single module simulations or to observe the modules
behaviour during the whole cell simulation. For this reason, each module has its own
simulation and plotting methods available, a module state vector holds the actual state
of the module object.

The initial cell state The first inconsistent state of the cell is the initial state,
most probably, the different modules do not contain the same initial values for matching
components. The initialisation of the modules is therefore connected with the declaration
of a global initial state. The initial values can be set by the import of an SBtab table
holding the values for the state vector. If the state vector is set for an initial state, the
module state were updated. If no initial state is provided to the framework, the initial
values of the state are set by the module values, depending on the import order. In either
case, an initialisation step ensures the match of the initial values for the first simulations
and therefore a consistent initial state.

15

5.2. A simulation step in the framework

5.2. A simulation step in the framework

A crucial parameter of the simulation framework is the discrete time step ∆t, it defines
the time interval in which the modules are simulated independently from each other. A
simulation cycle consists of all modules simulated one after another. After each cycle,
the consolidation function merges the results from the modules and updates the state
vector. The merging process is based on numerical changes, the modules change the
value of the particular component individually, the consolidation function sums up the
changes of all modules involved and adds the result to the value in the state vector. The
following simulation step is initialised with the new state vector. During the simulation
of a module, this module is completely decoupled from the others. Therefore, the values
of coupled species in other modules are held constant during the simulation time ∆t.
This leads to an inconsistent state after a simulation cycle, since the different modules
hold divergent numerical values for identical components. After the consolidation step,
the cell state is consistent again. Figure 3, shows the scheme of one simulation step
tn to tn+1 of the size ∆t, exemplified for 3 modules X, Y, and Z. Due to the possible
couplings between the modules, the accurate solution of a module is a function of the
variables of all 3 modules, even if only a few of the variables in the modules are actually
coupled. Instead of solving the function f(x, y, z, t), the independent simulation leads
to the solving of a decoupled function, only dependent on the variables of the particular
module, denoted as f̃ . The changes of the variables due to the other modules are ne-
glected, these module variables are held constant.

Error estimation for the simulation process
An important aspect of the simulation framework is the question of the error being
made by using this modular approach, the identification of error sources and the possible
reduction of these. To test the simulation framework and to demonstrate the possible
error sources, we implemented 2 test systems.

1. Lotka-Volterra: predator-prey model [27]
This well known model is a simple ODE system comprising 2 autonomous first
order ordinary differential equations. The 2 strongly coupled species, describe the
simplistic behaviour of a predator - prey relationship. The growth of the prey
population feeds the predators and leads to an increasing amount of predators.
The rise in the predator population lowers the number preys which then decreases
also the number of predators due to starvation. The system consists of two terms
for each species, a formation and a degradation term, while the formation term
for the prey species, denoted as u, is only dependent on the current amount of

16

5.2. A simulation step in the framework

Figure 3: One simulation step
The figure shows a single simulation step, tn to tn+1, of the simulation framework. The state vector v
holds the numerical values of the current cell state consisting of the initial values of the three modules
X, Y and Z. The vectors x, y and z hold the species in the particular module. Since some species are
present in several modules, the module holds a function of all three vectors. The independent simulation
is a reduction to the dependency of only one vector, which leads to the inconsistent states x̃, ỹ, and z̃,
respectively. The consolidation function merges the results and writes the new consistent states to the
state vector.

17

5.2. A simulation step in the framework

Figure 4: Example of the modularisation of a simple mass action system
The scheme shows the separation of the species x into the species y and z, contained in different

modules Y and Z, respectively. Therefore, each module contains different reactions of the species x.

preys, the formation term of the predator species, denoted as x, is dependent on
the amount of predators and preys. The degradation term is coupled vice versa,
the amount of predators increases the degradation rate for the preys. A simulation
time course of the system with the given parameters is shown in Figure 5a.

Prey :
du
dt

= k1 · u− k2 · u · x

Predator :
dx
dt

= k3 · u · x− k4 · x

Used parameter values: k1 : 1.0 k2 : 0.1 k3 : 0.02 k4 : 1.0

2. Mass action kinetic
This example is a simplified system to demonstrate the functionality of the sim-
ulation framework. It consists of two species with a constant formation (v1, v3)
reaction and a concentration dependent (mass action kinetic) degradation reaction
(v2, v4). It can be used as an example for a species occurring in two modules in
the whole cell modelling approach, Figure 4. The species x is occurring in both
modules Y and Z, the modular approach leads to the decoupling and splitting
of the species x into y and z. Figure 5b shows a simulation time course of the
coupled system. The depicted variable shows bounded growth, the value increases
with a high rate and reaches then a stable steady state.

Module Y :
dy
dt

= v1 − v2 = k1 − k2 · y

Module Z :
dz
dt

= v3 − v4 = k3 − k4 · z

Used parameter values: k1 : 5.0 k2 : 3.0 k3 : 3.0 k4 : 2.0

18

5.2. A simulation step in the framework

(a) Time course: Lotka-Volterra model (b) Time course: Mass action model

Figure 5: Time courses of the simulated test models
The figure shows the simulated time courses of the presented test systems, used as references for the

testing. Both systems were integrated with Assimulo 2.4, Adams-Moulton method.

Limitations of the solver methods
The used differential equations in the models presented in this work are autonomous
ordinary differential equations of first order. The existence and uniqueness of a solution
can be assumed since all used functions satisfy the Lipschitz condition [44], the equations
are globally differentiable and have a bounded derivative. A typical property of chemical
reaction kinetics is the occurrence of stiff ODE systems [43]. This characteristic can
be challenging for explicit methods, e.g. Adams-Bashforth method, but in some cases
also for the Adams-Moulton method. These methods have to use a very small step size
while BDF or other methods employable for the solving of stiff systems can enlarge the
step size and show a much better performance. This decreasing of the step size is here
not based on accuracy but on stability of the particular method. A stiff system can be
identified by the occurrence of very fast and very slow decaying solution components in
a system. A precise definition or test method does not exist. A simulation test can show
very quickly whether a method is appropriate to simulate a certain system or not.
The decoupling of the ODE systems is not affecting the solver method, the solver is
called with new initial values after each simulation step and solves the system for a
short time interval ∆t. Inherent solver functions as the step size control or a corrector-
predictor are also not affected.
The implemented solver packages employs only the Adams-Moulton method or BDF, the
SBML solver were not tested here, because they are limited to SBML files and therefore
not applicable to all modules. Since Assimulo 2.4 provided a better interface and more
adjustable parameters, we decided to use this package for test simulations. Both of

19

5.2. A simulation step in the framework

the two implemented solver methods were able to solve the implemented test systems
accurately.
The first possible error source of the simulation environment is the repeated call of the
solver. A simulation step in the model framework is consisting of the simulation of each
module for a short time step ∆t and the following consolidation run. Therefore, to solve
a module for a certain time t, the solver has to start t/∆t-times a new simulation. To
test the possible evolution of an error by starting the solver again and again instead of
running one continuous simulation for the time t, we calculated and plotted the absolute
deviance between the two time courses for the Lotka-Volterra model. We simulated the
model for 20 seconds with a time step size ∆t of 0.1 and 0.01, respectively. We tested
the two solver methods as well as different orders for the methods.
The comparison of the simulation time courses showed a 3-times smaller deviation when
using the Adams-Moulton method, ∆t = 0.1. The error was accumulative and increased
with every peak of the Lotka-Volterra model. Since a multistep method uses previously
calculated points for the approximation of the following point, a frequent restart of the
solver was thought to increase the error. The decrease of the time step size ∆t was
therefore also thought to give rise to a larger deviation. These assumptions could not be
confirmed, the reduction of the time step size by the factor 10 has approximately halved
the maximum deviation from 0.1 % to 0.05% of the particular species value. A change
of the order has not shown any effect on the deviation between the simulations.

Error estimation for the decoupled simulation of modules
To characterise the error made by the decoupling of the module simulations, we separated
each test systems into two modules and compared the simulated time courses with the
time courses shown in Figure 5. The modules for the test systems based on mass action
kinetic hold one of the equations shown, we provided the same identifier for the species to
realise the coupling. Each module of the Lotka-Volterra test system had to contain both
species, therefore, we introduced the second species as constant. The value of this “con-
stant” species is only changed by the consolidation function of the simulation framework:

20

5.2. A simulation step in the framework

Lotka-Volterra test modules:

Module I :
du
dt

= k1 · u− k2 · u · x

dx
dt

= 0

Module II :
du
dt

= 0

dx
dt

= k3 · u · x− k4 · x

The simulated time courses for these two modules, representing the Lotka-Volterra
model, are shown in Figure 6. The time courses are plotted together with the reference
time course, which was simulated with the same solver method, Assimulo 2.4, Adams-
Moulton method outside the simulation framework. The modular system shows a clear
divergence, the oscillation peaks are shifted and increase over time, Figure 6b. The
plots show the simulations with the use of different time step sizes ∆t, ranging from 0.1
seconds to 0.001 seconds, the decrease of the step size decreases also the deviation and
therefore the error being made by the simulation framework. The Lotka-Volterra model
represents here a strongly coupled system, the two components are highly dependent on
each other, the decoupling leads to a high deviation accumulating over time.

The second test system is based on a species x, which occurs in two different modules
with different reactions. During the decoupled simulation, each modules performs its
own change of the species concentration. After the simulation of both modules for the
given time interval ∆t, the consolidation function merges these changes. The choice
of the time step size defines the frequency of the consolidation steps. Figure 7 shows
the absolute difference between the reference time course, simulated in one equation
outside the framework and the test system, separated in two equations and two mod-
ules inside the framework. At the beginning of the simulation, the species increases
very fast, leading to a high deviation of the solutions. This deviation decreases when
the species changing rate decreases and stayed at a constant value when the species
reaches its saturation level. Figure 7c shows also an erratic movement of the deviation,
the decoupled system shows irregular oscillations of the species function value and was
not able to reach a stable steady state. The oscillations have not exceed 0.01% of the
species value for all tested time step sizes. The choice of the time step size is also in
this example directly proportional to the deviation of the simulation. The reduction of
the time step size ∆t by the factor 10 reduced the error by approximately the same factor.

21

5.2. A simulation step in the framework

(a) Adams-Moulton method, ∆t: 0.1

(b) Adams-Moulton method, ∆t: 0.01 (c) Adams-Moulton method, ∆t: 0.001

Figure 6: Framework test using Lotka-Volterra
The Lotka-Volterra model represents a highly coupled system. The decoupling of the two species

leads to the divergence of the solution from the reference time course. The deviation can be reduced
by decreasing the time step size ∆t of the simulation framework.

22

5.2. A simulation step in the framework

The 2 examples showed the dependency of the error on the time step size ∆t. The
approach profits from the form of biochemical reaction equations. An ordinary differen-
tial equation for a chemical species is based the rates of the corresponding enzymatic
reactions. The system showed in Figure 4 is based on 4 reactions v1 to v4, the actual
mathematical description is based on the chosen rate law. The second example demon-
strates the use of mass action kinetics but also other descriptions are possible. The
differential equation itself is formed as the sum of rates, here denoted as v. The simula-
tion framework does not split the individual reaction, but the reactions were decoupled
for a given system:

dx
dt

= k1 + k3 − (k2 + k4) · x = v1 − v2 + v3 − v4

The example demonstrates a scenario with 2 different modules, one module (Y) hold-
ing the reactions 1 and 2 and one module (Z) containing the reactions 3 and 4. The
equation of the species x is therefore split into the equations for the matching species y
and z:

dy
dt

= v1 − v2

dz
dt

= v3 − v4

To exemplify the mechanism of the decoupling, we assume the actual solver method
to be explicit Euler [43]. The error of the solver method can here be neglected, since
the error based on the decoupling is several times higher. The mechanisms are still valid
for higher-order methods, like the used linear multistep methods.

Firstly, we assume the solver step size, usually denoted as h, to have the same size as
the step size of the simulation framework ∆t. The approximation of the solution for the
species x at the discrete time point tn+1 = tn + h is given as:

xn+1 = xn + h · f(t, x(t)) = xn + h · (v1 − v2 + v3 − v4)

Application of the Euler method to y and z leads the following equations for the
approximation:

yn+1 = yn + h · f(t, y(t)) = yn + h · (v1 − v2)

zn+1 = zn + h · f(t, z(t)) = zn + h · (v4 − v4)

23

5.2. A simulation step in the framework

(a) Adams-Moulton method, ∆t: 0.1 (b) Adams-Moulton method, ∆t: 0.01

(c) Adams-Moulton method, ∆t: 0.001

Figure 7: Framework test using mass action kinetics
The simplified mass action test system was separated into 2 modules. The figures show the

differences between the modular simulations and the reference time course. The deviation was
increased by the fast movement of the species and decreases with the changing rate of the species.
The modular simulation shows also irregular oscillations of the solution when the reference has
reached its saturation level. The reduction of the time step size ∆t reduced the deviation by

approximately the same factor.

24

5.2. A simulation step in the framework

The consolidation function guarantees a consistent state for the species x before the
start of a simulation cycle, the initial values are therefore identical: yn = zn = xn. After
the uncoupled simulation, the changes of x will be summed up by the consolidation
function and added to the value in the state vector:

∆y = yn+1 − yn = h · (v1 − v2)

∆z = zn+1 − zn = h · (v3 − v4)

=⇒ ∆x = xn + ∆y + ∆z = xn + h · (v1 − v2 + v3 − v4)

The last line is identical to the application of the Euler method to approximate the
value of x at time point tn+1. The decoupling of the modules does not lead to an error
in this artificial and simplified scenario, independent from the actual description of the
rates v. If the solver takes 2 steps in one simulation step, the second approximation
for the values of yn+2 and zn+2 are dependent on the unconsolidated values yn+1 and
zn+1. The change of the value made by the uncoupled module is not considered for the
approximation. The module is assumed to be constant. Figure 8 shows an exemplified
scheme of the behaviour of two different module solutions and their trajectories. For the
simulation of the uncoupled solution ỹ, the changes of the module Z are not considered,
the module is assumed to be constant z. The difference between the coupled solution
ẑ and the constant solution z leads to the error of the uncoupled simulation of the 2
modules. The same error occurs while the simulation of module Z in regard of module
Y, after the two simulations, the consolidation function calculates a consistent solution
for the next simulation step. The scheme can be transferred to larger modules and
multidimensional trajectories. Of course, the usual case is a scenario, in which the solver
makes several or, dependent on the type of the ODE system and the time step size of the
framework, several hundred steps during one simulation step of the framework. A precise
formula for the error of the decoupled simulations cannot be given in this work, still,
as the example already showed, the error is indeed dependent on the mathematical rate
descriptions in the decoupled system and the step size ∆t of the simulation framework.

For a given time step size ∆t, the error of the decoupled simulations is also dependent
on the definition of the interface between two modules. The choice of the coupling
variables can have a large effect on the error of the simulation. To demonstrate this
effect, we separated the glycolysis model by Hynne et al. [30] into 2 modules and
simulated them together. To show the effect of the coupling variables, we used 2
different species as interfaces between these two modules. The simulation were, as the
examples before, performed with Assimulo 2.4, Adams-Moulton method. Figure 9 shows

25

5.2. A simulation step in the framework

Figure 8: Simulation scheme of a module
During the decoupled simulation of a module Y, the changes caused by the equations in module Z
are neglected. The module trajectory is assumed to be constant z, this leads to the approximated or
decoupled solution ỹ. The same method is used for the simulation of module Z. After the simulation
of both modules, the consolidation function calculates a consistent solution based on the results of the
decoupled simulations of the two modules. The difference between the constant solution z and the
theoretical coupled solution is responsible for the error of the method used by the simulation framework.

3 different simulations of the model by Hynne et al., the plotted time courses show the
absolute differences between the reference time course and the related test time course
over time. The first plot 9a shows the absolute deviation for a separated model with a
time step size of 0.01 seconds. The separation of the model is performed into an upper
and lower part of the glycolysis, see Figure 17 for the complete reaction network of the
model, the number in brackets refer to the particular reaction number in the network
scheme. The first test scenario (system I) is implemented with the species glyceraldehyde
3-phosphate as interface between the two modules. All reactions following this species,
starting with the glyceraldehyde 3-phosphate dehydrogenase reaction (8), were moved
into the lower glycolysis module. Since the ATP producing reactions are also located in
the lower part, the ATP consume reaction (23) was also transferred into this module.
The same 2 modules were also simulated with a time step size of 0.1 s, a 10-times larger
step size (test system II). For the last test, we moved the interface of the two modules
to 1,3-bisphosphoglycerate, the lower glycolysis module starts here with the lumped
phosphoenol pyruvate production (9), one reaction less than in the example before. We
simulated the modules again with the smaller step size of 0.01 s.
Since the glycolysis model is a linear model with strongly coupled reactions, a relatively
large error was expected. The plots in Figure 9 confirm this expectation of large absolute

26

5.2. A simulation step in the framework

deviations. The difference between the time courses in 9a and 9b also show an expected
behaviour, the enlargement of the step size ∆t leads to an increase of the error. The time
course show a considerably larger distribution as the time course in 9a, also confirmed
by the average deviation expressed in percentage, depicted in table 1. The deviation was
calculated as the absolute difference between the species concentration after 20 seconds
of simulation and the value from the connected simulation as reference. The deviation is
expressed in percentage of the particular species concentration from the reference time
course. The relative deviation of the species after 20 seconds of simulation is considerably
higher, also the average deviation of the whole system. The error of the simulation of
the first test system shows that the species involved in the separation, here fructose
1,6-bisphosphate and dihydroxyacetone phosphate, show the largest relative deviation
from the reference time course. The two species of each system with the highest relative
deviation are listed, the median is shown because of the better stability in regard of
outliers. The species in vicinity of the interface are likely to have a larger deviation
than others, since the introduction of the module interface leads to perturbations of the
coupled species concentrations. The third test simulation shows a completely different
behaviour. Considering the discussions of the examples before, the 10-times smaller
simulation step size should have lead to a far more precise simulation compared to the
second test system. The contrary behaviour can be observed, the relative deviation of
the system to the reference is several times higher and far more species show a large
deviation. The plot in Figure 9c as well as the listed values in table 1 verify that
the separation of the glycolysis model into the given modules is unemployable. This
also shows, that the choice of the interface between two models can be crucial for the
successful simulation of a large-scale model with this simulation environment.

Table 1: Separation tests glycolysis model from Hynne et al.
Test system ∆t Interface Max. deviation Species Average Median Figure

I 0.01 s GAP 12.0 % FBP 2.11 % 0.86 % 9a5.7 % DHAP

II 0.1 s GAP 315.5 % AMP 48.19 % 27.45 % 9b97.3 % FBP

III 0.01 s BPG 2009.5 % BPG 194.28 % 67.85 % 9c631.4 % AMP

The values verify the quality of the 3 test systems. The two species with the largest relative deviation
to the reference time course after 20 seconds of simulation are listed. Except of AMP, the species
denoted here are in direct vicinity of the interface between the separated modules. Figure 9 shows the
corresponding time courses of the absolute difference over time.
Abbreviations BPG: 1,3-bisphosphoglycerate, DHAP: dihydroxyacetone phosphate, FBP: fructose 1,6-phosphate, GAP: glyceraldehyde 3-phosphate.

27

5.2. A simulation step in the framework

(a) Test system I
Absolute difference. Interface: GAP. ∆t: 0.01

(b) Test system II
Absolute difference.
Interface: GAP. ∆t: 0.1

(c) Test system III
Absolute difference.
Interface: BPG. ∆t: 0.01

Figure 9: Simulation tests using the model by Hynne et al. from 2001 [30]
Shown is the absolute difference over time between the reference time courses of the continuous
glycolysis model and the test model consisting of two modules, representing the upper and lower

glycolysis, respectively. Figure 9a shows the simulation for the modules separated at glyceraldehyde
3-phosphate (GAP), simulated with a time step size ∆t of 0.01 seconds. The plot 9b shows the

simulation for the same system with a time step size of 0.1 seconds. The last figure, 9c, represents
the modules with a different interface. Here, 1,3-bisphosphoglycerate serves as connection between
the two modules. Although this module was simulated with a smaller step size of 0.01 s, this model

shows the largest error of the three test systems.
Abbreviations ACA: acetaldehyde, BPG: 1,3-bisphosphoglycerate, DHAP: dihydroxyacetone phosphate, EtOH: ethanol, F6P: fructose

6-phosphate, FBP: fructose 1,6-phosphate, G6P: glucose 6-phosphate, GAP: glyceraldehyde 3-phosphate, Glc: glucose, Glyc: glycerol, PEP:

phosphoenol pyruvate, Pyr: pyruvate.

28

5.3. Central carbon metabolism in yeast

5.3. Central carbon metabolism in yeast

The central carbon metabolism is a part of one of the functional units for the whole cell
model of yeast. Therefore, it can serve as an example for the implementation process
and as indicator for limitations and missing functions of the simulation framework. We
tested different possible methods to create a functional entity for the whole cell model
in regard of the usability, required effort and possible error sources.

Definition of the functional unit
A crucial and formative part of the characterisation process is the definition of interfaces
between different functional units. Concerning the metabolic model, we identified the
main outputs of the metabolic unit to be biomass (anabolism) and energy (catabolism)
[56]. The technical implementation of these interfaces is highly dependent on the ar-
chitecture and granularity of the other functional units. We limit the central carbon
metabolism in this test approach therefore to catabolic reactions and the production of
ATP and NADH, representing the storage molecules for free energy [56] and therefore
the energy yield of the model. Biomass production as lumped reaction or any other
biosynthesis reaction of biomolecules are indicated, but not fully implemented in this
test model. The main inputs for this unit were assumed to be nutrients from the extra-
cellular medium, enzyme concentrations based on the gene expression and transcription
of the metabolic proteins, and general cell dependent parameters. These parameters can
be influenced by environmental changes, but also by the cell division stage or simply the
growth of the cell, e.g. size changes and related dilution of molecule concentrations.
Since we do not consider any other functional units beside the metabolic unit for our
test, we omitted these inputs. Only the uptake and export of metabolites and nutrients
from the extracellular medium are implemented.
After the characterisation and definition of the main inputs and outputs of the func-
tional unit, the technical implementation of the modules begins. We tested 3 different
methods in regard of their usability to gain a working metabolic model for the simulation
environment. After the characterisation of the interfaces for the functional unit, this
unit is still represented by a black box in the large-scale model. This black box can be
filled by a single equation or a small set of lumped equations just to connect the inputs
and outputs of other units. The use of single equations as placeholders can be used for
testing purposes, but represents also the lowest attention to detail of a functional unit.
The definition of the granularity of single modules and functional units is an important
aspect for the whole cell modelling approach. The modularity of the model allows for the
facilitated exchange of modules and therefore for an easy change of granularity concern-
ing the whole cell approach. Therefore, also the representation of a module by a single

29

5.3. Central carbon metabolism in yeast

equation can be understand as a reasonable implementation. Regardless of the granu-
larity and the definition of interfaces is the choice of the mathematical description of the
different modules. Although the modularity of the approach allows for different math-
ematical descriptions in general, we decided to start with the utilisation of ODE-based
modules only. Since ordinary differential equations are a commonly used mathematical
descriptions for enzymatic reaction networks [6], this is not a limitation of the model for
the central carbon metabolism.

Figure 10: Scheme of the model
The model of the central carbon metabolism is

represented by a set of 3 modules: the glycolysis,

the TCA cycle and a general transport module,

including the oxidative phosphorylation.

Definition of the modules
We identified 3 possible ways to imple-
ment a functional unit as model for the
central carbon metabolism. The represen-
tation of the module by a single lumped
equation is omitted, since this representa-
tion is only reasonable in a scenario con-
sisting of several functional units. We de-
fined a set of 3 main pathways to be the
basis of this model: the glycolysis, the tr-
carboxlylic acid (TCA) cycle and to some
extend the oxidative phosphorylation (res-
piratory chain). Figure 11 shows a scheme
of the central metabolism in yeast, con-
taining the pathways we want to be rep-
resented in the test modules. These path-
ways are spread over 4 different compart-
ments, the extracellular medium, the cy-
tosol, the mitochondrial matrix, and the
intermembrane space, between the inner and outer mitochondrial membranes. For sim-
plicity, the oxidative phosphorylation can technically be seen as a transport reaction.
Therefore, we extended the module with the addition of a general transport module.
Besides the merging of a few reactions we wanted to keep the attention to detail as
high as possible. After the definition of the interfaces, the mathematical description and
the granularity of the different modules, we started the implementation with 3 different
approaches:

30

5.3. Central carbon metabolism in yeast

Figure 11: Scheme of the central metabolism in yeast
Figure is taken from Jiménez-Martí et al. 2011 [57]. The figure shows a scheme of the main pathways
in the central metabolism of the Baker’s yeast Saccharomyces cerevisiae. We defined our model of
the central carbon metabolism the following modules: The glycolysis module, consisting of the uptake
of glucose over the plasma membrane and the subsequent degradation to pyruvate. This module also
includes the formation of glycerol and glycogen. The tricarboxylic acid (TCA) cycle module, consisting
of all reactions localised in the mitochondrial matrix. The transport module, containing the oxidative
phosphorylation (respiratory chain) on the inner mitochondrial membrane, the production of ethanol
and acetate in the cytosol and all transport reactions over the mitochondrial membranes and the plasma
membrane.

31

5.3. Central carbon metabolism in yeast

An existing large-scale model
Besides the availability of computational models describing single pathways and small
functional parts, also some large-scale models are present in the systems biology com-
munity. These large-scale models could substitute a whole functional unit in the whole
cell model. However, such a large-scale model has to satisfy far more requirements than
a small model being used as a module. The aim of the model itself, the inputs and
outputs of the model, as well as the architecture of the model have to match. The
modification and adjustment of a continuous large-scale model is in most cases a time
consuming and tedious process.
We tested this approach with a larger model (285 reactions) representing the carbon
metabolism by Stanford et al. [35]. This model is based on the consensus yeast metabolic
network [36]. Glucose was assumed to be the only energy source and a “thermodynami-
cally feasible, stationary flux distribution matching the flux data” [36] was defined. The
model only contains reactions which showed an active-flux in this flux distribution, all
reactions without an active-flux were deleted. Afterwards it was automatically provided
with rate laws and parametrised using the parameter balancing tool [37]. The model
also contains only 2 compartments, the extracellular and the intracellular medium and
is lacking the oxidative phosphorylation. To use this model as a feasible functional unit
for the whole cell approach several modifications would have to be performed:

• Identification of species and reactions

• Introduction of compartments and corresponding transporters

• Localisation of species and reactions

• Addition of missing reactions to enable the model to describe different experimental
conditions and use different energy sources

• Re-parametrising the modified model

• Partitioning of the model into modules to regain the advantages of the modular
approach

Max Schelker wrote a new specialised Python program to enable the framework to
import this particular SBML file and to allow for the identification of species and reac-
tions. Together with some members of the group of theoretical biophysics it was possible
to identify the reactions and the corresponding genes and enzymes by hand. We were
able to localise the reactions using the Saccharomyces Gene Database (SGD) [58] and
to identify most of the missing reactions and transporters. Although this model can be

32

5.3. Central carbon metabolism in yeast

simulated using the whole cell model framework, it is still very limited because it can-
not profit from the main advantages of a modular approach. After adding all necessary
components, adjusting the architecture and splitting the model into modules, it would
still need to be re-parametrised to regain the functionality. Since the model provides a
biological feasible biomass function to model biosynthesis based on the used metabolites,
it could nevertheless be used as a substitute for the metabolic unit.

This example reveals again the advantages of a modular whole cell approach, the
use of small modules can guarantee a comprehensible and easily modifiable large-scale
model. Without the need of modifications, the partitioning of a large-scale model into
modules would be superior to other methods, since this method guarantees consistency
and compatibility of the modules. However, without a large-scale model satisfying the
given requirements, the adjustment of smaller models could appear to be more feasi-
ble to gain a functional unit more compatible with the requirements of the simulation
framework.

Merging small models to a large-scale model
The second test implementation we performed was the utilisation of smaller computa-
tional models as building blocks for the functional unit. We found a glycolysis model by
Hynne et al. from 2001 [30] and two mitochondrial models from 2007 (Wu et al. [33]),
and 2009 (Nazaret et al. [32]). The mitochondrial models were not specified to yeast,
the model by Wu et al. represents a rat tissue mitochondrion, the model by Nazaret et
al. a generalised mitochondrion. We prepared both mitochondrial models to test the ex-
changeability of the modules. Since the modules showing different granularities, we also
wanted to investigate the best suitable module for the given task. We identified several
modification and adaptation steps to employ the models in the simulation framework
and to use them as building blocks for a model of the central carbon metabolism.

• Annotation of species and compartments

• Creating valid module files for the framework

• Equalising the units for concentration and time

• Adaptation of the modules to S. cerevisiae

• Addition/removal of species and reactions to build valid interfaces between the
modules

• Re-parametrising the modified modules

33

5.3. Central carbon metabolism in yeast

While the glycolysis model by Hynne et al. and the mitochondrial model by Nazaret et
al. provided a valid SBML file, the mitochondrial model by Wu et al. was only available
as MATLAB [16] file and had to be translated by hand into a Python script. Additionally,
it was not annotated and the other modules needed to be curated as well, since different
annotations were used for matching species. During the modification of the modules,
we encountered several algebraic equations in the model files, since the provided solver
is not able to work with algebraic equations, we had substitute the representing variables
with the algebraic formulas in the differential equations. The algebraic equations were
mainly used for mass conservation, some algebraic equations were therefore eliminated
by the addition of the corresponding species into the modules. A more technical mod-
ification process was based on the units of the models, while one module used minutes
and millimolar, the others used seconds and molar. We adjusted the kinetic parameters
to millimolar as the global unit for concentrations and divided the differential equations
of one module by 60 to adjust the module to seconds as the global unit for the time.
After this adjustment, the modules were technically operational, the framework was able
to import and initialise the models correctly. The second part of the adaptation process
concerned the biological aspect of the modules. The model by Hynne et al. is closely
connected to an experimental scenario, therefore, cyanide (CN−) was occurring in the
model. We removed the species and the corresponding reactions, this was easily doable,
since the species was only present at one edge of the model and outside of the cell, as can
be seen in Figure 17 in the appendix of this work. Also the mitochondrial models had to
be changed, they were not representing a yeast mitochondrion correctly. Firstly, complex
I of the respiratory chain in S. cerevisiae is substituted by an internal (NDI1) and an
external (NDE2) NADH dehydrogenase [59], [58]. These enzymes are not involved in
the formation and maintenance of the proton gradient over the internal mitochondrial
membrane, since they are lacking a proton pump. We therefore removed the complete
respiratory chain from the models and Matthias Reis set up a new module concentrating
on the connection of glycolysis in the cytosol and the TCA cycle in the mitochondrial
matrix. The scheme of this connecting model can be seen in Figure 20 in the appendix
of this work.

After the modification and adaptation of the models to the technical requirements of
the simulation framework and to the biological aspects of S. cerevisiae, the new module
still needed to be parametrised. Therefore, a feasible time course simulation could not be
performed. We tried to identify a working parameter set by hand, but this was not suc-
cessful in the end. In either way, the whole metabolic model should be re-parametrised
to ensure the depiction of a consistent cell condition and to improve the communications

34

5.3. Central carbon metabolism in yeast

between the modules. The approach to use computational models as building blocks
for the whole cell modelling was successful so far. Nevertheless, several considerable
modifications had to be performed, considering the inherent limitations of the original
models and the need of a re-parametrisation, we wanted to test the implementation of
the metabolic model from scratch to compare this approach with the previous examples.

A new implementation
The implementation of a specified model adjusted for the needs of the simulation frame-
work can profit from the advantages of the previous approaches. It can guarantee the
connectivity and compatibility of a large connected model as well as the flexibility and
specificity of a set of modules. The model can be created with the defined interfaces
as main focus, provides an individual granularity and ensures compatibility with the sim-
ulation environment. An implementation of a model of this size is nonetheless a large
effort and a time consuming process, but in this case, the model can benefit directly
from previous attempts, since the metabolic model by Stanford et la. [35] presented a
way to parametrise a model based on the yeast consensus metabolic network [36] and
the definition and extend of the single pathways for the modules could be taken from
the definition of the small models.

Indeed, we managed to map the glycolysis model by Hynne et al. and the TCA cycle
model by Wu et al. to the latest yeast consensus model, version 7.0 [60]. The metabolic
network can be assumed to contain all relevant information about the reactions and the
corresponding metabolites and ensures actuality [60]. We used a graphical representa-
tion of the SBML file to identify additional transporters and reactions for all related
species in the model. With the stoichiometric information of the consensus model, we
implemented the complete model with 60 species and 59 reactions in COPASI 4.11.
After the implementation of the reaction network we exported the model into an SBML
file and used the parameter balancing tool to add kinetic reactions and to parametrise
the model. The same rate constants, equilibrium constants and initial values for the
parametrising of the metabolic model from Stanford et la. were used for the parametris-
ing of our new model. The values were taken from BioModels [61] and eQuilibrator
[62]. We extended the list with several entries for the added reactions and species in
the new model from the same sources. We achieved a first parametrised version of the
new metabolic model, using modular rate laws [38] as rate description, a generalised for-
malism for reversible reactions automatically introduced by the parameter balancing tool.

35

5.3. Central carbon metabolism in yeast

Figure 12: Scheme of the glycolysis module
The figure shows the simplified reaction network of the upper cytosolic pathway. The scheme neglects
co-factors and the ATP-based reactions adenylate kinase and a reaction modelling the energy consump-
tion of the cell. Furthermore, the membrane transport of protons and carbon dioxide are omitted. The
blue arrow at the bottom of the scheme represents the connection to the adjacent transport module.
The reactions and species of this module are listed in the tables 2 and 5, respectively.
Abbreviations: BPG: 1,3-bisphosphoglycerate, DHAP: dihydroxyacetone phosphate, F6P: fructose 6-phosphate, FBP: fructose 1,6-phosphate, G6P:

glucose 6-phosphate, GAP: glyceraldehyde 3-phosphate, Glc: glucose, PEP: phosphoenol pyruvate

After the parametrising of the model, we separated the model into 3 modules as de-
scribed before. The first module, representing the glycolysis, starts with external glucose
leading to the compound pyruvate. It is mainly a representation of the glycolysis model
introduced by Hynne et al. from 2001. The model describes the metabolic conversion in
the glycolysis and two additional branches, the storage of glucose 6-phosphate in glyco-
gen and the production of glycerol starting at dihydroxyacetone phosphate. Figure 12
shows the simplyfied reaction network scheme.

The mitochondrial part of the model represents the TCA cycle and holds all reactions
of the model which take place in the mitochondrial matrix. To simplify the model and
reduce the amount of compartments needed, the localisation of ubiquinone and ubiquinol
was assumed to be in the mitochondrial matrix to reduce the number of compartments.
The oxidative phosphorylation was split into the transport module and the TCA cycle
module, since the succinate dehydrogenase (complex II) is also part of the TCA cycle,
this reaction was transferred to this module to close the TCA cycle [56]. Figure 13 shows
the network scheme of this module.

36

5.3. Central carbon metabolism in yeast

Figure 13: Scheme of the TCA cycle module
The network scheme depicts the reactions of the mitochondrial matrix module. This module holds all
reactions localised in the mitochondrial matrix, additionally, the succinate dehydrogenase (complex II)
was transferred to this module to close the TCA cycle. Co-factors are omitted in this scheme.
The reactions and species of this module are listed in the tables 3 and 6, respectively.
Abbreviations:

ACA: acetaldehyde, Ac-Car: acetyl-carnitine, AcCoA: acetyl-CoA, AKG: α-ketoglutarate, EtOH: ethanol, OAA: oxaloacetate, SDHL: S-succinyl-

dihydrolipoamide, Suc-CoA: succinyl-CoA

The connection between the 2 modules is the transport module. Firstly, it holds the
cytosolic reactions of pyruvate to ethanol, secondly the transporters over the plasma
membrane, and thirdly the mitochondrial transport reactions, including the respiratory
chain. To simplify the model and to reduce the number of compartments, the mitochon-
drial intermembrane space was omitted. This decision was encouraged by the increased
permeability of the outer membrane [56]. A further assumption was made concerning
the respiratory chain, which was modelled without considering the membrane potential
over the inner mitochondrial membrane. Figure 14 shows the schematic network of the
module.

The reactions and species of the 3 modules are shown in the tables 2 to 4, and 5 to
7 in the appendix of this work.

37

5.3. Central carbon metabolism in yeast

Figure 14: Scheme of the transport module
The transport module consists of the transport reactions between the cytosol and the mitochondrial
matrix or the extracellular medium, respectively. It does not show co-factors and co-factor transporters,
also the mitochondrial adenylate kinase and the reactions of the oxidative phosphorylation (respiratory
chain) are neglected in this figure.
The reactions and species of this module are listed in the tables 4 and 7, respectively.
Abbreviations: ACA: acetaldehyde, Ac-Car: acetyl-carnitine, AcCoA: acetyl-CoA, EtOH: intracellular ethanol, OAA: oxaloacetate, Pyr: pyruvate.

38

6. Discussion

To provide a constant energy source, extracellular glucose was set as constant, also
the concentrations of protons, carbon dioxide, acetaldehyde, acetate, ethanol, pyruvate,
and glycerol in the extracellular medium. These components serve as sinks and sources
outside the cell to balance the network. Malate in the cytosol is the only constant species
inside the cell and serves as a sink/source for the TCA cycle. This species could be used
as a precursor of biomass in the model.

Despite the parametrisation based on literature values and the employment of the
yeast consensus network to build the model, we were not able to gain a feasible time
course simulation, not with the connected SBML file, nor with the modular model. The
model was not able to stabilise the ATP/ADP and the NADH/NAD ratios. We tested
several possible error sources, changed the number of reactions and species in the model
as well as changed the number of given values for the parameter balancing. Even the
manually adjustment of rate parameters of the main reactions, involved in the formation
and degradation of these species, were not able to change these ratios considerably. It is
assumed, that the parameters of transport reaction cannot be gained using the parameter
balancing tool and that these reactions disturb the successful parametrising of the model.

6. Discussion

The presented simulation environment for a whole cell modelling approach and the imple-
mentation of a metabolic model representing the central carbon metabolism in Saccha-
romyces cerevisiae seem to be unrelated at a first glance. On closer inspection, however,
the strong connection between the model and the framework in this approach becomes
clear. The given examples showed, that this simulation environment is not meant to be
another highly accurate simulation environment for differential equation-based simula-
tions. Instead, this framework is a helping tool for the implementation and simulation
of a whole cell modelling approach and exchanged some of its accuracy for compatibility
and functionality as a modelling tool specialised for this purpose. The implementation of
the central carbon metabolism exemplified different possible methods to create a working
model for the use in this whole cell modelling approach and for the simulation in the
specified environment. Even if we are not able to present time course simulations, we
were able to demonstrate the advantages and limitations of our approach in regard of
the model implementation as well as in regard of the simulation framework.

39

6.1. Implementation of a simulation framework

6.1. Implementation of a simulation framework

This early version of the simulation environment demonstrated successfully the underly-
ing concept of this approach and its working principle. The function of the framework is
to control and coordinate the module simulations, matching of species, administrating
the current cell state, and processing the simulation data. We were able to show the ben-
efit of utilising standardised annotations to identify module components unambiguously,
the use of ChEBI ids was functional for metabolic models, still, some metabolites do
not provide such an identifier and most components have several ids, depending on the
current charge. ATP for example, provides more than 8 different ChEBI identifiers. This
makes the control instances of the framework and visualisation tools for the models and
the contained species inevitable. The text-based output to visualise the species match-
ing (table 22) by Dr. Martin Seeger is one example of a small tool, that can increase
the functionality and usability of the whole framework. Another example is the provided
validator to check if a Python-based module can be initialised by the framework, these
validation tools help the successful implementation and connection of modules and need
to be extended. When a set of modules was successfully imported and initialised, the
framework has shown no instability or unforeseen problems. The matching of species
and the consolidation of simulation results work in this first version absolutely reliable.
Initialisation of modules is facilitated by the clearly structured format of the Python
scripts for storing module information, also the use of Python dictionaries supports the
representation of modules in Python scripts. The SBtab format is a powerful tool to
provide numerical data and parameter sets for the simulations. So far, the only appli-
cations of SBtab are the import and export of modules and the provision of the initial
cell state. Every kind of data in the simulation framework can be exported using SBtab
tables. A web parser for SBtab files into SBML files, provided by semanticSBML [40],
turns SBtab into the only exchange format for modules to create SBML files.

Error estimation and reduction
The emergence of numerical errors during the simulations in the modelling framework
cannot be avoided and is an inherent property of the simulation environment, due to the
decoupled simulations of modules. We were able to demonstrate, that the error can be
influenced by the definition of the module interfaces. Strongly coupled species with a
high changing rate like the species in the Lotka-Volterra test model, leading more likely
to a large numerical error, which can only be reduced by the decrease of the time step
size ∆t. Also the second example using the test system based on simple mass action
kinetics confirmed this observation. Therefore, the error can already be reduced due to a
optimised implementation of the modules. The coupling of species with slow components

40

6.1. Implementation of a simulation framework

Figure 15: Visualised error
The module Z held constant during the decoupled simulation of other modules. The scheme shows the
dependency of the error on the time step size ∆t and the changing rate of the species z. The deviation
∆z of the species is the error source of the decoupled simulations. The precise numerical value of the
resulting error is dependent on the formalism of the rate equation as well as on the number of modules
containing the particular species.

can reduce the error and increase the stability of the simulations considerably. Figure
15 shows the dependency of the simulation error on the time step size of the simulation
and changing rate of the decoupled species. The deviation ∆z is direct proportional to
the actual error made during the simulation of this species, its precise numerical effect
is thereby dependent on the formalism of the rate equations and the number of modules
containing the particular species.

The test simulations using the glycolysis model by Hynne et al. demonstrated the ef-
fect of differently defined interfaces. A shift by one reaction of the interface between the
test modules lead already to a considerably higher error of the simulation. It has to be
assumed, that a higher sensitivity of the reactions in regard of disturbances in metabolite
concentrations are responsible for this effect. The implementation of analysis tools to
investigate modules in regard of optimised interfaces could facilitate the implementation
of models and reduce the simulation errors.

The reduction of the time step size ∆t is at the moment connected with an increase
of the simulation time by approximately the same factor. Simulations with a time step
size lower 0.01 seconds are therefore aggravated, the simulation of the glycolysis model
by Hynne et al. for a time interval of 120 minutes (7200 seconds) can take several

41

6.2. Different approaches to implement a metabolic model

hours (Intel quad-core 4 x 2.8 GHz). This is based on the unoptimised implementation
of this first version of the framework. It has to be assumed, that an optimisation of
the simulation environment and the related increase of the computational efficacy re-
duce the simulation time by the factor 1000 or even more. Due to different experiments
with functions and calculation methods several redundant processes emerged, especially
concerning the consolidation function. The exchange of information between the frame-
work and the solvers is also not efficiently implemented. In every simulation step of the
framework the solvers have to reload the whole ODE system, instead of only changing
the initial values.

We also compared different solver methods to identify possible influences on the simu-
lation process. As already mentioned, the advantage of a solver method has to be tested
dependent on the module and the representing ODE system. It was assumed, that the
use different orders of the solver methods can influence the accuracy of the simulation
results. The reason is the start of the ODE solver in every simulation step of the frame-
work. Since the initial values change after each consolidation step, the solver cannot use
previous simulation results for the approximation of the next data point when starting
a new simulation. Therefore, the solver can only use a first order method to calculate
the first step, a second order method for the second step and so on. An increase of
the error could still not be confirmed, no deviation between the simulation results could
be identified. It has to be assumed, that our test modules were to simple to detect
a deviation between the methods using different orders. The implementation of more
complex test modules is necessary to identify the error sources and limiting steps reliably.

6.2. Different approaches to implement a metabolic model

We presented 3 different methods to implement a functional unit for the whole cell mod-
elling approach, the use of a single equation to substitute for the whole unit is omitted
at this point. All 3 methods could be identified as possible successful approaches, de-
pendent on the available models and in either way connected with the requirement of
intensive care. The last and decisive step, the simulation of the different modules and
the predictive power in regard of experimental results could not be performed. The main
reason was the absence of a reliable parameter set. This showed again the necessity of
a parameter estimation tool to reliably parametrise the different modules. Nevertheless,
several advantages and limitations of the different methods could be identified.

42

6.2. Different approaches to implement a metabolic model

The decision to use a large model and split it afterwards into modules has two major
advantages. Firstly, the model uses the same granularity, which ensures a high compat-
ibility of the modules. Furthermore, the modules are consistent in regard of any model
property, e.g. units and underlying assumptions. Secondly, the parametrising can be
performed with a consistent and connected module, instead of estimating parameters
only for a single module, or for a merged set of individual modules. If a large-scale
model for a certain cell process is available, the use is at an advantage compared to the
other methods. The model architecture of the presented model by Stanford et al. was
not compatible with the requirements for the simulation framework, which made the
adjustment of the complete model necessary. The introduction of compartments, ad-
ditional species and reactions results in the need of a re-parametrising of the whole model.

The merging of small modules is much easier but can lead to severe problems, due
to inconsistent interfaces, varying cell conditions or simply different underlying assump-
tions. We provided two different set of modules, using a different model of the TCA
cycle. The model by Nazaret et al. is a very simplistic model of the mitochondria, but
provided a better interface with the glycolysis model of Hynne et al. as the TCA cycle
model by Wu et al.. The latter was to detailed to be connected easily to the glycolysis
module, the module was based on the export of several mitochondrial metabolites, as
seen in Figure 19. The connection of the glycolysis module with any of the TCA cycle
modules as well as the adaptation of the modules to yeast, required the creation of a
new module, containing the reactions between the modules and connecting the related
species. After the introduction of the new module, at least this new module had to
be parametrised. A set of modules using the TCA cycle model of Nazaret et al. was
connected successfully and could be used for re-parametrising.

The creation of a new model was facilitated in this case by the availability of the yeast
consensus metabolic network as a basis for the reaction network. The new implemen-
tation of a whole model can be reasonable, especially to adapt the model to defined
interfaces. Here, the parameter balancing tool was able to set up kinetic equations for
the model and provided a set of parameters, still, it was not possible to simulate the
model. The reasons could be the already mentioned difficulties to estimate kinetic pa-
rameters for transport reactions in a thermodynamic-based parameter balancing tool,
since the energy of formation for “products” and “educts” is identical. It is also possible
that the set of experimental rate constants to calculate the parameters was just too
small or incorrect. It can also not ruled out, that the reaction network is incompatible
with the expectation of a stable steady state, due to the absence of crucial reactions,
even if these reactions could not be identified.

43

6.3. Outlook for the whole cell modelling approach

In the end only an experimental data set could decide for the best suitable model for
our approach. For the moment, all 3 possibilities have lead to a model that need to be
re-parametrised. In regard of the defined interfaces for the metabolic functional unit,
the model based on the work by Stanford et al. has the advantage of a fully integrated
biomass function.

6.3. Outlook for the whole cell modelling approach

Optimisation and error reduction
This first version of the simulation framework was able to demonstrate key features and
the basic functionality of a simulation environment for large-scale modelling. The main
issue is without question the size of the numerical error made by performing decoupled
simulations of the different modules. The best possible interface definition presumed,
the error can in principle be reduced by decreasing the simulation step size ∆t of the
framework. As discussed before, the optimisation of the simulation framework can con-
siderably reduce the simulation time and therefore enable the use of time step sizes below
0.01 seconds. The implementation of the solver library SOSlib [45] shows a far more effi-
cient simulation, with a runtime in the range of seconds even for smaller time step sizes.
This library employs the same solver CVODES [48] and solver method Adams-Moulton
or BDF [44], respectively. Therefore, this library could serve as an example for an opti-
mised solver integration. A difference between this library and our solver integration is
the programming language, both solver methods are implemented in C, but SOSlib also
uses C for the framework of the solver. The highest computational efficacy would be
achieved by changing the programming language to a faster one, for example C or even
FORTRAN. Since this would decrease the reusability and modifiability of the framework
dramatically, this is only a consideration if the computation time after optimisation of
the framework does not drop considerably.

Another possibility to tackle the error of the simulations is to reduce the error source
directly. While simulating a module, the other modules are held constant, this leads to a
discrepancy because the actual change of the species due to reactions in other modules
is not considered during simulation. ∆z in Figure 15 depicts this discrepancy. Several
methods could be tested to reduce this error. The partitioning of the modules could be
performed with the changing rates as criterion, to ensure, that only the smallest chang-
ing rates are involved in the coupling of modules. This partitioning would highly increase
the effort to implement and integrate the modules and would require a preprocessing
analysis of the whole model to identify the different rates.

44

6.3. Outlook for the whole cell modelling approach

A different approach is not to change the modules, but to modify the solver method.
The solver uses 2 simulations in every step to estimate the error for the adaptive step
size control. This means, if the difference (error) between the two solutions is larger
than a predefined value, the step size has to be reduced to stay in the range of the
predefined error tolerance. In principle, a similar mechanism could be used to adjust
the step size of the model and to reduce the error of the simulations. A first attempt
could be implemented quite easily, the consolidation function in the current version of
the framework sums up the changes made by the different modules on a coupled species.
If the size of a change made by a single module is larger than a certain threshold, the
simulation cycle could be restarted again with a smaller step size ∆t. This approach
could possibly reduce the error, since it is directly proportional to the changing rate of
a single module, also this would need an optimised framework to implement. Another,
more complex approach is the use of a fast but inaccurate solver to extrapolate the
changes of coupled species for the simulation of a module. This approach could only
be realised, if the framework can be optimised dramatically, since this approach would
double the number of simulation steps per cycle.

To optimise the performance of the simulation framework we also tested the advan-
tage of the utilisation of different time step sizes for individual modules. The idea was
to reduce the computational effort, some modules could be simulated for a longer time
step, while others need to be updated more frequently. This would especially be useful
for a modularisation by rate, where species with a similar changing rate are stored in the
same module[63]. Several software environments were implemented for this multirate
time stepping [64] approach, for example the MUltiscale MUltiphysics Software Environ-
ment (MUSE) [65], an astrophysical simulation environment that exploits the existence
of modules with different time scales. Modules with a slower time scale can be updated
less frequent than modules with a faster time scale, therefore, the software works more
efficient. The approach is based on the already mentioned partitioning of the modules
dependent on the rates of the reactions. We decided to skip the implementation of this
method, since we do not assume to have modules with such a weak coupling, that the
update frequency could be reduced to a considerable level. Without this requirement,
the necessary effort to implement this approach would not be justified by the savings in
computational power.

Use of different mathematical descriptions
To enable the framework to utilise modules with different mathematical descriptions, Dr.
Martin Seeger performed first tests with a second vector in the framework. The flag vec-

45

6.3. Outlook for the whole cell modelling approach

tor stores information about a discrete cell state, e.g. cell cycle phase. The consolidation
function can test the model in every simulation step for a certain condition, by passing
the constraints, an initial value can be changed or even the whole parameter set for a
module can be substituted to describe the new state. The scheme of this approach is
visualised in Figure 16, showing a simulation step of the whole cell model with two state
vectors, a continuous and a discrete one. It also shows the implementation of different
mathematical descriptions. The use of loosely connected modules would also allow for
the utilisation of different kinds of mathematical formulas, e.g. stochastic differential
equations, rule based modelling, or Boolean description. These descriptions can be more
suitable to certain cell processes as ordinary differential equations [6].

Figure 16: Simulation step
Illustration of a step in the simulation process of

the whole cell model. The modules are simulated

independently, afterwards the consolidation function

merges the results of the modules and writes them

to the state vector. Other entries, e.g. Boolean and

state flags are controlled in the flag vector. The next

simulation step is performed using the new entries

from the state and flag vector as initial values or

new cell state, respectively.

The utilisation of different mathemat-
ical descriptions requires also the modi-
fication of the state vector, since some
of the modules would need the current
molecule number instead of the concen-
trations of the cell components, e.g. a
stochastic module would most probably
calculate in molecule numbers, instead of
concentrations. We implemented a ver-
sion of the framework with an integrated
unit conversion and successfully tested the
utilisation of modules using different units.
The unit conversion function uses the ac-
tual compartment volume to recalculate
the amount of molecules by a given con-
centration. The state vector and all initial
values were represented in molecule num-
bers, whereas the modules used still molar
concentration and even different prefixes, e.g. milli- or micro-. The import of a unit
conversion function has improved the work with different modules and enabled a facil-
itated realisation of the dilution of concentrations based on cell growth. On the other
hand, it has increased the effort needed for the implementation of modules (the units
must be set and pronounced additionally) and the difficult integration into the framework
has lowered the computational efficacy drastically. The simulation time was increased
by the factor of 4 to 10, depending on the number of species, nonetheless, after op-
timising the main framework, the integration of this function should again be considered.

46

6.3. Outlook for the whole cell modelling approach

Integration of tools and analysis methods
The planned extensions and improvements of the modules and the framework for the
next months concern especially a closer connection to SBML. The import of SBML
models should be extended to a full support of this format as a general exchange for-
mat for the whole cell model. At the moment all information of a module could be
stored in an SBML file and would allow for the use of external tools to analyse, simulate
and modify the modules more easily. The connection to semanticSBML [40] tools and
functions could also be facilitate. The annotation, parameter balancing and merging
of SBML models could increase the number of available models very fast. At the mo-
ment only SBtab serves as an output format for the use of the tools from semanticSBML.

Another important extension is the implementation of more test methods to ensure a
correctly working simulation environment. This could facilitate the modification of func-
tions and methods in the framework considerably, since the test methods could guarantee
the functionality of the simulation environment. Also further tools for visualisation of
the modules and the whole model are needed to ensure the framework to be a powerful
and productive environment for a whole cell model.

In the long run, a reliable tool for parameter estimation is inevitable [34]. As the model
implementation of the metabolic model has shown, the parametrisation of a module is at
the moment very difficult to perform reliably. Also experimental datasets will be needed
to define a consistent cell state under given environmental conditions and create a model
with physiological behaviour and predicting power.

Besides tools for facilitating the implementation of modules, the single modules as
well as the whole model should be able to analyse. However, it is a long way to go
before the implementation of analysis tools for sensitivity or steady state analysis [34]
is beneficial. Most probably the architecture of the framework will have to be changed
noticeably compared to the current first version.

47

6.3. Outlook for the whole cell modelling approach

Many tasks are still open concerning the successful implementation of a whole cell
model or at least a powerful and reliable simulation software for this approach. Nonethe-
less, we were able to identify and effectively tackle some of the challenges that occurred
during the last 6 months. We were able to create a working software environment for
the simulation of modularised computational models including assisting tools for modifi-
cation and visualisation of these modules. The software furthermore supports commonly
used and accepted standards in the systems biology community. It can be extended and
modified easily due to the use of a user-friendly and wide spread programming language.
The presented implementation approaches demonstrated different possibilities to gain
a metabolic model for the yeast S. cerevisiae. These examples showed the needs and
possibilities of a module created for the use in this software.
In the next months the software as well as the model has to be optimised and adapted
to gain a more reliable and precise working version of this whole cell modelling approach.

48

7. Acknowledgements

7. Acknowledgements

I would like to express my deep gratitude to Prof. Dr. Dr. h.c. Edda Klipp, my research

supervisor, for their patient guidance, enthusiastic encouragement and useful critiques. I would

also like to thank Dr. Marcus Krantz, for his advice and assistance. I like to thank Dr. Martin

Seeger for the brilliant collaboration, his way to solve problems and the encouragement during

the last months. My grateful thanks are also extended to Timo Lubitz for helping me with

this work and the parameter balancing tool, to Katja Tummler, Claudia Beck, Max Schelker,

and David Jesinghaus for helping me with the metabolism, to Ivo Maintz for preparing my

computer, to Prof. Dr. Casten Hartmann and Iurii Kozhan from the FU Berlin for taking time

for me and my questions.

I also like to thank Dr. Thomas Spießer, Dr. Clemens Kühn, Friedemann Uschner, Dr. Jannis

Uhlendorf, Dr. Magdalena Rother, Katharina Albers, Dr. Marvin Schulz, Dr. Max Flöttmann,

Dr. Gabriele Schreiber, Lotte Teufel, Aouefa Amoussouvi, Wolfgang Giese, Björn Goldenbogen,

Ulrike Münzner, Matthias Reis, Stephan Adler, and Dr. Samuel Drulhe for willingly participat-

ing on the whole cell model workshop.

My thanks to Phillipp Schmidt and Falko Krause for helping me with the Python program

and Prof. Dr. Hermann-Georg Holzhütter for agreeing to evaluate this work.

Finally, I wish to thank my parents, Jeanette Werner, and Aurora Rodriguez for their support

and encouragement throughout my study.

49

References

References

[1] Hiroaki Kitano. Systems biology: A brief overview. Science, 295(5560):1662–1664,
2002.

[2] Uwe Theobald, Werner Mailinger, Michael Baltes, Manfred Rizzi, and Matthias
Reuss. In vivo analysis of metabolic dynamics in saccharomyces cerevisiae: I. ex-
perimental observations. Biotechnology and Bioengineering, 55(2):305–316, 1997.

[3] J. M. Buescher, W. Liebermeister, M. Jules, M. Uhr, J. Muntel, and others. Global
network reorganization during dynamic adaptations of bacillus subtilis metabolism.
Science, 335(6072):1099–1103, 2012.

[4] Christoph Wittmann, Michael Hans, Wouter A. van Winden, et al. Dynamics of
intracellular metabolites of glycolysis and TCA cycle during cell-cycle-related oscilla-
tion insaccharomyces cerevisiae. Biotechnology and Bioengineering, 89(7):839–847,
2005.

[5] Arkadi Manukyan, Lesley Abraham, Huzefa Dungrawala, and Brandt L. Schneider.
Synchronization of yeast. In Gaspar Banfalvi, editor, Cell Cycle Synchronization,
volume 761 of Methods in Molecular Biology, pages 173–200. Humana Press, To-
towa and NJ, 2011.

[6] Kouichi Takahashi, Katsuyuki Yugi, Kenta Hashimoto, et al. Computational chal-
lenges in cell simulation: a software engineering approach. IEEE Intelligent Systems,
17(5):64–71, 2002.

[7] David Botstein and Gerald R. Fink. Yeast: An experimental organism for 21st
century biology. Genetics, 189(3):695–704, 2011.

[8] D. Botstein. Genetics: Yeast as a model organism. Science, 277(5330):1259–1260,
1997.

[9] Christoph Wierling, Ralf Herwig, and Hans Lehrach. Resources, standards and tools
for systems biology. Briefings in functional genomics & proteomics, 6(3):240–251,
2007.

[10] Nicolas Le Novère, Andrew Finney, Michael Hucka, et al. Minimum information re-
quested in the annotation of biochemical models (MIRIAM). Nature Biotechnology,
23(12):1509–1515, 2005.

50

References

[11] Michael Hucka, Andrew Finney, Herbert M. Sauro, et al. The systems biology
markup language (SBML): a medium for representation and exchange of biochem-
ical network models. Bioinformatics, 19(4):524–531, 2003.

[12] A. A. Cuellar, C. M. Lloyd, P. F. Nielsen, D. P. Bullivant, D. P. Nickerson, and
P. J. Hunter. An overview of cellml 1.1, a biological model description language.
SIMULATION, 79(12):740–747, 2003.

[13] Masaru Tomita, Kenta Hashimoto, Kouichi Takahashi, et al. E-CELL: software
environment for whole-cell simulation. Bioinformatics, 15(1):72–84, 1999.

[14] James C. Schaff and Leslie M. Loew, editors. The virtual cell, volume 4, 1999.

[15] Jonathan R. Karr, Jayodita C. Sanghvi, Derek N. Macklin, et al. A whole-cell
computational model predicts phenotype from genotype. Cell, 150(2):389–401,
2012.

[16] MATLAB. version 7.11.0 (R2010b). The MathWorks Inc., Natick, Massachusetts,
2010.

[17] M. Tomita. Whole-cell simulation: a grand challenge of the 21st century. Trends
in biotechnology, 19(6):205–210, 2001.

[18] James P. J. Hetherington, Ian David Lockhart Bogle, Peter Saffrey, et al. Addressing
the challenges of multiscale model management in systems biology. Computers &
Chemical Engineering, 31(8):962–979, 2007.

[19] Marco Antoniotti, Alberto Policriti, Nadia Ugel, and Bud Mishra. Model building
and model checking for biochemical processes. Cell Biochemistry and Biophysics,
38:2003, 2003.

[20] Alfredo I. Hernández, Virginie Le Rolle, Antoine Defontaine, and Guy Carrault. A
multiformalism and multiresolution modelling environment: application to the car-
diovascular system and its regulation. Philosophical transactions. Series A, Mathe-
matical, physical, and engineering sciences, 367(1908):4923–4940, 2009.

[21] F. Kuhl, R. Weatherly, and J. Dahmann. Creating Computer Simulation Systems:
An Introduction to the High Level Architecture. Prentice Hall, 2000.

[22] Python. http://www.python.org/.

[23] J. D. Hunter. Matplotlib: A 2D graphics environment. Computing In Science &
Engineering, 9(3):90–95, 2007.

51

References

[24] Benjamin J. Bornstein, Sarah M. Keating, Akiya Jouraku, and Michael Hucka.
LibSBML: an API library for SBML. Bioinformatics, 24(6):880–881, 2008.

[25] Wolfram Liebermeister, Timo Lubitz, and Jens Hahn. SBtab specification. unpub-
lished.

[26] Microsoft. Microsoft Excel. Redmond, Washington: Microsoft, 2010. Computer
Software.

[27] A.J. Lotka. Elements of Physical Biology. Williams & Wilkins Company, 1925.

[28] Janna Hastings, Paula de Matos, Adriano Dekker, et al. The ChEBI reference
database and ontology for biologically relevant chemistry: enhancements for 2013.
Nucleic Acids Research, 41(D1):D456–D463, 2013.

[29] Michael Ashburner, Catherine A. Ball, Judith A. Blake, et al. Gene ontology: tool
for the unification of biology. The Gene Ontology Consortium. Nature genetics,
25(1):25–29, 2000.

[30] Finn Hynne, Sune Danø, and Preben Graae Sørensen. Full-scale model of glycolysis
in saccharomyces cerevisiae. Biophysical chemistry, 94(1-2):121–163, 2001.

[31] W.W Cleland. The kinetics of enzyme-catalyzed reactions with two or more sub-
strates or products. Biochimica et Biophysica Acta (BBA) - Specialized Section on
Enzymological Subjects, 67:104–137, 1963.

[32] Christine Nazaret, Margit Heiske, Kevin Thurley, and Jean-Pierre Mazat. Mitochon-
drial energetic metabolism: A simplified model of TCA cycle with ATP production.
Journal of Theoretical Biology, 258(3):455–464, 2009.

[33] Fan Wu, Feng Yang, Kalyan C. Vinnakota, and Daniel A. Beard. Computer model-
ing of mitochondrial tricarboxylic acid cycle, oxidative phosphorylation, metabolite
transport, and electrophysiology. Journal of Biological Chemistry, 282(34):24525–
24537, 2007.

[34] Edda Klipp, Wolfram Liebermeister, Christoph Wierling, et al. Systems Biology -
A Textbook. Wiley-Blackwell, 2009.

[35] Natalie J. Stanford, Timo Lubitz, Kieran Smallbone, et al. Systematic construction
of kinetic models from genome-scale metabolic networks. PLoS ONE, 8(11):e79195,
2013.

52

References

[36] Markus J. Herrgård, Neil Swainston, Paul Dobson, et al. A consensus yeast
metabolic network reconstruction obtained from a community approach to systems
biology. Nature Biotechnology, 26(10):1155–1160, 2008.

[37] Timo Lubitz, Marvin Schulz, Edda Klipp, and Wolfram Liebermeister. Parameter
balancing in kinetic models of cell metabolism †. The Journal of Physical Chemistry
B, 114(49):16298–16303, 2010.

[38] Wolfram Liebermeister, Jannis Uhlendorf, and Edda Klipp. Modular rate laws for
enzymatic reactions: thermodynamics, elasticities and implementation. Bioinfor-
matics, 26(12):1528–1534, 2010.

[39] Andrew Gelman. Bayesian data analysis, volume [60] of Texts in statistical science
series. Chapman & Hall/CRC, Boca Raton and Fla. [u.a.], 2004.

[40] Falko Krause, Jannis Uhlendorf, Timo Lubitz, et al. Annotation and merging of
SBML models with semanticSBML. Bioinformatics, 26(3):421–422, 2010.

[41] Stefan Hoops, Sven Sahle, Ralph Gauges, et al. COPASI–a COmplex PAthway
SImulator. Bioinformatics, 22(24):3067–3074, 2006.

[42] Linda R. Petzold. Automatic selection of methods for solving stiff and nonstiff
systems of ordinary differential equations. SIAM Journal on Scientific and Statistical
Computing, 4(1):136–148, 1983.

[43] Karl Strehmel, Rüdiger Weiner, and Helmut Podhaisky. Numerik gewöhnlicher Dif-
ferentialgleichungen: Nichtsteife, steife und differential-algebraische Gleichungen.
Vieweg+Teubner Verlag, 2 edition, 2012.

[44] John C. Butcher. Numerical Methods for Ordinary Differential Equations. Wiley,
J, 2003.

[45] Rainer Machné, Andrew Finney, Stefan Müller, et al. The SBML ODE Solver
Library: a native api for symbolic and fast numerical analysis of reaction networks.
Bioinformatics, 22(11):1406–1407, 2006.

[46] Hiromu Takizawa, Kazushige Nakamura, Akito Tabira, et al. LibSBMLSim:
a reference implementation of fully functional sbml simulator. Bioinformatics,
29(11):1474–1476, 2013.

[47] ISO. The ANSI C standard (C99). Technical Report WG14 N1124, ISO/IEC, 1999.

53

References

[48] Radu Serban and Alan C Hindmarsh. Cvodes, the sensitivity-enabled ode solver in
sundials. In Proceedings of the 5th International Conference on Multibody Systems,
Nonlinear Dynamics and Control, Long Beach, CA, 2005.

[49] Alan C. Hindmarsh, Peter N. Brown, Keith E. Grant, et al. SUNDIALS: Suite
of Nonlinear and Differential/Algebraic Equation Solvers. ACM Transactions on
Mathematical Software, 31(3):363–396, 2005.

[50] ODEint (SciPy). http://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.odeint.html.

[51] Assimulo 2.4. http://www.assimulo.org/.

[52] Travis Oliphant, Pearu Peterson, and Eric Jones. Scipy: Open source scientific
tools for Python. http://www.scipy.org/, 2001.

[53] Alan C. Hindmarsh and Robert S. Stepleman. Odepack, a systematized collection
of ode solvers. IMACS Transactions on Scientific Computation, 1:55–64, 1983.

[54] Scott D Cohen and Alan C Hindmarsh. Cvode, a stiff/nonstiff ode solver in c.
Computers in physics, 10(2):138–143, 1996.

[55] Minoru Kanehisa, Susumu Goto, Yoko Sato, et al. KEGG for integration and inter-
pretation of large-scale molecular data sets. Nucleic Acids Research, 40(D1):D109–
D114, 2011.

[56] Donald Voet. Biochemistry. Wiley, Hoboken and NJ, 2011.

[57] E. Jiménez-Martí, A. Zuzuarregui, M. Gomar-Alba, D. Gutiérrez, C. Gil, and
M. del Olmo. Molecular response of saccharomyces cerevisiae wine and laboratory
strains to high sugar stress conditions. International Journal of Food Microbiology,
145(1):211–220, 2011.

[58] James Michael Cherry, Eurie L. Hong, Craig Amundsen, et al. Saccharomyces
Genome Database: the genomics resource of budding yeast. Nucleic Acids Research,
40(D1):D700–D705, 2012.

[59] Fernando Rodrigues, Paula Ludovico, and Cecília Leão. Sugar metabolism in yeasts:
an overview of aerobic and anaerobic glucose catabolism. In Gábor Péter and Carlos
Rosa, editors, Biodiversity and Ecophysiology of Yeasts, The Yeast Handbook, pages
101–121. Springer-Verlag, Berlin/Heidelberg, 2006.

[60] Hnin W. Aung, Susan A. Henry, and Larry P. Walker. Revising the representation of
fatty acid, glycerolipid, and glycerophospholipid metabolism in the consensus model
of yeast metabolism. Industrial Biotechnology, 9(4):215–228, 2013.

54

References

[61] Vijayalakshmi Chelliah, Camille Laibe, and Nicolas Le Novère. Biomodels database:
A repository of mathematical models of biological processes. Methods Mol Biol,
1021:189–199, 2013.

[62] Avi Flamholz, Elad Noor, Arren Bar-Even, and Ron Milo. equilibrator - the bio-
chemical thermodynamics calculator. Nucleic Acids Research, 40(D1):D770–D775,
2012.

[63] Charles William Gear and D. R. Wells. Multirate linear multistep methods. BIT,
24(4):484–502, 1984.

[64] Jan Frederick Andrus. Numerical solution of systems of ordinary differential equa-
tions separated into subsystems. SIAM Journal on Numerical Analysis, 16(4):605–
611, 1979.

[65] Simon Portegies Zwart, Steve McMillan, Stefan Harfst, et al. A multiphysics and
multiscale software environment for modeling astrophysical systems. New Astron-
omy, 14(4):369–378, 2009.

55

List of Figures

List of Figures

1. A modular approach . 5
2. Import and connection of modules . 14
3. One simulation step . 17
4. Example of the modularisation of a simple mass action system 18
5. Time courses of the simulated test models 19
6. Framework test using Lotka-Volterra 22
7. Framework test using mass action kinetics 24
8. Simulation scheme of a module . 26
9. Simulation tests using the model by Hynne et al. from 2001 [30] 28
10. Scheme of the model . 30
11. Scheme of the central metabolism in yeast 31
12. Scheme of the glycolysis module . 36
13. Scheme of the TCA cycle module . 37
14. Scheme of the transport module . 38
15. Visualised error . 41
16. Simulation step . 46
17. Reaction network taken from Hynne et al. 2001 63
18. Reaction network taken from Nazaret et al. 2009 64
19. Reaction network taken from Wu et al. 2007 65
20. Transport module by Matthias Reis . 66
21. Example for the module representation in a Python script 66
22. Test output - matching species . 67

List of Tables

1. Separation tests glycolysis model from Hynne et al. 27
2. Reactions in the glycolysis module . 57
3. Reactions in the TCA cycle module . 58
4. Reactions in the transport module . 59
5. Species in the glycolysis module . 60
6. Species in the transport module . 61
7. Species in the mitochondrial module 62

56

A. Appendix

A. Appendix

Table 2: Reactions in the glycolysis module

Reaction Formula
Glycolysis

Adenylate kinase (cyt) ATP + AMP
 2 ADP
Energy consumption ATP → ADP + Pi

Fructose-bisphosphate aldolase FBP
 DHAP + GAP
Glucose transporter GLCext
 GLC
Glucose-6-phosphate isomerase G6P
 F6P
Glyceraldehyde-3-phosphate dehydrogenase GAP + NAD
 BPG + NADH + H
Glycerol production (lumped) DHAP + NADH + H → Glyc + NAD
Glycerol transport Glyc + H
 Glycext + Hext

Glycogen production (storage/lumped) G6P + ATP → Glyco + ADP
Hexokinase (D-glucose) GLC + ATP → G6P + ADP + H
Phosphoenolpyruvate production (lumped) BPG + ADP
 PEP + ATP
Phosphofructokinase F6P + ATP → FBP + ADP
Pyruvate kinase PEP + ADP → PYR + ATP
Triosephosphate isomerase GAP
 DHAP

Cytosolic species without index

57

A. Appendix

Table 3: Reactions in the TCA cycle module

Reaction Formula
Tricarboxylic acid cycle

AKG DH (dihydroliponamide) SDLmit
 sucCoAmit
AKG DH (liponamide) AKGmit + Hmit
 SDLmit
Cis-aconitate(3-) to isocitrate cisAconmit
 isoCITmit
Citrate synthase AcCoAmit + OAAmit
 CITmit
Citrate to cis-aconitate(3-) CITmit
 cisAconmit
Fumarase FUMmit
 MALmit
Isocitrate DH isoCITmit + NADmit
 AKGmit + CO2mit + NADHmit + Hmit
Malate DH MALmit + NADmit
 Hmit + NADHmit + OAAmit
Pyruvate DH NADmit + PYRmit
 AcCoAmit + CO2mit + NADHmit
Succinate DH SUCmit + Qmit
 FUMmit + QH2mit
Succinyl-CoA ligase ADPmit + Pi,mit + sucCoAmit
 ATPmit + SUCmit

Additional reactions
AcetylCoA synthetase (mit) AcCoAmit + AMPmit + 2 Pi,mit
 ACEmit + ATPmit
Acetaldehyde DH (mit) ACAmit + NADmit
 ACEmit + NADHmit + Hmit
Adenylate kinase (mit) ATPmit + AMPmit
 2 ADPmit
Alcohol DH (mit) ACAmit + NADHmit + Hmit
 etOHmit + NADmit
Carnitine O-acetyltransferase (mit) AcCarmit
 AcCoAmit
Malic enyzme MALmit + NADmit
 CO2mit + NADHmit + PYRmit

Cytosolic species without index

58

A. Appendix

Table 4: Reactions in the transport module

Reaction Formula
Mitochondrial transport reactions

Acetaldehyde transport (mit) ACA
 ACAmit

ADP/ATP transporter ATP + ADPmit
 ATPmit + ADP
Carnitine O-acetyltransferase (cyt) AcCoA
 AcCar
CO2 diffusion (mit) CO2
 CO2mit

EtOH diffusion (mit) etOH
 etOHmit

H+ diffusion (mit) H
 Hmit

Malate transport MAL + Pi
 MALmit + Pi,mit

NAD transporter AMPmit + NAD
 AMP + NADmit

O-acetylcarnitine transport AcCar
 AcCarmit

Oxaloacetate transporter OAA + H
 OAAmit + Hmit

Phosphate transporter Pi + H
 Pi,mit + Hmit

Pyruvate transporter (mit) PYR + H
 PYRmit + Hmit

Cytosolic transport reactions
Acetaldehyde transport (cyt) ACA
 ACAext

Acetate transport (cyt) ACE
 ACEext

CO2 diffusion (cyt) CO2
 CO2ext

EtOH diffusion (cyt) etOH
 etOHext

H+ diffusion (cyt) H
 Hext

Pyruvate transporter (cyt) PYR + H
 PYRext + Hext

Oxidative phosphorylation
Complex III QH2mit + 2 Hmit → Qmit + 4 Hmit

Complex IV 8 Hmit → 4 H
Complex V ADPmit + Pi,mit + 4 H
 ATPmit + 4 Hmit

NADH DH (outer) H + NADH + Qmit → NAD + QH2mit

NADH DH (inner) Hmit + NADHmit + Qmit → NADmit + QH2mit

Additional reactions
Acetaldehyde DH (cyt) ACA + NAD
 ACE + NADH + H
Acetyl-CoA synthetase (cyt) AcCoA + AMP + 2 Pi
 ACE + ATP
Alcohol DH (cyt) ACA + NADH + H
 etOH + NAD
Pyruvate carboxylase ATP + PYR
 ADP + Pi + OAA
Pyruvate decarboxylation PYR + H
 ACA + CO2

Cytosolic species without index

59

A. Appendix

Table 5: Species in the glycolysis module
Abbreviation Name Comp. ChEBI

ADP adenosine 5’-triphosphate cyt 30616
AMP adenosine 5’-monophosphate cyt 16027
ATP adenosine 5’-triphosphate cyt 30616
BPG 1,3-bisphosphoglycerate cyt 229022

DHAP dihydroxyacetone phosphate cyt 57642
FBP fructose 1,6-bisphosphate cyt 40595
F6P fructose 6-phosphate cyt 15946
GLC D-glucose cyt 4167

GLCext external D-glucose cyt 4167
G6P glucose 6-phosphate cyt 4170
GAP glyceraldehyde 3-phosphate cyt 17138
Glyc glycerol cyt 17754

Glycext external glycerol cyt 17754
Glyco glycogen cyt 28087
H hydron cyt 15378

Hext external hydron cyt 15378
NAD+ nicotinamide adenine dinucleotide (ox.) cyt 15846
NADH nicotinamide adenine dinucleotide (red.) cyt 16908
PEP phosphoenolpyruvate cyt 44897
Pi inorganic phosphate cyt 18367

PYR pyruvate cyt 15361
1 ChEBI of bisphosphoglyceric acid

60

A. Appendix

Table 6: Species in the transport module
Abbreviation Name Comp. ChEBI

ACAmit acetaldehyde mit 15343
ACEmit acetate mit 30089
AcCarmit O-acetyl-L-carnitine mit 57589
AcCoAmit acetyl-CoA mit 15351
ADPmit adenosine 5’-triphosphate mit 30616
ATPmit adenosine 5’-triphosphate mit 30616

cisAconmit cis-aconitate mit 32805
CITmit citrate mit 16947
CO2mit carbon dioxide mit 16526
etOHmit ethanol mit 16236
FUMmit fumarate mit 18012
Hmit hydron mit 15378

isoCITmit isocitrate mit 30887
MALmit malate mit 15595
NAD+ nicotinamide adenine dinucleotide (ox.) mit 15846

NADHmit nicotinamide adenine dinucleotide (red.) mit 16908
OAAmit oxaloacetate mit 30744
Pi,mit inorganic phosphate mit 18367
PYRmit pyruvate mit 15361
Qmit ubiquinone mit 16389

QH2mit ubiquinol mit 17976
SUCmit succinate mit 15741

SucCoAmit succinyl-CoA mit 15380
SDHLmit S-succinyl-dihydrolipoamide mit 4394252

AKGmit α-ketoglutarate3 mit 16810
2 PubChem instead of ChEBI

3 also 2-oxoglutarate

61

A. Appendix

Table 7: Species in the mitochondrial module
Abbreviation Name Comp. ChEBI

ACAcyt acetaldehyde cyt 15343
ACAext acetaldehyde ext 15343
ACAmit acetaldehyde mit 15343
ACEcyt acetate cyt 30089
ACEext acetate ext 30089
ACEmit acetate mit 30089
AcCarcyt O-acetyl-L-carnitine cyt 57589
AcCarmit O-acetyl-L-carnitine mit 57589
AcCoAcyt acetyl-CoA cyt 15351
AcCoAmit acetyl-CoA mit 15351
ADP adenosine 5’-triphosphate cyt 30616

ADPmit adenosine 5’-triphosphate mit 30616
AMP adenosine 5’-monophosphate cyt 16027

AMPmit adenosine 5’-monophosphate mit 16027
ATP adenosine 5’-triphosphate cyt 30616

ATPmit adenosine 5’-triphosphate mit 30616
CO2cyt carbon dioxide cyt 16526
CO2ext carbon dioxide ext 16526
CO2mit carbon dioxide mit 16526
etOHcyt ethanol cyt 16236
etOHext ethanol ext 16236
etOHmit ethanol mit 16236

H hydron cyt 15378
Hext external hydron cyt 15378
Hmit hydron mit 15378

MALcyt malate cyt 15595
MALmit malate mit 15595
NAD+ nicotinamide adenine dinucleotide (ox.) cyt 15846
NAD+ nicotinamide adenine dinucleotide (ox.) mit 15846
NADH nicotinamide adenine dinucleotide (red.) cyt 16908

NADHmit nicotinamide adenine dinucleotide (red.) mit 16908
OAAcyt oxaloacetate cyt 30744
OAAmit oxaloacetate mit 30744

Pi inorganic phosphate cyt 18367
Pi,mit inorganic phosphate mit 18367
PYRcyt pyruvate cyt 15361
PYRext pyruvate ext 15361
PYRmit pyruvate mit 15361

62

A. Appendix

Figure 17: Reaction network taken from Hynne et al. 2001
The figure shows the reaction network of the computational model taken from Hynne et al. 2001,
[30]. The model was used as a module representing the glycolysis for the implementation of the central
carbon metabolism model and as a test module for the simulation environment.
Abbreviations:

Enzymes: ADH: alcohol dehydrogenase, AK: adenylate kinase, ALD: aldolase, ENO: enolase, G3PDH: glycerol 3-phosphate dehydrogenase,

GAPDH: glyceraldehyde 3-phosphate dehydrogenase, HK: hexokinase, PDC: pyruvate carboxylase, PFK: phosphofructokinase-1, PGI: phosphoglu-

coisomerase, PGK: phosphoglycerate kinase, PGM: phophoglycerate mutase, PK: pyruvate kinase, TIM: triosephosphate isomerase. Metabolites:

ACA: intracellular acetaldehyde, ACAx: extracellular acetaldehyde, DHAP: dihydroxyacetone phosphate, BPG: 1,3-bisphosphoglycerate, EtOH:

intracellular ethanol, EtOHx: extracellular ethanol, F6P: fructose 6-phosphate, FBP: fructose 1,6-phosphate, G6P: glucose 6-phosphate, GAP:

glyceraldehyde 3-phosphate, Glc: intracellular glucose, Glcx: extracellular glucose, Glyc: intracellular glycerol, Glycx: extracellular glycerol, PEP:

phosphoenol pyruvate, Pyr: pyruvate.

63

A. Appendix

Figure 18: Reaction network taken from Nazaret et al. 2009
The figure shows the reaction network of the computational model taken from Nazaret et al. 2009,
[32]. The model was utilised as a module representing the TCA cycle for the central carbon metabolism
model.
Abbreviations:

ANT: adenine nucleotide translocase, Asase: ATP synthase, L: proton leak, RC: respiratory chain

64

A. Appendix

Figure 19: Reaction network taken from Wu et al. 2007
The figure shows the reaction network of the computational model taken from Wu et al. 2007, [33].
The model was used as a module representing the TCA cycle for the central carbon metabolism.
Reactions:

1: pyruvate dehydrogenase, 2: citrate synthase, 3: aconitase, 4: isocitrate dehydrogenase, 5: α-ketoglutarate dehydrogenase, 6: succinyl-CoA

synthetase, 7: succinate dehydrogenase, 8: fumarase, 9: malate dehydrogenase, 10: nucleoside diphosphokinase, 11: glutamate oxaloacetate

transaminase.

Abbreviations:

ACCOA: acetyl-CoA, AKG: α-ketoglutarate, ANT: adenine nucleotide translocase, ASP: asparagine acid, C(ox): oxidised cytochrome C, C(red):

reduced cytochrome C, CIT: citrate, COAS: CoA-SH, COQ: oxidised ubiquinol, FUM: fumarate, GLU: glutamate, ICIT: isocitrate, MAL: malate,

OAA: oxaloacetate, PI: inorganic phosphate, PYR: pyruvate, QH2: reduced ubiquinol, SCOA: succinyl-CoA, SUC: succinate

65

A. Appendix

Figure 20: Transport module by Matthias Reis
The figure shows the reaction network of the transport module implemented by Matthias Reis. The
module was used to connect the glycolysis and the TCA cycle modules in the central carbon metabolism
model. Abbreviations:

AKG: α-ketoglutarate, ANT: adenine nucleotide translocase, OAA: oxaloacetate, Pi: inorganic phosphate, PYR: pyruvate

module = {}
module[’name’] = ’Lotka_dict’
module[’vars’] = [’x’, ’y’]
module[’initvars’] = {’x’: 10.0, ’y’: 5.0}
module[’pars’] = [’k1’, ’k2’, ’k3’, ’k4’]
module[’initpars’] = {’k1’: 1.0, ’k2’: 0.1, ’k3’: 0.02, ’k4’: 1.0}
module[’rates’] = {’v1’: ’(k1*x)’, ’v2’: ’(k2*x*y)’, ’v3’: ’(k3*x*y)’, ’v4’: ’(k4*y)’}
module[’odes’] = {’x’: module[’rates’][’v1’] - module[’rates’][’v2’],

’y’: module[’rates’][’v3’] - module[’rates’][’v4’]}
module[’sp_annotations’] = {’x’: ’CHEBI:16761’, ’y’: ’CHEBI:15422’}
module[’sp_compartment’] = {’x’: ’cytosol’, ’y’: ’cytosol’}
module[’com_annotations’] = {’cytosol’: ’GO:0005829’}

Figure 21: Example for the module representation in a Python script
The figure shows the representation of the Lotka-Volterra model [27] in a Python script. The model
representation is based on the Python dictionary data structure and holds all information necessary for

simulation.

66

A. Appendix

--
annotation | compartment | tca_nazaret |glycolysis_hynne| trpMito_reis
--
CHEBI:15343 | GO:0005576 | . | ACAX | .
CHEBI:15343 | GO:0005829 | . | ACA |Acetaldehyde_cyt
CHEBI:15351 | GO:0005759 | facCoA | . | .
CHEBI:15351 | GO:0005829 | . | . | Acetyl_CoA_cyt
CHEBI:15378 | GO:0005759 | fh | . | H_0_mit
CHEBI:15378 | GO:0005829 | . | . | H_0_cyt
CHEBI:15422 | GO:0005759 | fatp | . | ATP_mit
CHEBI:15422 | GO:0005829 | . | ATP | ATP_cyt
CHEBI:15846 | GO:0005759 | fnad | . | NAD_0_mit
CHEBI:15846 | GO:0005829 | . | NAD | NAD_0_cyt
CHEBI:15954 | GO:0005829 | . | G6P | .
CHEBI:15960 | GO:0005759 | faccar | . |Acetyl_carnitine_mit
CHEBI:15960 | GO:0005829 | . | . |Acetyl_carnitine_cyt
CHEBI:16001 | GO:0005829 | . | BPG | .
CHEBI:16027 | GO:0005829 | . | AMP | .
CHEBI:16108 | GO:0005829 | . | DHAP | .
CHEBI:16236 | GO:0005576 | . | EtOHX | .
CHEBI:16236 | GO:0005829 | . | EtOH | .
CHEBI:16761 | GO:0005759 | fadp | . | ADP_mit
CHEBI:16761 | GO:0005829 | . | ADP | ADP_cyt
CHEBI:16905 | GO:0005829 | . | FBP | .
CHEBI:16908 | GO:0005759 | fnadh | . | NADH_0_mit
CHEBI:16908 | GO:0005829 | . | NADH | NADH_0_cyt
CHEBI:16947 | GO:0005759 | fcit | . | .
CHEBI:17234 | GO:0005576 | . | GlcX | .
CHEBI:17234 | GO:0005829 | . | Glc | .
CHEBI:17754 | GO:0005576 | . | GlycX | .
CHEBI:17754 | GO:0005829 | . | Glyc | .
CHEBI:18021 | GO:0005829 | . | PEP | .
CHEBI:18367 | GO:0005759 | . | . | Pi_0_mit
CHEBI:18367 | GO:0005829 | . | P | Pi_0_cyt
CHEBI:20935 | GO:0005829 | . | F6P | .
CHEBI:29052 | GO:0005829 | . | GAP | .
CHEBI:30089 | GO:0005829 | . | . | Acetate_cyt
CHEBI:30744 | GO:0005759 | foaa | . |Oxaloacetate_mit
CHEBI:30744 | GO:0005829 | . | . |Oxaloacetate_cyt
CHEBI:30915 | GO:0005759 | fkg | . |TwoOxoglutarate_mit
CHEBI:30915 | GO:0005829 | . | . |TwoOxoglutarate_cyt
CHEBI:32816 | GO:0005759 | fpyr | . | Pyr_mit
CHEBI:32816 | GO:0005829 | . | Pyr | Pyr_cyt
--

Figure 22: Test output - matching species
The figure shows the test output of a function written by Dr. Martin Seeger. The output shows the
matching of species from 3 different modules, representing the glycolysis, the TCA cycle, and the

transport reactions between the 2 pathways.

67

Eigenständigkeitserklärung

Hiermit versichere ich, dass ich die vorliegende Arbeit selbständig verfasst und keine
anderen als die angegebenen Quellen und Hilfsmittel verwendet habe. Alle Stellen, die
den Quellen entnommen wurden, sind als solche kenntlich gemacht worden. Diese Arbeit
hat in gleicher oder ähnlicher Form noch keiner Prüfungsgbehörde vorgelegen.

(Ort, Datum) (Unterschrift)

