
Master Thesis

semanticSBML

a Tool for Creating, Checking, Annotating and

Merging of SBML Documents

Falko Krause
krause f@molgen.mpg.de

February 7, 2008

Free University of Berlin
Department of Mathematics and Computer Science
Bioinformatics

Dr. Wolfram Liebermeister
Max Planck Institute for Molecular Genetics
Computational Systems Biology Group

Prof. Dr. Ulf Leser
Humboldt-University Berlin
Knowledge Management in Bioinformatics

1

2

Abstract

The System Biology Markup Language (SBML) is a common language for
expressing biochemical sets of reactions that are accompanied by mathe-
matical statements such as kinetic infomation. The program
semanticSBML provides the systems biology community with the abil-
ity to integrate (merge) and annotate models with MIRIAM annotations.
User interfaces are provided on multiple levels: application programming
interface (API), console interface (CI), graphical user interface (GUI).

This work aims to enable a full support of SBML level 2 version 3 for
the merging of models (including mathematical statements) and the ma-
nipulation of MIRIAM annotations (including annotation qualifiers). It is
based on the previous work of the Computational Systems Biology Group
(Max Planck Institute for Molecular Genetics) SBMLmerge. In its first
development phase it extended SBMLmerge with a cross platform GUI
and CI for all existing algorithms as well as a simplified API. In its sec-
ond phase the underlying library (libSBML) was updated. The MIRIAM
annotation manipulation as well as the merging algorithm was rewritten.
The concept of annotation qualifiers was integrated. For the annotation
and merging of models independent abstractions of systems biology mod-
els were developed. The merge abstraction is used for a better detection
and resolution of conflicts in matching biological objects. Experiments
were conducted to show the functional efficiency of the new algorithms as
well as to show its possible uses.

3

4

Acknowledgment

I would like to thank Wolfram Liebermeister for his enthusiasm and for being
the best tutor I could imagine. My girlfirend Jana for her patience and for
giving birth to our child Nila. Edda Klipp and the Computational Systems
Biology Group especially Jannis Uhlendorf, Anselm Helbig and Marvin Schulz
for their work on semanticSBML (you created this too), Ulf Leser for sharing
his independent view on our problems. The (lib)SBML community for driving
me mad and helping me all at once. My family and friends.

A special thanks goes to Christian Ehrlich and Jonathan Schuld for proofreading
my thesis.

5

Selbständigkeitserklärung

Ich erkläre hiermit, dass ich die vor-
liegende Arbeit selbständig und nur
unter Verwendung der angegebenen
Quellen und Hilfsmittel angefertigt
habe.

Berlin, den 07. Februar 2008

6

7

Contents

1 Introduction 10
1.1 Preconditions . 10
1.2 Previous Work . 12
1.3 Procedure . 12
1.4 Experiments . 14
1.5 Organization of this Document 15

2 Phase I 16
2.1 Porting to Qt4 . 16
2.2 Application Programming Interface (API) 18
2.3 Graphical User Interface (GUI) 21

2.3.1 Model Creation . 21
2.3.2 Merge . 23

2.4 Console Interface (CI) . 26
2.5 Beta Release . 30

2.5.1 Source Installation . 30
2.5.2 Debian Package . 31
2.5.3 Cross Platform Ability . 32

3 Phase II 35
3.1 Porting to libSBML 3.*.* . 35
3.2 Annotate . 35

3.2.1 The MIRIAM annotation 35
3.2.2 Concept . 36
3.2.3 Features . 37
3.2.4 Implementation - API . 39
3.2.5 Implementation - Integration 44
3.2.6 Annotation GUI . 44
3.2.7 Discussion . 46

3.3 Merge . 46
3.3.1 Concept . 47
3.3.2 Implementation . 52
3.3.3 Merge GUI . 56
3.3.4 Discussion . 59

4 Experiments 61
4.1 Clustering . 61
4.2 Analysis of Merging Two Glycolysis Models 63
4.3 Merging of Respiratory Oscillation Model 65

5 Conclusion 67

6 Further Work 69

A Frequently used Terms 70

B SBML base elements 71

8

List of Figures

1 Comparison of two glycolysis models 11
2 Model-view-controller design pattern in semanticSBML 12
3 semanticSBML merge concept model abstraction 14
4 Screenshot - Sourcecode documentation with Epydoc 18
5 Simplified class diagram of the API 20
6 Screenshot - Model creation GUI 22
7 Model creation class diagram . 23
8 Screenshot - SBMLmerge merge GUI conflict resolution 24
9 Screenshot - SBMLmerge merge GUI resolution of circular rules . 25
10 Merge GUI class diagram . 25
11 Console user interface class diagram 27
12 Screenshot - semanticSBML on Ubuntu Linux 32
13 Screenshot - semanticSBML on OS X 33
14 Screenshot - semanticSBML on Microsoft Windows 34
15 New annotation concept . 37
16 New annotation algorithm class diagram 41
17 Screenshot - New annotation GUI 45
18 New merge concept cartoon part 1 47
19 New merge concept cartoon part 2 48
20 New merge concept cartoon part 3 49
21 New merge concept cartoon part 4 50
22 New merge concept cartoon part 5 51
23 New merge algorithm class diagram 53
24 Mapping of SBML base elements to semanticSBML merge datas-

tructure . 54
25 Screenhot - New merge algorithm GUI 58
26 Overview of clustered BioModels database 61
27 Cluster of glycolisis models . 62
28 Cluster of mitogen-activated protein kinase models 62
29 Simulation of the respiratory oscillation model 66
30 Simulation of the merged respiratory oscillation model cell 1 . . . 67
31 Simulation of the merged respiratory oscillation model cell 2 . . . 68

9

1 Introduction

The field of systems biology tries to explain complex relationships in biological
systems. Its focus is in the integration of information [1] to discover emergent
properties that could not be revealed with other methods. A common approach
in systems biology is to create a model of a metabolic process that has been
researched by many scientific groups with the help of physical experiments. As
the field of systems biology grows, so does the amount of information it gener-
ates - in particular the amount of models it has created. Models are expressed
and published in various ways, from databases with custom datastructures to
proposed exchange formats to verbal descriptions accompanied by mathemati-
cal statements.

The vision of systems biology is to not only study the behavior of selected bio-
chemical networks but the biochemical network of a whole cell or even a whole
organism. To reach this goal an integration of the generated models is needed.
This integration can be achieved not only on a large scale e.g the integration of
complete databases but also on a smaller scale for single models. Since systems
biology is already strongly dependant on computational methods the preferred
method of merging complex models is also a computer aided method. Two im-
portant preconditions enable this task: a common language for expression of
models and a method for recognizing biological objects that describe a model
(biological entities).

1.1 Preconditions

Language Formats There are a range of systems biology language formats.
Each was created to express different aspects of a model. The most common
ones are: CellMl [2], Proteomics Standards Initiative - Molecular Interaction
XML [3] (PSI-MI), Biological Pathways Exchange Language [4] (BioPax) and
Systems Biology Markup Language [5] (SBML). Besides many design differences
[6] the main feature that differentiates SBML from the other language formats
is that it supports mathematical statements to describe quantitative models.
SBML is a widely used format (over 120 software tools support SBML [7]).
SBML is a XML [8] derived and is developed in levels. Each level stands for
an addition in the expressiveness of the format [9]. The current level is 2 which
includes the creation of hierarchical models and usage of spacial characteristics.
The language is specified in the “Systems Biology Markup Language (SBML)
Level 2: Structures and Facilities for Model Definitions” document [10] which
is one of the main sources of this thesis (Appendix B provides a short overview
of the most important concepts of SBML). SBML is becoming a (non official)
standard for the exchange of mathematical simulatable models. An important
feature of SBML is the availability of a programming library for its access and
modification: libSBML.

Object Identification The subject of entity recognition was addressed by
the development of the “Minimum information requested in the annotation of
biochemical models” [11] (MIRIAM) rules. MIRIAM was developed as a team
effort of systems biology scientists throughout the world and is hoped to

10

Figure 1: The figure shows two models of the glycolysis (left Hynne 2001, right
Teusink 2000) that have common biological objects. Some objects can be easily
recognized as duplicates (blue and green circles) others can not (red circles).
MIRIAM annotations can resolve this situation by delivering a method for object
identification.

standardize model curation. The goal of MIRIAM was to create a set of rules
that ensure the quality of systems biology models. A part of the MIRIAM
framework describes rules for the creation of a machine readable globally unique
descriptions of biological entities. These rules were applied to the SBML format
in the form of element annotations. In Section 3.2 the MIRIAM annotation in
SBML will be introduced in detail.

Figure 1 shows an example of two models of the glycolysis, one from Tuesink
et al. [12] and the other from Hynne et al. [13]. Even though both models
describe almost the same aspects of the glycolysis, the recognition of duplicate
objects can not be done by e.g., string comparison of entity names.

The article describing MIRIAM states : “We believe their [the MIRIAM rules]
application will enable users to (i) have confidence that curated models are
an accurate reflection of their associated reference descriptions, (ii) search col-
lections of curated models with precision, (iii) quickly identify the biological
phenomena that a given curated model or model constituent represents and (iv)
facilitate model reuse and composition into large subcellular models.” 1. This
thesis shows methods and examples that realize the expressed believes of the
authors.

1“[...]” mark additions made by the author of this thesis

11

Figure 2: Model view controller pattern in semanticSBML.

1.2 Previous Work

In its previous work the Computational Systems Biology Group (Max Planck
Institute for Molecular Genetics) developed the basis of semanticSBML, a pro-
gram called SBMLmerge [14]. SBMLmerge is able to annotate SBML models
with MIRIAM annotations which follow the first draft of the annotations format
in SBML. Its merging algorithms are able to perform a successfull merging of
two SBML models into one model. The resulting model has merged mathemat-
ical statements that were prooven to be functional for simulations. In addition
to that it contains subrutines to perform a semantic check on a model and
create a graphical representation of the model. The program is written in the
Python programming language [15]. The algorithms of SBMLmerge follow the
SBML format closely. Its design includes a console base user interface directly
which is connected to the core algorithms. SBMLmerge has several shortcom-
ings, some due to changes in the SBML format and others due to its design.
Since SBMLmerge is the first tool of its kind it can be viewed as experimental
software and many of its shortcomings are addressed in this work. SBMLmerge
is currently the only publicly available tool that can manipulate MIRIAM an-
notations using a user interface and performed a merging of SBML models in a
automated fashion. SBMLmerge is a generic tool that can be used offline (an
internet connection is only needed during the installation). This philosophy is
continued in semanticSBML. This thesis describes the development of seman-
ticSBML that is based on SBMLmerge.

1.3 Procedure

Goals There were two goals for this masterthesis: on the one hand to create a
fully functional version of the semanticSBML program based on SBMLmerge,
that would include a graphical user interface (GUI) and a console user interface
(CI) as well as a revised application programming interface (API). And on the
other, the annotation and merge algorithm should be updated to fit the cur-
rent status of the SBML and MIRIAM formats as well as eliminate flaws of the
SBMLmerge algorithms.

12

User Interfaces To achieve these goals the existing code had to be adapted to
provide interfaces that could be used as a direct programming interface and as
an interface for the different user interfaces. In my research internship, that pre-
ceded this masterthesis, it was my task to design the basis for the graphical user
interface. The SBMLmerge source code was currently being restructured. This
lead to an interface based SBMLmerge core that could be used in a model-view-
controller program design (see Figure 2). The GUI toolkit Qt [16] (developed by
Trolltech) was chosen. It was the goal to create a program that could perform
on multiple platforms. Until the end of my research internship the interfaces for
the check, annotate and graph image generator subrutines were created. These
interface subrutines were collected and wrapped (see Appendix A) into a single
class that could be used as API. The class also stores the SBML model and is
thus referred to as the model class. The model class was used as basis for the
development of the user interface (views). In this thesis the model class and the
user interface classes were extended to include the merging and model creation
functions. In addition to the GUI a CI was created.

Official Release On the completion of the model classes and the views the
cross platform ability was verified and the program was intensively tested. The
project was then officially renamed to semanticSBML. The first step in the de-
velopment of semanticSBML was concluded by an official release.

New Algorithms The first major change in the development branch was the
portation (see Appendix A) to the current version of libSBML. In the current
version the libSBML includes native support for the modification of MIRIAM
annotations including annotation qualifiers. Qualifiers describe the relationship
between two objects e.g., phosphate “is part of” ATP. Since the old MIRIAM
annotation manipulation algorithm did not support qualifiers and a new method
of editing a MIRIAM annotations was available, the algorithm was rewritten.
For a merging of SBML models MIRIAM annotations are essential as previously
mentioned before. Changing the annotation interface also meant changing the
merging algorithm. Furthermore the merging algorithm of SBMLmerge was
strongly geared to the SBML format and disregarded the biological context of
the model. This lead to a complete redesign of the merge algorithm.

Some features of the new algorithm are: a more biologically meaningfull merg-
ing of models (e.g., location of physical biological entities is respected: ATP in
cytosol is not the same as ATP in the mitochondrion), merging of multiple mod-
els at once (in SBMLmerge only pairwise merging is possible), overview and the
controll over which entities should be merged and that mathematical statements
are connected to the entities they describe. The new merging algorithm works
on the basis of semanticSBMLs own abstraction for systems biology models (the
core abstraction is shown in Figure 3).

Merge Concept The semanticSBML abstraction is based on the following con-
cept: a systems biology model consists of multiple biological entitys. Biological
entities can be identified (by MIRIAM annotations). Each entity has a biological
quantity that describes the entity (e.g., unit, location, quantity type). A model
makes statements about biological entities (e.g., the mathematical statement

13

Figure 3: In semanticSBML a systems biology model consists of many mergable
entities. The mergable entity consist of a biological entity a biological quantity
and a model statement. Examples of the contents of each of these objects are
shown.

of a kinetic law, the value of the amount of an physical biological entity, the
reversibility of a reaction).

To merge multiple models, duplicate entities are identified and a list of du-
plicate entities is generated (merge tuples). The list of merge tuples can be
manipulated by a user since the duplicate detection may not be correct or may
not reflect the wishes of the user. From the merge tuple a new entity can be cre-
ated. However the merge tuple may contain conflicts since e.g., different models
may make different statements about the duplicate entities (e.g., the entities
have different initial concentrations). The user must resolve all conflicts (e.g.,
choose the correct initial concentration). After the resolution of all conflicts,
a merged model can be created. The resolution of conflicts and the creation
of the final model is associated with many difficulties. An example for such a
difficulty would be the fact that a SBML model must contain unique identifiers
for each element. A detailed description of the merge concept can be found in
Section 3.3.

1.4 Experiments

Databases There are a number of databases that support the export of SBML
models: BioCyc [17], Reactome [18], JWS online [19]. These databases however
do not support MIRIAM annotations in their current version. The largest source
of curated models, which includes MIRIAM annotations, is the
BioModels [20] database. It contains models from diverse sources that are added
to the database after a curation step in which among other things the MIRIAM

14

annotations are added. This makes it the best source for real life examples of
models that use the SBML format. The BioModels database was used not only
in the experiment as a source for models but also during the whole development
of semanticSBML.

Experiments To exemplify the functional efficiency and the potential uses
of the new algorithms three experiments were conducted. In the first experi-
ment a clustering of the BioModels database was performed to exemplify a fully
automated method for finding similar models with the aide of the MIRIAM an-
notation API. In the second experiment the merging of the previously introduced
glycolysis models using semanticSBMLs new merge algorithm was attempted.
The third experiment consisted of the merging of a single celled model of an
“... autonomous metabolic oscillations in continuous culture of Saccharomyces
cerevisiae” by Wolf et al. [21] into a two celled model.

1.5 Organization of this Document

Special terms that a reader of this thesis should be aware of can be found in the
Appendix A. An overview of the most improtant SBML elements can be found
in the Appendix B. SBML elements play an important role in Sections 3.2, 3.3
and 4. Function and variable names are written in typewriter font.

This thesis describes each of the development steps in detail. Whereas
Section 2 has its main focus on the implementation of a fully functional re-
lease of semanticSBML. Section 3 has its main focus on the concepts of the
new annotation and merge algorithm with less focus on the implementational
details. In Section 4 the experiments will be presented. The conclusion in Sec-
tion 5 is followed by and overview of planed enhancements of semanticSBML in
Section 6.

15

2 Phase I

In the first phase the goal was to create a fully functional release of
semanticSBML. The release includes the library API as well as a graphical
and console user interface. Since parts of the GUI already existed the GUI had
to be extended to include the missing merging, annotation and model creation
functions (see Appendix A). For a public release clean-up work and updating of
user manual files had do be done. In addition to that the program was adapted
to use the latest version of the Qt library.

The first official release of semanticSBML contains the following functions.

Short Name Description
display Create a graph visualization of a SBML model.
id to SBML Create a model from a list of database identifiers.
check Execute a semantic check on a model, e.g., check for

missing MIRIAM annotations.
annotate Search, add and remove MIRIAM annotations for

SBML model elements.
merge Integration of multiple SBML models into one model.

After the release the source code was branched into two versions: a stable
release version and a development version. The release version was kept for
patches of major program flaws (one patched release was issued) while the main
development continued in the branch. The new development will be described
in Section 3.

The GUI and CI are currently used as a template for the creation of a web
interface which is currently under development by a colleague.

2.1 Porting to Qt4

Preliminary Work The creation of the GUI was started during my research
internship. The development described in this thesis picked up the work where
the research internship left off. It was decided during the research internship
that Qt should be used as a widget (see Appendix A) toolkit. Qt provides a
stable cross platform library for the creation of GUIs. Qt is written for the C++
programming language. For Python an interface is provided by the PyQt [22]
(developed by Riverbank) library.

Porting Mandatory At the beginning of the masterthesis the support of Qt
version 3, the current version at the time of my research internship, was dis-
continued due to the release of Qt version 4. The new version contained non
backwards compatible changes in the application programming interface (e.g.,
functions were renamed) and thus required the porting of the existing source
code. The final decision to port to Qt4 was made when the official distribution
webpage of Qt no longer offer binary installation files for Qt3.

Procedure Since this project is based on the PyQt and not directly on the
Qt library the porting tools that were provided by Trolltech could not be used.
Instead a series of regular expressions were written, that could partly be applied

16

without human interaction. However in most cases find and replace operations
had to be applied by hand. All regular expressions that were used were col-
lected and added as a resource to the project. This resource was also used by
my colleague for the porting of the web interface. Publishing this resource will
mostlikely help other developers porting their GUI from PyQt3 to PyQt4.

1 #directly applyable regular expressions
2 sed -i ’s/QObject/QtCore.QObject/’ $@
3 sed -i ’s/SLOT/QtCore.SLOT/’ $@
4 sed -i ’s/QString/QtCore.QString/’ $@
5 sed -i ’s/QGridLayout/QtGui.QGridLayout/’ $@

...
36 sed -i ’s/QDialog/QtGui.QDialog/’ $@
37 sed -i ’s/QTabWidget/QtGui.QTabWidget/’ $@
38 #remove extras, form previous porting attempts
39 sed -i ’s/QtGui.QtGui/QtGui/’ $@
40 sed -i ’s/QtCore.QtCore/QtCore/’ $@
41 #replace import
42 sed -i ’s/from qt import ./from PyQt4 import QtCore,QtGui/’ $@

44 #api differences within classes
45 #-------------does not exist any more
46 #qApp.setMainWidget(gui)
47 #setMultiLinesEnabled

49 #replace manually, regular expression may not be exact
50 ’s/insertTab(\(\S*,.*\),\(.*\))/insertTab(\2,\1)/’
51 #WARNING unsafe this will mess up the previous changes
52 ’s/insertTab(\(\S*,.*\))/addTab(\1)/’
53 ’s/\.message(\(.*\))/.showMessage(\1,2001)/’
54 ’s/setCurrentPage(.*indexOf(\(.*\)))/setCurrentWidget(\1)/’
55 ’s/setCurrentPage(\(\d*\))/setCurrentIndex(\1)/’

57 #incomplete, this depends on programing style
58 ’s/qApp.processEvents/QtGui.qApp.processEvents/’
59 ’s/\.setMultiSelection(1)/.setSelectionMode(QtGui.QAbstractItemView.MultiSelection)/’
60 ’s/selectionChanged/itemSelectionChanged/’
61 ’s/QWidget(\(.*\),.*)/QWidget(\1)/’
62 ’s/QGridLayout(\([^,]*\),.*)/QGridLayout(\1)/’
63 ’s/QTabWidget(\([^,]*\),.*)/QTabWidget(\1)/’
64 ’s/QLineEdit(\([^,]*\),.*)/QLineEdit(\1)/’

...
81 ’s/QWidget.close(\(.*\),.*)/QWidget.close(\1)/’
82 #emit does not take tuples anymore
83 ’s/emit(\([^,]*\),\s*(\(.*\)))/emit(\1,\2)/’
84 ’s/setCaption(\(.*\))/setWindowTitle(\1)/’
85 ’s/QScrollArea(\([^,]*\),.*)/QScrollArea(\1)/’
86 ’s/addChild/setWidget/’
87 #change treeview items selection state
88 ’s/\S*setSelected(\([^,]*\),\(.*\))/\1.setSelected(\2)/’
89 ’s/insertItem(\(.*\))/insertItem(0,\1)/’
90 ’s/Qt.Align\([^)]*\)/QtCore.Qt.Align\1/’
91 ’s/QFrame(\([^,]*\),.*)/QFrame(\1)’

The list is shortened since it is only used to show examples, “...” stands for
excluded text. The regular expressions in the listing above are ordered from
directly applyable regular expressions to those that have to be checked carefully
by hand. The directly applyable regular expressions are written so that they
can be copied into a file and used as a shell script that calls sed (stream editor
for filtering and transforming text). All other regular expressions can be copied
into vim (Vi IMproved, a programmers text editor) and applied if a correct
match is found. The regular expressions of this section depend on programming
style.

17

Figure 4: Source code documentation with Epydoc.

2.2 Application Programming Interface (API)

Documentation The Python programming language provides native methods
for source code documentation. These native methods can be extended by ex-
ternal tools to generate a clearly structured source code documentation that
includes hyperlinks between classes, text highlighting and input/output type
description among other things. The description of input and output of func-
tions in Python is especially important since Python uses a dynamic type system
(usually referred to as duck-typing - types of variables are assigned dynamically
by detection of the type of the first inserted value of the variable). The dy-
namic type system requires a proper source code documentation. Without the
documentation a user of the semanticSBML API would have to guess input and
output types. For this purpose Epydoc [23] (Automatic API Documentation
Generation for Python) was chosen (see Figure 4). All functions of semanticS-
BML that belong to the library interface are documented in detail including
input and output parameters.

Implementation An over view of the API class structure can be seen in
Figure 5. The development of the user interfaces required an interface class
(model class). The model class was partly developed by my colleague during
the restructuring of SBMLmerge and was refined by myself in the creation of
semanticSBML. At the same time I developed a module (see Appendix A) that
provided the abstraction of an SBML models for the user interfaces. The gen-
eral interface to SBMLmerge is provided by the class Model. The following list
shows all important functions of the model API.

Function Name
Description

new
Initialize the model from either a string of the filename, another Model
class instance, a libSBML document, None: create a new model.

18

save as
Save model under the specified filename using the save function.

save
Save the model as SBML file on the harddisk.

get libsbml document
Return a libSBML document instance.

get libsbml model
Return a libSBML model instance.

get model as svg
Return a graphical representation of the model in the Scalable Vector
Graphics (SVG) format as string. This function requires the program dot
(Graphviz).

check
Run a semantic check on the model and return a check-results object. The
semantic check is a function of SBMLmerge and is documented in with
SBMLmerge.

addAnnotationLink
Add an annotation link (Database,Identifier) to a specified element if the
annotations is incorrect an InvalidAnnotationError is raised.

addAnnotationLinkAutomatic
Add MIRIAM annotations automatically - if no annotations were found
an InvalidAnnotationError is raised.

delAnnotationLink
Delete an annotation link, see addAnnotationLink.

getNumNotAnnotatedElements
Return the number of elements that are not MIRIAM annotated.

getAnnotationElements
Return a list of annotation elements of this model.

getAnnotationSuggestions
Return a list of suggested annotations for an inserted libSBML element.

getAnnotationQuerys
Return a list of query strings that can be used to search MIRIAM anno-
tations in the internal database for an inserted libSBML element.

getAnnotation
Return the MIRIAM annotations as a list of database, identifier tuples of
the inserted libSBML element.

issetAnnotation
Return True if the element is MIRIAM annotated. This function should
not be used but rather getAnnotationStatus.

19

getAnnotationStatus
Get the status of the MIRIAM annotation of the inserted libSBML ele-
ment.

id2str
Return a human readable string representation of an inserted database,id
tuple.

id2str compartment
Return a human readable string representation for a libSBML compart-
ment element.

id2str reaction
Return a human readable string representation for a libSBML reaction
element.

compartmentIds
Return a list of all libSBML compartment ids.

databases
Return the list of databases used in the internal database for an inserted
libSBML element. If no input: return all databases.

It is important to note that the model class only includes functions that are
working on a single model. The merge functions work on multiple models and
thus are found in a different class.

Figure 5: semanticSBML API: The Model class delivers a general programming
interface, which is extended by the Document Manager and the Document class
for the GUI and CI views.

Specialization of the User Interfaces The user interface module is located
in the docmanager module. The modules extends the Model class with file
management functionalities. It contains two classes SemanticSbmlGui docmgr
(document manager) and SemanticSbmlGui doc (document). The document
class represents a single model and is the direct extension of the model class.
In additional to the model class functions it provides state variables. The state
variables are set in the wrapped model functions. If a state is modified a signal

20

(see Appendix A) is send so that all views depending on this document can
execute necessary functions for e.g., updating the view. The document man-
ager class manages multiple documents. It creates and connects views to the
documents. To enable one document and multiple document actions in a user
interface the document manager provides functions to show the number of active
(selected) documents and to change the activation state of multiple documents.
It also takes care of the safe closing of documents to avoid data loss.

2.3 Graphical User Interface (GUI)

The GUI is provided by a main class which creates the main window. In the
main window the user can load documents and a list of loaded documents can
be seen. By selection of a document item in the main view, documents can
be activated. An activation or deactivation will enable or disable the push-
buttons that trigger the creation of views. Each of the functions of the core
code are represented by a view. A view is created in a new tab of the main
tab widget. The tab has the same name as the function key and may contain
another tab widget. In the following the views for the merging and creation of
models algorithms will be described.

2.3.1 Model Creation

Interface Usage In semanticSBML models can be created by the insertion of a
list of KEGG [24] reaction identifiers. The GUI view provides this functionality
in a two step process (see Figure 6). The first step is an insertion of list of KEGG
reaction identifiers. This can be done either by file or directly. On the inserted
text (from the input form or from the file) a regular expression is applied that
filters all KEGG reaction identifiers. This means that another SBML file can
be used as input. In the second step all reactions are presented in a human
readable form. The list can then be modified by using the “back” push-button.
This will show the first view again with the filtered list of identifiers in the input
textfield widget. To create a proper model the compartments of the reactions
can be specified. From a list of Gene Ontology [25] identifiers one entry can be
selected with the help of a dropdown box widget. The creation may fail. In
this case an exception is raised by the creation class that will be presented in
a error message box. If the creation was successfull the view class will send a
signal that a new document was created. This will trigger a function that adds
the new document to the main view. The new document can now be treated
like any other externally created SBML model.

Implementation Even though a view in a strict sense only represents existing
models, a model creation view was created (see Figure 7). It contains three
important functions: makeInitMenu, slotNext, slotKegg2Sbml. In creation of
the class instance the makeInitMenu is called. This creates the first view. Two
slots can be called from that view. The first opens a file-open pop-up widget
(slotInfileBrowse) and the second creates the second view (slotNext). The
file input folder of the last file opening is stored over multiple session with the
help of the Config class. In the second view functions of the API (see Section
2.2) are used to display humand readable representations of the reactions us-

21

Figure 6: The model creation view enables the creation of models in two steps.
First step: input of KEGG reaction identifiers. Second Step: visual representa-
tion of reactions and choice of compartments (Gene Ontology identifier)

ing the id2str function and displays a list of Gene Ontology identifiers using
the compartmentIds and id2str compartment functions. By using the “Cre-
ate SBML” push-button, the slot slotKegg2Sbml is called. It will invoke the
kegg2sbml function of the kegg2sbml module. If a KEGG2sbmlError is returned

22

Figure 7: Create Model view class functions.

by the kegg2sbml function, the creation failed and the error message is displayed
in a pop-up window.

2.3.2 Merge

Interface Useage If a user wants to merge models in the semanticSBML GUI
he has to select the desired models in the main view and press the merge push-
button. It is only enabled if more than two models are selected. Upon the
pressing the merge button the modification state of the models is checked. If a
model is unsaved the merging is aborted and a error pop-up appears warning
the user to save the model first (documents states see Section 2.2). If the models
are not modified there are two possible results. The first result can be that the
merging was successfull without user interaction. The merged model is then
returned right away. The new model will appear in the main window having a
modified state. The second result is that a new tab appears that again contains
a tab widget in which the merging takes place (see Figure 8). The merging is
executed on models pairwise. If the models that are to be merged contain du-
plicate entities that have conflicting values, the attributes of the each entity will
be displayed in a vertical list. In between the two entities the merged attribute
values are displayed. If the values are in conflict a conflict resolution widget
is displayed (see Figure 8). There are two possible conflict resultion widgets.
A modifiable dropdown box and a non modifiable dropdown box. Conflicting
values of e.g., type bool can not be modified in comparison to floatingpoint
numbers. The user has the choice to resolve the problem by using the values
from the resolution widgets or by using the values of either of the elements for
this one entity. In addition to that the user can chose to solve every conflict by
using one of the models values for all conflicting entities. There is also a option
to keep both entities however it is disabled by default and has to be enabled in
the configuration tab. Choosing to keep both entities may result in a erroneous
model. After resolving all conflicts in duplicate entities it is checked if circular
rule definitions exist, rules that are defined by itself (directly or indirectly). To
resolve this a graphic of the circular rule and its alternatives is drawn and al-
ternatives can be chosen with push-buttons (see Figure 9).

Implementation In its first development stage the merging of models in se-
manticSBML uses the SBMLmerge algorithms. These algorithms were modified
in order to create an interface based merging algorithm that could be used in
a model-view-controller software design pattern. The SBMLmerge merge algo-

23

Figure 8: Conflict resolution in the old semanticSBML GUI based on
SBMLmerge.

rithm is designed to merge models parwise. To enable a merging of an arbitrary
number of models the merge algorithms is first called with two models and then
subsequently with the resulting (merged) model and one of the remaining mod-
els. The interface to the merge algorithm was developed in cooperation with
my colleague to contain the following functions.

Function
Description

init
Initialize the merge class with two models as input.

find collision
Find duplicate entities that contain conflicting values.

resolve collision
Resolve the conflict of the duplicate entities values.

find circle
Find circular rule definitions and also resolve the circular rule definition
problem by adding extra parameters.

deleteunused
Delete unused elements in the created model.

finish
Return the newly created model.

To merge two models the Merger class is initialized with two model instances.
The user cannot see or influence the compare and initial matching process. A

24

Figure 9: Resolution of circular rule definitions.

Figure 10: View classes of the merge GUI based on the SBMLmerge algorithm.

list of duplicate entities can not be accessed through the interface. In the ini-
tialization the function find collision is called. If it returns None there are no
duplicate entities that have conflicting values. If the function find collision
returns an object duplicate, entities that contain conflicting values were found.
The returned object contains the duplicate libSBML elements as well as a dic-
tionary (see Appendix A) of the values of the entities with flags that show if
the values are in conflict. The values are then ordered by their biological im-
portance and converted to string representations (elemval2str) if necessary.
The dictionary keys contain descriptions of the values. This information is used
to create the user interface widgets. When the user resolves the conflict by
pressing one of the push-buttons a “resolve” function is called. The function
resolve collision has multiple conflict resolution strategies (e.g., use values
of the left element, use the values chosen by the user). Each resolution strategy
demands a specific input. Since the user interfaces all have a similar design the
base class Base Merge view was created (see Figure 10) to unite the input gen-
eration for the resolve collision function. The view class resolve function
can return string representations. One of the tasks of the base class is the recon-

25

version of these string representation. The call of the function find collision
is repeated with the steps just described until no more duplicate entities with
conflicting values are found.

Experience showed that circular rule definitions cannot be found while merging
two man made models, nevertheless the SBMLmerge algorithms can detect and
resolve this problem. The function find circle returns a list of rule definition
identifiers and their mathematical statement that have a circular definition. Al-
ternatives to each of the rules are given. Furthermore a graphical representation
of the rule dependencies is returned that should aid the user choosing the cor-
rect rule. The rule identifiers and their mathematical statements are displayed
in a table with push-buttons that show the rule identifier. Next to it the graph
representations of the dependencies is displayed. Similar to the conflict resolu-
tion the resolution of circular rules is repeated until all problems are resolved.
Some choices may lead to loops in the resolution.

Discussion A compromise had to be made between the functional efficiency
and the implementational effort. The conflict resolution algorithm has a num-
ber of problems that limits its usability. Some of the limits are its pairwise
approach in merging, the inability to handle entities that seem identical but
that are marked as non identical, its inability to recognize biological facts (like
the location of a physical entity) and the fact that most of the merging process
is hidden for the user. These limits will be addressed in the new merging al-
gorithm that is presented in Section 3.3. The circular rule definition algorithm
and its user interface is very hard to understand by a user not familiar with con-
crete algorithms. Since it is one of the features of SBMLmerge it was integrated
into the user interface. For an actual use it needs further improvements. The
implementation of the user interface for this algorithms helped to understand
the functions of SBMLmerge in detail and to analyze its shortcomings.

2.4 Console Interface (CI)

The console user interface provides a user interface that is not dependant on
a X Window System (however it is still dependant on Qt due to signals send
from the document manager). One of the main features of the CI is its batch
processing ability. The desired audience of semanticSBML are system biology
scientists that create and simulate models in a mostly tool driven process. The
CI provides an interface that can be easily automated without knowledge of the
Python programming language.

The console interface is geared to the interactive Python console. It was devel-
oped since no similar Python module was available. It is designed to aid users
with little programming knowledge (in Python or in general) creating simple
automated tasks with semanticSBML.

Implementation - Concept The console interface functionality is provided
by the CustomInteractiveConsole module (see Figure 11). It consist of two
classes: the main class CustomConsole and a singleton datastorage class
Singleton datastore. The main class can be instantiated with a dictionary
containing commands as keys (strings) and function pointers as values. When

26

Figure 11: The console interface is based on the CustomInteractiveConsole
module. The module consists of two classes: the CustomConsole and the
Singleton datastore. The Singletone datastore provides a singleton class
that stores values that can be used in nested instances or that should be applied
on all existing instances of CustomConsole.

the run function is called a loop is started that prompts the user for an input
and executes the according function if the input matches a keyword from the
command dictionary. If the user did not enter a keyword all available commands
are displayed. Since sub menus are needed e.g., main-menu→ annotate-menu it
is possible to open a new CustomConsole instance within a running loop. The
function raw input provides the ability that only single values can be retrieved.
This function is also used internally to retrieve user input.

Implementation - Batch Processing To enable a batch processing abil-
ity a singleton class was created. Since multiple independent instance of the
main class can be created (sub menus, single value user input) the singleton
class provides the ability to share a global queue of commands. The singleton
class contains two important variables: cmdqueue and play cmdqueue. The
cmdqueue contains a list of strings (keywords). If the batch processing is acti-
vated the list of commands (cmdqueue) is copied to the play cmdqueue. Each
time the raw input function is called the function checks if there is an active
command queue (play cmdqueue). If this is the case a value is taken from the
play cmdqueue and returned until all commands on the queue were executed.
The batch processing mode can be activated on the instantiation of the main
class or within a running loop. Commands can be added at instantiation or
recorded during an interactive session. On setting the command queue it is
serialized (see Appendix A). It is then deserialized during the instantiation of
the singleton class. Similar to the command queue a history of commands is
kept that can be copied to the play cmdqueue.

Implementation - Safety There are two methods to exit a console inter-
face session: a local exit (for a single instances) and a global exit (for all nested
instances). In some cases an on-exit-function is needed for e.g., the safe clos-
ingof documents. The on-exit-function can be set for each instance of the main

27

class by using setOnExit. This function is called during each exit attempt and
may prevent the exit.

Implementation - Integration In the following example the module is loaded
and a dictionary of commands and function as well as a help text is created and
inserted into the CustomConsole class. The command loop is then started with
the run function.

1 from semanticSBML.CustomInteractiveConsole import CustomConsole
2 self._locals = {
3 ’l’:(self.listFiles,’List Models’),
4 ’i2s’:(Id2Sbml_view,’ID -> SBML’),
5 ’d’:(self.openDirectory,’Open Directory’)
6 }
7 self._help="
8 <<< semanticSBML main menu >>>
9 l list all loaded models

10 d <DIR> open all models in the directory (without arguments last used)
11 i2s ID -> SBML Generate SBML files from Database Identifiers"

13 cc = CustomConsole(self._locals,self._help).run()

By invoking the creation of the Id2Sbml view class a submenu is created. The
source code of the class is shown in the next example.

1 class Id2Sbml_view(QWidget):
2 def __init__(self):
3 help="<<< ID -> SBML >>>
4 e <ID1 ID2> Enter a List of KEGG Reaction Identifiers
5 q exit this menu"
6 cc = CustomConsole({’e’:(self.slotNext_l,’insert list’),’q’:(self.exit,’exit’)},...

...help).run(’...’)

Also user input can be returned directly without connecting it to a function.
1 input = CustomConsole().raw_input(’Are you sure you want to do this? y/n:’)

The raw input function of the CustomConsole class is used instead of the na-
tive Python raw input function since its input is captured and can be replayed.
Just like the GUI, the CI interface consists of a main class and views for each of
the functions of semanticSBML. The views can be found in the console views
module and correspond in their make-up to the GUI views.

Interface Usage

1 $./semanticsbml_console.py -h
2 usage: semanticsbml_console.py [options] <sbml .xml files>

4 options:
5 -h, --help show this help message and exit
6 -q CQ, --cmdqueue=CQ set the command queue
7 -v, --verbose let functions crash
8 -p, --play play stored command queue on start
9 $./semanticsbml_console.py -q ’c 0;a 0’ -p ../../../release_25September2007_sbmls/...

...curated/BIOMD0000000090.xml

11 [loading identifier database... 49143 entries loaded in 0:00:03.197326]
12 [loading reaction database... finished in 0:00:05.092594]

14 opened BIOMD0000000090

16 <<<semanticSBML main menu >>>
17 l list all loaded models
18 o <FILENAME> open a model
19 d <DIR> open all models in the directory (without arguments last used)
20 c <MODEL_NR> display check results for a model
21 a <MODEL_NR> annotate a model with database identifiers

28

22 e export a svg image of a model
23 m [<MODEL_NR1> , ..] merge 2 or more models by inserting a list of models
24 s save model(s)
25 v save model(s) as
26 r <MODEL_NR> remove model
27 about about this software
28 i ID ->SBML Generate SBML files from Database Identifiers
29 commands: help, dir, rec, prec, play, hist, q, exit
30 you can use ctrl+D (win ctr+Z) to exit
31 ###executing### c 0
32 ->semantic check (0/0/0)
33 ->annotation check (0/10/1)
34 warning: Reaction v2: no Annotation recognized
35 warning: Reaction v10: no Annotation recognized
36 warning: Reaction v14: no Annotation recognized
37 warning: Reaction v4: no Annotation recognized
38 warning: Reaction v5: no Annotation recognized
39 warning: Reaction v6: no Annotation recognized
40 warning: Reaction v7: no Annotation recognized
41 warning: Reaction v15: no Annotation recognized
42 warning: Reaction v17: no Annotation recognized
43 warning: Reaction v18: no Annotation recognized
44 information:Model contains elements with missing or unrecognized annotations. ...

...Currently only the ’is’ qualifier is recognized, all annotations with other ...

...qualifiers are not recognized. Please annotate your model, or wait for a new ...

...version of semanticSBML. SBMLcheck depends on annotations

46 ->semantic dependency check (3/1/0)
47 error: According to their annotations the reactions v8 and v9 are identical
48 error: According to their annotations the species S1 and S2 are identical
49 error: According to their annotations the species C1 and C2 are identical
50 warning: 10 reactions could not be checked due to missing annotations
51 ->conservation constraint check (0/1/0)
52 warning: 21 reactions not checked for conservation relations due to missing ...

...annotations
53 ->overlap check (0/0/0)
54 ->physical value check (0/0/0)
55 ->rules check (0/0/0)
56 ###executing### a 0
57 0 Model BIOMD0000000090
58 1 List of Compartments
59 2 .external [ID:c0](annotation not supported)
60 3 .cytosol [ID:c1](annotation not supported)
61 4 .mitochondria [ID:c2](annotation not supported)
62 5 List of Species
63 6 SO4_ex [ID:sul_ex]
64 7 EtOH_ex [ID:eth_ex]

...
87 31 Hm [ID:Hm]
88 32 List of Reactions
89 33 .v1 [ID:v1](annotation not supported)
90 34 .v13 [ID:v13](annotation not supported)
91 35 v2 [ID:v2](bad annotation)

...
108 52 .vLEAK [ID:vLEAK](annotation not supported)
109 53 .v12 [ID:v12](annotation not supported)

111 <<<Annotation Menu>>>
112 l list elements (without annotations)
113 la list elements and their annotations
114 d <ELEMENT_NUM> delete annotation
115 a <ELEMENT_NUM> add suggested annotation/ automatically annotate "List of .." or whole ...

...Model
116 s <ELEMENT_NUM> <QUERY> search and add identifier
117 f <ELEMENT_NUM> <DB> <ID> add an identifier directly (DB: KEGG, GO ...)
118 q back
119 commands: help, dir, rec, prec, play, hist, q, exit
120 you can use ctrl+D (win ctr+Z) to exit
121 ...exit
122 closing all documents now
123 $

29

The example above shows an interactive CI session. The CI is called with a list
of commands that are then processed (line 9). The session starts by setting the
switches to open a file and setting the command queue to the commands c 0
and a 0. The -p switch executes the command on startup after opening the file.
The command c 0 executes a semantic check of the open model number 0 (line
31) and is followed by the calling of the annotation view with the command a 0
(line 56). The view diplays the complete annotations status of the model (lines
58 to 109) followed by the available commands that can be used to manipulate
the annotations (lines 112 to 118). The call of the annotation view created a
nested instance. Both instances are exited by using the exit command (line
121). The string “closing all documents now” indicates that the modification
status of all open models is checked.

Discussion The console class is a generic class. It is my hope that it will be
reused by other developers since it is distributed under the same open licence
as semanticSBML.

2.5 Beta Release

General There are two methods to install semanticSBML. The first method is
the source installation, and the second is a packaged installation. The installa-
tion method depends on the operating system. The creation of the distribution
packages will be described in the Sections 2.5.1 and 2.5.2. For the beta release
the INSTALL file was updated to describe the installation process in detail. The
READEME was updated to contain a basic description of the current functions of
the program.

Clean-Up To prepare the official release the root folder of the project had
to be cleaned up from test scripts and library scrips in development. Since se-
manticSBML is a project that includes source code that has been developed by
my colleagues and myself, moving and removing of files had to be done carefully
and with the agreement of the corresponding developer. The inclusion criteria
of executable scripts was that they had to at lease return a list of switches.

Publication To complete the release the Sourceforge project site was updated
and screenshots of the program were uploaded. The project was renamed to
semanticSBML and the distribution packages were uploaded. After the update
of the institute homepage of the project, an announcement was made to the
libSBML mailing list.

2.5.1 Source Installation

To use semanticSBML on the Windows (Microsoft Inc.) or OS X (Apple Inc.)
platform, it has to be installed with the Python installation script (from the
package Python Distuils).

Installation Difficulties The installation requires that all dependencies on
external libraries (libSBML, Qt, PyQt, Graphviz, SOAPpy) are satisfied before
the installation is started. All versions semanticSBML up to 0.9.3 are depen-
dant on libSBML 2.4.* this is again dependant on Python 2.4.* (libSBML 2.4.*

30

will not work with newer versions of Python). Installing Python and libSBML
is straightforward since both exist as binary distributions for Windows and OS
X. The dependencies on PyQt4 and Qt4 however is problematic on Windows.
Qt4 can be installed with a binary installer, that will also install an open source
(GNU) compiler. Since Riverbank does not provide a binary installer for PyQt4
depending on Python 2.4.* the user has to build it by hand. This can be done
using the compiler provided by Qt4. Unfortunately a config file of Qt4 on which
PyQT4 is dependant is missing a variable (at the time of writing) that has to
be added by the user manually. The detailed instructions can be found in the
INSTALL file.

2.5.2 Debian Package

To create a debian binary installation package the software packaging program
EPM [26] (created by Easy Software Solution) was chosen. It was also chose
for its ease of use. It enables a uniform method for building (binary) software
packaged for UNIX/Linux systems.

The building of a software package with EPM requires the creation of a list
file. The following shows the list file for semanticSBML.

1 #definition of variables
2 $prefix=/usr
3 $exec_prefix=/usr
4 $bindir=${exec_prefix}/bin
5 $datadir=/usr/share
6 $docdir=${datadir}/doc/semanticSBML
7 $libdir=/usr/lib
8 $pylibdir=${libdir}/python2.4/site-packages
9 $mandir=/usr/share/man

10 $srcdir=/home/foreach/MPG/semanticSBML/trunk/sbmlmerge

12 #main package information
13 %product semanticSBML
14 %copyright 2007 Computational Systems Biology Group (Max Planck Institute for Molecular ...

...Genetics)
15 %vendor Computational Systems Biology Group
16 %description Create,Check,Annotate and Merge SBML Documents
17 %description this package includes libsbml 2.3.4 (using xerces) with python bindings
18 %version 0.9.3
19 %readme ${srcdir}/README
20 %license ${srcdir}/COPYING

22 %format deb
23 %requires python2.4
24 %requires python2.4-qt4
25 %requires python-soappy
26 %requires graphviz
27 %requires libxerces27

29 ########libsbml
30 l 755 root sys ${libdir}/libsbml.so libsbml.2.3.4.so
31 f 644 root sys ${libdir}/libsbml.a /usr/local/lib/libsbml.a
32 f 644 root sys ${libdir}/libsbml.2.3.4.so /usr/local/lib/libsbml.2.3.4.so
33 f 644 root sys ${pylibdir}/libsbml/libsbml.py /usr/local/lib/python2.4/site-packages/...

...libsbml/libsbml.py
34 f 644 root sys ${pylibdir}/libsbml/libsbml.pyc /usr/local/lib/python2.4/site-packages/...

...libsbml/libsbml.pyc
35 f 644 root sys ${pylibdir}/libsbml.pth /usr/local/lib/python2.4/site-packages/libsbml.pth
36 f 644 root sys ${pylibdir}/_libsbml.so /usr/local/lib/python2.4/site-packages/_libsbml.so

38 ########semanticSBML
39 f 755 root sys ${bindir}/semanticSBML ${srcdir}/semanticsbml_gui.py
40 f 755 root sys ${bindir}/semanticSBML-console ${srcdir}/semanticsbml_console.py
41 f 755 root sys ${bindir}/semanticSBML-id2sbml ${srcdir}/semanticsbml_id2sbml.py

31

42 f 755 root sys ${bindir}/semanticSBML-check ${srcdir}/semanticsbml_check.py
43 f 755 root sys ${bindir}/semanticSBML-2dot ${srcdir}/semanticsbml_2dot.py
44 f 755 root sys ${bindir}/semanticSBML-exportDB ${srcdir}/semanticsbml_exportdatabases.py
45 f 755 root sys ${bindir}/semanticSBML-reduce ${srcdir}/semanticsbml_reduce.py
46 f 755 root sys ${bindir}/semanticSBML-stabilize ${srcdir}/semanticsbml_stabilize.py

48 #lib
49 f 644 root sys ${pylibdir}/semanticSBML ${srcdir}/semanticSBML/*.py
50 f 644 root sys ${pylibdir}/semanticSBML ${srcdir}/semanticSBML/*.pyc

The script starts with defining variables that will be used later on (lines 1-10).
Required package meta information is listed in the lines 12-20. Setting the cor-
rect version number allows an update of the program with the removal of old
program code. In lines 22-25 the package dependencies are set. These can then
be automatically resolved by a packet management system. Since semanticS-
BML is dependant on libSBML a binary distribution of libSBML is included in
the package (lines 27-34). The executable scripts of semanticSBML (lines 37-44)
are renamed and copied to the /bin directory during the installation. All other
scripts are place into the global library directory of Python.

Discussion Distributing a binary version of libSBML was welcomed by its de-
velopers and a creation of a separate libSBML package was requested. A binary
distribution package for libSBML currently does not exist for Linux platforms.

EPM supports most of the mayor Linux distribution and in future development
it is aspired to also build packages for other Linux distributions.

2.5.3 Cross Platform Ability

The installation and the functional efficiency of semanticSBML was tested on
the platforms: Ubuntu Linux (see Figure 12), OS X (see Figure 13) and Win-
dows (see Figure 14). While working flawlessly on Linux and OS X the graph
visualization with Graphviz did not work on the Windows platform.

Figure 12: semanticSBML running on Ubuntu Linux with the annotation view
open.

32

Figure 13: semanticSBML running on OS X (Apple Inc.) with the model cre-
ation view open.

33

Figure 14: semanticSBML running on Windows (Microsoft Inc.) with the main
view open.

34

3 Phase II

The goal of the second phase was to update the core algorithms for modification
of MIRIAM annotations and the merging of models. Since a new version of
libSBML was released during the development of the first phase, the new version
of libSBML was incorporated and the GUI was updated to fit the needs of the
newly developed algorithms.

3.1 Porting to libSBML 3.*.*

The porting to the new libSBML was simple since it was the goal of this phase
to rewrite the main algorithms. Some changes had to be applied to the file
management for writing loaded models to the hard drive. Functions developed
by my colleagues were simplified (while leaving the source code intact) so that
they could be adapted over time and did not disturb the main functions.
The parts of the check algorithm that are concerned with the annotation of
SBML elements were removed. In the future these parts can be replaced by
errors that are raised by the new annotation classes.

The graph visualization algorithm depends on non backwards compatible func-
tions of the libSBML and had to be disabled.

3.2 Annotate

One of the main tasks of semanticSBML is the annotation of SBML models
with MIRIAM annotations. The MIRIAM annotation does not only play a role
in the merging of models but could also become a standard for publicly released
SBML models.

3.2.1 The MIRIAM annotation

Introduction The SBML format allows the annotation of elements and of
the whole model. An annotation can be e.g., two dimensional coordinates of
icons that represent a reaction in a graphical visualization by the popular tool
CellDesigner [27]. Annotations are optional and their format can be specified
by their creator as long as they follow the external XML standard RDF [28].
As mentioned in the introduction Section 1, MIRIAM was created as an effort
to ensure the quality of a model and enable a fast entity recognition. MIRIAM
itself is a proposed framework of rules that consits of two parts. The first part
describes the syntax and semantics a model description should follow. The
second part is an annotation scheme. This annotation scheme can be applied to
SBML elements when encapsulating it into a RDF element. The RDF format is
used to create semantic statements about an object using a subject-predicate-
object expression. The subject is in this case a libSBML element (a biological
entity). The object is an external resource that holds a reference description
of the entity. The external resource is given by a pair that consits of an URI
[29] that is joint with the symbol “#” and an identifier string to from a URL
[30]. The URI representing a data resource that provides a description of a
biological entity which can be found with the identifier string. The predicate
that describes the relationship between the subject and the object is given by

35

BioModels qualifier elements [31]. The following example shows a MIRIAM
annotation in SBML (the example is part of a SBML document “...” denotes
the rest of the document).

1 ...
2 <compartment metaid="metaid_0000075" id="cytosol" size="1">
3 <annotation>
4 <rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bqbiol="...

...http://biomodels.net/biology-qualifiers/" xmlns:bqmodel="http://biomodels.net/...

...model-qualifiers/">
5 <rdf:Description rdf:about="#metaid_0000075">
6 <bqbiol:is>
7 <rdf:Bag>
8 <rdf:li rdf:resource="http://www.geneontology.org/#GO:0005829"></...

...rdf:li>
9 </rdf:Bag>

10 </bqbiol:is>
11 </rdf:Description>
12 </rdf:RDF>
13 </annotation>
14 </compartment>
15 ...

The example above shows the SBML element compartment. The element is
annotated with a reference to the Gene Ontology identifier for cytosol. The
MIRIAM annotation in human words states “The element compartment is the
identifier GO:0005829 (cytosol) of the database http://www.geneontology.org/
(Gene Ontology)”. The table below explains the important sections of the ex-
ample and introduces the terms that will be used in the following description.

Line Term Example
2 Entity compartment
6 Qualifier bqbiol:is
8 Database/Data-Type http://www.geneontology.org/
8 Identifier GO:0005829

For a complete description of the example the SBML and RDF specifications
should be used.

The originally proposed term data-type will be referred to as database. The
word annotation will be used synonymous for MIRIAM annotation.

3.2.2 Concept

The main concept of the annotation algorithm is that is a simplified abstraction
of a SBML model (see Figure 15). The main idea is that a model consists of ele-
ments that can be annotated. The type of an element is defined by an attribute
and not by the element itself like in SBML. In the new annotation concept a
model consits of a collection of elements and elements consit of a collection of
annotations. Thus the model depends on its elements and elements depend on
its annotations. However an annotation can be used independently from and
element and an element can be used independently from a model. The construc-
tion of the model and element depend on the SBML whereas the annotation can
be created independently from SBML. The annotation was constructed this way
on purpose to enable a possible reuse outside of semanticSBML.

36

Figure 15: The concept of the new annotation algorithm. Each level of the
abstraction used for the annotation algorithm can be used independently. The
Model and the Element level depend on SBML whereas the Annotation level
is SBML independent.

3.2.3 Features

The basic idea of the RDF format was introduced in Section 3.2.1. The main
features of the algorithm are introduced by listing the available values that the
subject, predicate and object of the RDF annotation object can have.
Subject The new annotation algorithm supports annotations to the following
libSBML elements (see Appendix B): species, compartment, reaction, parame-
ter, assignment rule, rate rule, algebraic rule, event and the model itself. The
support of libSBML elements is dependant on the listofresources.xml file
and can be extended by the user. This will be described in the following para-
graphs.
Predicate It is able to modify all current BioModels qualifiers.
Model-Qualifiers:

is
The modelling object represented by the model component is the subject
of the referenced resource. For instance, this qualifier might be used to
link the encoded model to a database of models.

isDescribedBy
The modelling object represented by the component of the encoded model
is described by the referenced resource. This relation might be used to
link a model or a kinetic law to the literature that describes this model or
this kinetic law.

37

unknown
The qualifier is unknown. This is not a part of the BioModels qualifiers
but of the libSBML. It is needed since a qualifier is mandatory for a
annotation.

Biological-Qualifiers:

is
The biological entity represented by the model component is the subject
of the referenced resource. This relation might be used to link a reaction
to its exact counterpart in KEGG or Reactome for instance.

hasPart
The biological entity represented by the model component includes the
subject of the referenced resource, either physically or logically. This rela-
tion might be used to link a complex to the description of its components.

isPartOf
The biological entity represented by the model component is a physical or
logical part of the subject of the referenced resource. This relation might
be used to link a component to the description of the complex it belongs
to.

isVersionOf
The biological entity represented by the model component is a version or
an instance of the subject of the referenced resource.

hasVersion
The subject of the referenced resource is a version or an instance of the
biological entity represented by the model component.

isHomologTo
The biological entity represented by the model component is homolog, to
the subject of the referenced resource, i.e. they share a common ancestor.

isDescribedBy
The biological entity represented by the model component is described by
the referenced resource. This relation should be used for instance to link
a species or a parameter to the literature that describes the concentration
of the species or the value of the parameter.

unknown
The qualifier is unknown. See “unknown” model qualifier.

Object The database support is not as easy to list as the support for the
libSBML elements and the qualifiers. It depends on two components of seman-
ticSBML. The first component is the internal database and the second one is
the XML file listofresources.xml which is included in the program package.

The internal database provides human representations of identifiers as well as
information about the identity of identifiers from different external databases.
It is used in the search for annotations. The internal database supports the

38

databases: Gene Ontology, KEGG, Reactome, ChEBI [32], CAS [33] and 3dmet
[34]. The internal database was created with SBMLmerge and will thus not be
discussed in detail - only the functions that are used by the merge algorithm
may be mentioned.

The listofresources.xml file provides a list of database-URIs, -names -idpatterns
etc. It is used to show human readable representations of databases, create hy-
perlinks to the databases and do a basic check of the correctness of identifiers.
The first version of the listofresources.xml file was provided by the BioMod-
els team and was incorporated into semanticSBML since it provides a flexible
lightweight method to incorporate new databases for the annotation. The file
consits of a list of resource elements. Each resource represents one database.
The structure will be explained using the following example.

1 <resource
2 name="EC code"
3 uri="http://www.ebi.ac.uk/IntEnz/"
4 alternateUris=’http://www.ec-code.org/’
5 location="http://www.ebi.ac.uk/IntEnz/"
6 action="http://www.ebi.ac.uk/intenz/query?cmd=SearchEC&ec="
7 elements="assignmentRule rateRule algebraicRule reaction event"
8 idPattern="^(\d+|\d+\.(-|\d+)|\d+\.\d+\.(-|\d+)|\d+\.\d+\.\d+\.(-|\d+))$"
9 />

Line Description
1 Opening of the resource tag
2 Human readable name of the database
3 Primary URI (part of the MIRIAM annotation)
4 Alternative URI that can be used to reference the same

database
5 World wide web location of the database
6 URL that can be combined with an identifier to create a

hyperlink referring to a description of the annotation.
7 Space separated list of libSBML elements that can be an-

notated using this database.
8 Regular expression pattern that all identifiers of this

database must follow. The pattern is used for a basic check
of the annotation identifiers.

9 Closing of the resource tag

The listofresources.xml file is located in the semanticSBML subdirect which
is located in the home directory of the user that installed semanticSBML and
thus in a easily accessible location. The users of semanticSBML are encouraged
to edit the file to fit their needs.

3.2.4 Implementation - API

The implementation of the annotation algorithm follows closely the concept pre-
viously described in Section 3.2.2. The objects described in the concept match
exactly the classes of the annotation algorithm. The class diagram can be seen
in Figure 16. The interface functions and some internal functions will be shown
in the following listing.

39

The Annotation class represents a single MIRIAM annotation. It consits of
methods to get and set the variables: database, identifier, qualifier, qualifier
type. When setting these variables multiple checks are executed to verify their
correctness. The class uses the external file listofresources.xml. In addition
the class provides functions for comparison of annotations and different repre-
sentations of the annotation.

Function
Description

init
Set the resource (database and identifier) and qualifier (qualifier and qual-
ifier type).

eq
Equality operator. If database and identifier are the same return True.

str
Return the annotation resource as specified by the proposed MIRIAM
annotation standard: URI#ID.

getName
Return a human readable string representation of the annotation - if the
resource can be found in the internal database or an empty string if the
resource can not be found.

getURIAction
If possible return a hyperlink to find the referenced element on the world
wide web.

setQualifier
Set the qualifier of the annotation - libSBML encoded the biological-
qualifiers in numbers between 0 and 7 and model-qualifiers between 0
and 2 and qualifier-types between 0 and 2. Both numbers and string rep-
resentations (e.g., hasPart) are allowed as input for the qualifier and the
qualifier type. If the qualifier is not recognized an error is raised.

setLink
Set the database and the identifier of the Annotation class. As input for
the database a URI (e.g., http://www.geneontology.org) or name (e.g.,
Gene Ontology) are both accepted. The input allows setting a flag upon
which the insertion of unknown databases (known ones are specified in
listofresources.xml) raise an error. If the identifier pattern is known
for the inserted database and the inserted identifier does not match this
pattern an error is raised (see checkIdPattern).

checkIdPattern
This function checks if a regular expression pattern for identifiers of a given
database can be found (listofresources.xml). If a pattern is found the
inserted identifier is matched against the pattern. If the pattern matches
the function returns True, if it does not match the function returns False.

40

Figure 16: Class diagram of the improved annotation algorithm. The
Annotation represents a single annotation. The Annotations Element repre-
sents a SBML element. The Annotations Elements Model represents a SBML
model.

41

The Annotations Element class represents one annotatable object in a model
(a biological entity / libSBML base element). It is a container for Annotation
class instances. It has functions to add, remove and modify annotations.

Function
Description

init
Read MIRIAM annotations, type, id, metaid and name from libSBML
element. Only MIRIAM annotatable libSBML elements are allowed as
input.

readAnnotations
Internally used function to read all MIRIAM annotations (from CVTerms)
of the inserted libSBML element

isAnnotated
Return if the element contains MIRIAM annotations.

addAnnotation
Add a MIRIAM annotation to the SBML element represented by this class
instance. In libSBML versions <3.0.2 the adding of identical annotations
will create (two) separate identifiers. As a result of this work libSBML
prevents this in later version. (The function also checked if a CVTerm with
the same qualifier already exists and add annotation to this CVTerm - this
functionality was discontinued since libSBML already provides it.)

modAnnotation
Modify the qualifier of an annotation.

remAnnotation
Delete an annotation from libSBML element and resynchronized the in-
ternal list of annotations with libSBML element.

unsetAnnotations
Delete all annotations of this element. This function is not present in the
current libSBML but might be added in future versions. It was created
due to the behavior of libSBML <3.0.2 described in addAnnotation.

getAnnotations
Return a list of Annotation class instances. These instances should be
used to add or remove annotations.

getQuerys
Return a list of the name, id and metaid value of the libSBML element.
These can be used to query annotations from the internal database.

getSuggestions
Get a list of Annotations by querying the internal database. If no query
is specified as input the function getQuerys is used. A switch disables the
fuzzy database search, then only exact matches are returned.

42

addAnnotationAutomatic
Check if the element is already annotated (using isAnnotated). If is not
annotated, check if an annotation can be found using getSuggestions
(exact matches only). Add annotation(s) that were found to this element
(using addAnnotation).

The Annotations Elements Model represents a complete model. It is a con-
tainer for Annotations Element instances. Its functions are limited since it is
mainly used as a data container.

Function
Description

init
Read all elements from a SBML model that can be annotated and create
a list of Annotations Elements (using readAnnotationElements).

getNumNotAnnotatedElements
Return the number of elements that have no MIRIAM annotations.

getAnnotationElements
Return the list of Annotations Element (that can contain MIRIAM an-
notations) available in this model.

remAnnotationElement
Remove an element.

readAnnotationElements
Go through all MIRIAM annotatable elements in a libSBML model and
create Annotations Elements.

In addition to these classes the Merger class of SBMLmerge was replicated for
backwards compatibility. It is a simple wrapper class. Most of its functions can
be found (with different names) in one of the classes above.

43

3.2.5 Implementation - Integration

The following example shows the usage of the model class. It is initialized with
a libSBML Model instance. AnnotaionErrors have to be caught in case the
Model has elements with faulty annotations.

1 import libsbml
2 from semanticSBML.annotate import *

4 document=libsbml.readSBMLFromString(open(’mymodel.xml’,’r’).read())
5 try:
6 aem=Annotations_Elements_Model(document.getModel())
7 except AnnotationError,e:
8 print e
9 else:

10 print aem.getNumNotAnnotatedElements()

The Annotations Element class is initialized with a libSBML element in this
case a species element. Like in the initialization of the model the element might
raise an exception if the annotations of the element are faulty. On a successfull
initialization the number of non annotated models is printed to the screen.

11 try:
12 ae=Annotations_Element(list(document.getModel().getListOfSpecies())[0])
13 except AnnotationError,e:
14 print e
15 else:
16 print ae.isAnnotated()

Annotation instance can be created in different ways. In line 17 and 18 iden-
tical annotations are created using different input. In line 17 human readable
representations are used in line 18 the URI and the libSBML numbers of the
BioModels qualifiers are used (see Section 3.2.4). Line 19 creates an annotation
for a model.

17 a1=Annotation(’Gene Ontology’,’GO:1234567’,’bio’,’is’)
18 a2=Annotation(’http://www.geneontology.org/’,’GO:1234567’,’1’,’0’)
19 a3=Annotation(’BioModels’,’BIOMD0000000001’,’model’,’is’)

The annotation objects created in the example above can be used to add anno-
tations to a model.

20 ae.addAnnotation(a1)

The adding of the annotation will modify the libSBML model instance. To save
the changes persistently the model has to be written to a file on the harddisk
by using libSBML functions.

3.2.6 Annotation GUI

In comparison to the first version of the annotation GUI visible new features
are the qualifier modification widgets and annotation resources as hyperlinks.
Figure 17 shows a screenshot of the new annotation GUI with numbers indica-
tors for the different features that will be explained in the following legend.

Legend of Figure 17:

1. Choice widget with a list of biological and model qualifiers.

2. Hyperlink to a world wide web location that will open a external browser.

3. Clicking the “change” push-button will set the qualifier of the annotation
(modAnnotation) that was chosen (see 1).

44

Figure 17: GUI to the new annotation algorithm. The legend can be found in
Section 3.2.6

4. Remove this annotation from the model element (remAnnotation).

5. Human readable representation of the annotation (getName).

6. Start a fuzzy search on the internal database for the query inserted
(see 7) (getSuggetsions). The results will appear in 11.

7. Editable choice widget with suggestion of queries for a database search
(getQuerys).

8. Drop-down-box widget with a list of known databases (listofresources.xml)
that can be used to annotate the current element.

9. Clicking this push-button an attempted will be made to add the manually
constructed annotation to the current element (addAnnotation). If the
inserted identifier does not match the regular expression pattern of iden-
tifiers of the database (checkIdPattern) a pop-up appears displaying an
error message.

10. Add the annotation that is displayed next to the push-button to the cur-
rent annotations of the element (addAnnotation). The new annotation
will have the biological qualifier unknown.

11. Annotation that was found in the internal database. The annotations
that are dispayed in this area can be found using two different methods.
The first method is an initial search that is conducted when the element
is opened (getSuggestions). The second method is a manually search
(see 6).

45

12. The treeview displays all annotatable model elements. The green icon in-
dicates that the element is MIRIAM annotated; the red icon indicate that
element is not MIRIAM annotated. The tree item displays the value of
the name and id attribute of the Annotation element / libSBML element.
If the name is not set but a MIRIAM annotation is available (like in the
example) the internal database is used to diplay a human readable string
representation of the first annotation of the element in square brackets
(getName). Expanded nodes display all annotations of an element.

For adding annotations automatically the nodes of the treeview (left hand side
of the annotation widget, see 12) on the first level e.g., “Species” has to be
selected. This will create a menu on the right hand side of the widget which
contains a push putton that starts the automatic annotation of all elements that
are child nodes of the currently selected tree node. (e.g., all Species elements).

3.2.7 Discussion

The new annotation algorithm delivers a new API for the manipulation of
MIRIAM annotations. Its design is flexible and includes all current BioModels
qualifiers. The algorithm allows the integration of databases by the user. It can
be argued that this will endorse the use of none accepted databases, however
semanticSBML addresses a professional audience and will therefore only guide
but not restrict a user.

The design of the internal database has several disadvantages e.g. a complicated
access to the comparison of identifiers and missing relations between identifiers
of one database. An improvement of the internal database would also improve
the annotation process.

The semanticSBML annotation interface should help the systems biology com-
munity to accept MIRIAM annotations. One of many new vistas that is opened
up by an API for the manipulation of MIRIAM annotations is shown in an
experiment in Section 4.1.

3.3 Merge

As already mentioned in the introduction (Section 1) semanticSBML uses its
own abstraction of a systems biology model. The abstraction is based on
the idea (see Figure 3) that a model consists of biological entities. A bi-
ological entity (BioEntity) can be identified. It is described by a biologi-
cal quantity (BioQuantiy) and the model makes statements about the entity
(ModelStatement). This abstraction differs from the abstraction of the SBML
format.

It was created for the following reasons: The experiences with SBMLmerge
showed that object dependencies in the merging process were not clear. The
merging of elements with different types should be allowed. The conflict resolu-
tion of SBMLmerge did not differentiate the severity of a conflict. In addition
to that the abstraction allows a simple reuse of functions that are needed during
the merge process.

46

Figure 18: Merge Concept: In the first step (large grey number) of the
semanticSBML merging algorithm, the SBML document is translated into
semanticSBMLs own abstraction.

3.3.1 Concept

Next to the model abstraction the the mergin process in semanticSBML uses
further concepts that will be introduced in this section. In the following class
names (written in typewriter font) are used along with artificial names for
datastructures. LibSBML elements are written in slanted font.

The first step is the translation of a SBML model to a semanticSBML model
(see Figure 18 step 1; the steps are marked with large grey numbers). On this
account the libSBML base elements (see Appendix B) compartment species pa-
rameter reaction (these elements are considered as mergable biological entities)
are translated into MergeEntitys. The MergeEntity class can be viewed as
meta SBML element since it contains all of the attributes the different types of
SBML elements can contain. In some cases an attribute can also be a SBML
base element. The MergeModel stores all MergeEntitys of one libSBML model.

The translation is repeated for all models that should be merged (see Figure 19
step 2). All elements in each model are compared pairwise with the elements
(of matching type) in the other models (see Figure 19 step 3). The algorithm
checks for biological identity with the help of MIRIAM annotations as well as

47

Figure 19: Merge Concept: In the second step the translation (Figure 18 step
1) is repeated for all documents that should be merged. In the third step all
mergable elements of each model are compared in a pairwise manner.

48

Figure 20: Merge Concept: If in the third step (Figure 19) duplicate entities are
found a MergeTuple is created. During the comparison process a list of tuples
is build up (step 5) that can be modified by a user (step 6).

49

Figure 21: Merge Concept: Tuples of biological entities can contain conflicting
values. The conflicts must be resolved by user interaction (step 7). From a
tuple a new entity is created that is the merged entity of all entities in the tuple
(step 8).

50

Figure 22: Merge Concept: The collected MergeEntitys and MergedEntitys
integrate all information of the models that were merged. The merging process
ends with a retranslation of the semanticSBML model into a SBML model.

structural identity (location of physical biological entities e.g., ATP in cytosol -
ATP in mitochondrion).

If duplicate entities are found they are stored in a MergeTuple (see Figure
20 step 4). The MergeTuple is a smart container that only allows the storage
of one entity from each model (an aggregation of entities is not allowed). It
also decides which element belongs in the container. A list of MergeTuples is
generated (see Figure 20 step 5). The user can manually modify this list since
a correct matching of the duplicate entities can not be guaranteed (see Figure
20 step 6). Even though it is not desired, this also enables the manual merging
of non annotated models.

The entities in the MergeTuple may contain conflicting values. Most conflicting
values can be resolved by choosing a value from a list e.g., choosing the cor-
rect initial amount of the ATP (see Figure 21 step 7). However conflicts in the
BioEntiy (determining the identity of the entity) or the BioQuantiy (describing
the entity) show that there is a severe disagreement between the entities. The
resolution of severe conflicts may need more than a simple choice and should
often lead to the destruction of the tuple. The user can however solve every
conflict and thus mark the MergeTuple as resolved. From a resolved or non con-
flicting MergeTuple a combined element is created called the MergedEntity (see
Figure 21 step 8). The MergedEntity has the same properties as a MergeEntity
and has only implementational importance.

From the list of all MergedEntitys and MergeEntitys a merged SBML model

51

can be created (see Figure 20 step 8). The merged SBML model integrates all
information of the inserted models.

The semanticSBML merge algorithm tries to realize this concept of the merge
process however some changes had to be made for an enhanced usability. Since
this description in this section is a simplification Section 3.3.2 will describe the
actual implementation.

3.3.2 Implementation

The merging algorithm is interface based. A class diagram of the merge algo-
rithm can be seen in Figure 23. The interface to the merge algorithm is provided
by the Merger class. The Merger class is initialized with a list of libSBML doc-
ument instances.

Translation The first step in the merging of the model is the translation
of the SBML model into the semanticSBML datastructure. Figure 24 shows
the basic mapping of SBML base elements to the semanticSBML datastruc-
ture. The SBML base elements compartment, species, parameter and reac-
tion are viewed as mergable biological entities and are therefore translated into
MergeEntitys. Their values and subelements are stored in either the BioEntiy,
the BioQuantity or ModelStatement class. The three classes are stored in the
MergeEntity class along with other general properties.

Identification The BioEntiy class is used to identify the biological object.
It stores an elements MIRIAM annotation using a Annotations Element (see
Section 3.2).

Description The BioQuantiy class describes an element. One if its attributes
is type of the BioQuantity. The type in the case of a physical biological en-
tity (species) determines if it is an amount or a concentration (SBML property
hasOnlySubstanceUnit), in the case of a compartment it is the dimension of
the compartment (e.g., the nucleus is a three dimensional compartment whereas
the cellwall is a two dimensional compartment). The class also stores reaction
participants (reactand, product and modifier) for reaction elements. In addition
to that the class stores the unit and location of an element. The location at-
tribute contains a pointer to another MergeEntity (of the type compartment).
The unit is stored as a custom dictionary type. The storage of units is redun-
dant in comparison to SBML (units are a base elements and can be predefined)
but easier to use since standard units are resolved and can be used along with
custom units.

Statements The ModelStatement class holds the largest amount of informa-
tion. A part of the attributes can be summarized as simple attributes e.g., the
initial amount (float) of a species or the flag for reversible reactions (bool).
The simple attributes are either of type float or bool. The class also stores
mathematical statements. In the case of a reaction the mathematical state-
ment is the kinetic law and in the case of compartment, species and param-
eter it can be a rule or initial assignment. The mathematical statements are
stored as copies of libSBML element instances. The mathematical statements

52

Figure 23: Class diagram of the improved merging algorithm. The Merger class
is the interface to external classes. A model is represented by the MergeModel
class. It contains a row of MergeElements. Each MergeElement consists of one
BioEntiy, one BioQuantiy and one ModelStatement. The MergeTuple is a
smart container for MergeElements. The BioRelations class provides functions
that are used in the context of the merged model and that use external resources.

53

Figure 24: The figure shows the mapping of the SBML base elements (left) to
the semanticSBML datastructure (right).

can reference other mathematical statements (the SBML function definitions
base element). Copies of the referenced function definitions are attached to the
mathematical statements. Similar to the storage of units this can lead to a
redundancy .

The BioEntity, BioQuantity and the ModelStatement classes are all derived
from a base element that stores information about the type and the model they
are derived from. This is needed for the correct initialization of all attributes.

Compare For a pairwise comparison of all MergeEntitys the entities of each
MergeModel are traversed. The compassion itself is executed by a function of the
class BioRelations. The BioRelations class holds a triangular score matrix
for all biological BioModels qualifiers matched against itself (“is” vs “is”, “is”
vs. “has part” ...). The MIRIAM annotations of each element are compared
with the MIRIAM annotations of the other element. If two annotations are
found to be equal by identity (Annotation eq operator see Section 3.2.4) or
by belonging to the same group in the internal database the score of the quali-
fiers is looked up in the score matrix and returned (e.g.,“is” vs “is” returns 10).
All scores are added up and returned as an overall score. If the overall score is
higher than 0 an attempt is made to create a tuple containing both elements or
adding one of the elements to an already existing tuple. If both elements are in
a tuple, one of the elements is added to the best matchin tuple. The attempt
of adding an element to a tuple can fail if the tuple contains an element of the

54

same model with a higher match score. In addition to that the match score of
the elements location (compartment element) is looked up and compared with
the location score of a competing element. The compartment score is always the
divisive score if competing elements exist, since it is important for the structural
identity of an elements in the merged model. Matching elements are stored in
a MergeTuple. All elements that matched but were not merged retain links to
eachother. These links are used in following merging process to obtain a list
of similar elements. The discussion in Section 3.3.4 will address the matching
problem further.

Differences to the Concept The concept of the merging process in Sec-
tion 3.3.1 described that after the compare step (Figures 19 and 20 steps 3-5)
the manual manipulation of the MergeTuple list would follow (Figure 20 steps
6). Only after these steps the conflict resolution (Figure 21 steps 7) and the
generation of MergedEntitys (Figure 21 steps 8) follows. However in the im-
plementation there is no separation between the updating of the MergeTuple
list and the merging of tuples. The implementation continues with the gener-
ation of an randomly merged model. The random merged model provides the
user with valuable information for the manipulation of the MergeTuple list. On
this account the following paragraph describes the merging process before the
updating of the MergeTuple list.

Merging Before elements can be merged the identifiers of all elements have to
be collected and stored in a global list. The list is stored in the BioRelations
class. This is followed by the creation of MergedEntitys from MergeTuples. The
MergedEntity class is derived from the MergeEntity and contains a copy of all
the values of a random MergeEntity of the MergeTuple. The MergeEntity
class extends the MergeEntity class by boolean variables that indicate con-
flicting values between elements of the MergeTuple (conflict flags), dictionaries
containing the possible choices for conflicting values as well as functions to gen-
erate the conflict dictionaries and functions to resolve conflicts.

Conflict Resolution To generate a conflict resolution dictionary the attribute
values of each element are checked for equality. For complicated data types
the equality is determined by the equality of their string representations. The
conflict resolution dictionaries contain only values that can be used directly in a
merged model. This means all referenced element identifiers are updated before
they are added to a dictionary. Mathematical statements undergo an identifier
update with the help of a function of the BioRelations class. If the referenced
elements are about to be merged the MergedEntity is reference instead.

The merging of the BioEntitys MIRIAM annotations is an aggregation of all
non-identical annotations. The aggregation can lead to contradicting annota-
tions, that is two annotations with the qualifier “is” reference the same database
with different identifiers. If this problem occurs a flag set to indicate the con-
flict. The user must solve the problem by deleting non applicable annotations.
If the problem still exist on a resolution attempt of the user, a MergeError is
raised.

For the resolution of conflicts that can be solved by a choice. The set func-

55

tions of the BioEntity, BioQuantity and ModelStatement classes are used.
The set functions do not only set the values of the semanticSBML object in-
stance but also of the underlying libSBML object instances. In addition to that
the semantic correctness of the chosen values is checked. A semantic error oc-
curs if the BioQuantiy type is amount and but an initial concentration is set.
An invalid semantic will raise a MergeError. If the resolution of all conflicts is
successful a flag is set that indicates that the problem is solved (resolution flag).

Element Types For the merging of elements of different types the following
combinations are allowed: parameter with species and parameter with com-
partment. The type of the resulting element always prefers the more complex
element type (species and compartment). This is similar to a strategy that
is used in the initial creation of MergedEntitys that is if one of the elements
merged elements contain more information this information is used in the cre-
ation of the MergedEntity.

Manual Matching The manual matching contains two basic cases. An el-
ement can be removed from a tuple or an element can be added to a tuple. The
removing can result in the destruction of the tuple. The adding can also result
in the destruction of the original tuple and it can result in the creation of a new
tuple. If an element is added to a tuple where an element of the same model
already exists the element is removed from the tuple. The manual matching
causes a structural change in the merged model which means that all objects
depending on any of the involved elements (e.g., that have a mathematical equa-
tion pointing to the element) have to be updated. The first implementation to
resolve this problem was a global recreation of all MergedEntitys. While it
solved the problem it proved to be computationally too expensive.

Translation The final step is the translation of the semanticSBML model back
into a SBML model. The translation is only executed if all MergedEntitys are
conflict free or have resolved conflicts. If this is not the case a MergeError is
raised listing all elements that are still in conflict. The translation starts with a
creation of an empty SBML model. It continues with the collection of all SBML
base elements that are attributes of MergedEntitys (rules, initial assignments
and attached function definitions). These elements are directly added to the
model. After an update of the identifiers of referenced elements of the non
merged MergeEntitys the SBML base elements of non merged MergeEntitys
and MergedEntitys are added to the model. The units of all elements are col-
lected and their redundancy is removed by a comparison of each of the units.
They are then added to the model. In a final step the function returns the newly
created SBML model.

3.3.3 Merge GUI

The GUI of the new merge algorithm is basically a table in which the rows rep-
resent elements and the columns represent models. The first column of the table
represents the merged model. All other remaining columns represent the models
that should be merged. Each row stands for one element of the merged model
(which is about to be created). If there are matching elements their merged
element is shown in the first column. If an element of a model does not match

56

any other element the first column is left blank. In the creation of the merged
model the non matching element will be copied (with some modifications) into
the merged model.

The following table shows an example in which two models (ModelA and Mod-
elB) are merged. Each model has four elements. Two elements from each model
are matching an element of the other model (ModelA-ATP with ModelB-ATP
and ModelA-Glucose with ModelB-gluc) and two elements in each model are
not matching any other element (ModelA-H1O, ModelA-Ethanol, ModelB-F6P,
ModelB-F16bP).

Merged Model ModelA ModelB
Merged ATP ATP ATP
Merged Glucose Glucose gluc

H2O
Ethanol

F6P
F16bP

The main widget of the merge GUI is a toolbox widget. The toolbox widget
consists of a list of vertically arranged tabs that extend when the tab header
is clicked on. Inside a tab widgets that each display an element are arranged
horizontally. The Figure 25 shows a screenshot of the merge GUI. The screen-
shot is composed of four separate screenshots which were combined for a better
overview.

Legend of the Figure 25

1. The header is showing which model is located in which column.

2. Symbols representing the conflict status of the element.

3. Header of the element displaying the element name. The header is color
coded for the different types of libSBML elements. In this case the blue
highlighting represents a SBML species.

4. Drop-down-box widget that contains a list of similar elements with which
the element could also be merged. Just below it a similar drop-down-box
widget is located with a list of all elements that this element could be
merged with. The lists only contain elements that do not belong to the
same model.

5. Push button to remove the element from its current tuple. In this case
pushing the button destroys the tuple and deletes the merged element.

6. Aggregated MIRIAM annotation with hyperlink.

7. Push button to delete the MIRIAM annotation. In case the aggregated
MIRIAM annotations do not represent the merged element.

8. Unit string representation.

57

Figure 25: The figures shows a screenshot of the the new merge algorithm
GUI. The screenshot is composed of four screenshots that were combined to
present a better overview. The dashed lines indicate the borders of the single
screenshots. The legend to this Figure can be found in Section 3.3.3.

58

9. Header of the model statement section. The red highlighting indicates
that there are conflicting values in this section. When the resolution of
the conflict was successful, it will be highlighted in green.

10. Editable drop-down-box widget that contains choices for the conflicting
values. The current value is indicated by an arrow icon.

11. Resolve push-button which will execute the resolution functions. Upon
pressing the button a pop-up window can appear that displays a severe
conflict that prevents the resolution of the conflicts.

12. Tab header of the next element (tuple). Clicking the header will open this
tab and close the current one.

13. Disabled push-button that is planned to execute a resolution of all con-
flicts by choosing only values of one model. This feature is still under
development.

14. Merge push-button - if all conflicts are resolved pushing this button will
create the SBML model and destroy the view. If there are still elements
with unresolved conflicts a pop-up will appear that shows a list of these
elements.

3.3.4 Discussion

The merging in semanticSBML allowes the user more freedoms than SBMLmerge
while trying to prevent errors that result from these freedoms. New features are
the merging of different element types and the manual choice of elements that
should be merged. It includes methods for a simple recognition of severe conflicts
and semantic checks of the user selected conflict resolution. The representation
of the merge process is more transparent due to the merging of an arbitrarily
number of models at once and an improved visualization of element values.

In the current state the program delivers a framework that needs further im-
provement. Missing features for example are the resolution of circular rule
definitions (which was included in SBMLmerge) and circular compartment in-
clusions. Further semantic checks are needed which can only be discovered with
a deeper understanding of the SBML format. The program does not yet support
all SBML element types.

An improved implementation of the resolution of the dependency problem (in
which only the depending elements are recreated) was started but could not be
finished with this work.

SemanticSBML currently compares even complex elements like mathematical
statements and units by string comparison. While this might seem ineffective
experience showed that it yields some success (especially if standard units are
used and models are derived from each other). An appropriate solution for the
units comparison would be a conversion of the units or a standardization of units
before the comparison. The libSBML developers announced that functions for a
unit conversion are currently integrated in the libSBML and will be an inherent

59

part in future version of the library. In a discussion with the developers of CO-
PASI [35] it was discovered that the comparison of mathematical statements is
also needed in COPASI. It was agreed that the source code for the comparison
of mathematical statements would be provided by the COPASI developers.

The identification of duplicate objects consits of two steps. The first step is
the recognition of identity and the second is the generation of a similarity score.
The similarity score is generated by a rather näıve algorithm. It uses a score
matrix to enable a comparison of annotations with different qualifiers (e.g., an-
notation of model1: ATP “is version of” URI1#ID1 - compared to annotation
of model2 ATP “is” URI1#ID1). The score matrix was intentionally not in-
cluded in this thesis, since no combination of qualifiers other than “is” for both
annotations was found to be more meaningfull than other combinations (and
has a higher value in the score matrix). It can be argued that only elements with
identical annotations and the qualifier “is” should be recognized as equal. This
argument however would not allow elements that only have weak annotations
(e.g., “is version of”) to match any other element. The assumption made in the
implementation is that if the argument would be would be true every biological
entity can be referenced with an “is” qualifier. However since no database is
complete the argument can not be valid. The implementation has the disad-
vantage that many weak annotations can outvote a strong annotation. Taking
the BioModels database as the primary source of MIRIAM annotated models
an outvoting in randomly merged models was not observed. With more sources
for MIRIAM annotated SBML models, the current solution might turn out to
be insufficient and has to be revised. On this account the matching function
was placed into the BioModels class which was created on purpose as an extra
class to contain critical algorithms separate from other algorithms.

The severity of conflicting BioEntity and BioQuantity attributes is much lager
than of that of ModelStatement attributes. A user must be properly instructed
to understand this in a public released version of semanticSBML. A severe con-
flict can mean that a merging of certain entities will result in the creation of
a faulty model. Since the user can manually decide which entities should be
merged it was decided that a warning of severe conflicts is a better solution
than to prevent the merging of entities with sever conflicts.

60

4 Experiments

The following experiments were conducted to prove the functional efficiency of
the new algorithms as well as to evaluate the usefulness of the concepts used in
semanticSBML. The experiments also show alternative uses of semanticSBML.
All models used in the experiments originate from the current release of the cu-
rated BioModels database (25th September 2007
release http://www.ebi.ac.uk/biomodels/).

4.1 Clustering

The MIRIAM annotation in SBML allows an automated identification of bio-
logical entities. A SBML model can be defined by the biological entities it uses
to describe a biological phenomenon. These two facts were combined to create
an automated method of finding similar models.

The datasource of the experiment was the complete BioModels database (25th

Figure 26: Clustered BioModels database, the rows represent models and the
columns MIRIAM annotations of model elements. Two clusters are outlined.
An enlarged view of the blue outlined cluster can be found in Figure 27 and a
green outlined cluster in Figure 28.

September release, curated models only). The semanticSBML annotation API
was used to extract the MIRIAM annotations from each model. A Python script
was written that generates a matrix of the occurrence of MIRIAM annotations

61

in each model. The matrix contains a 1 if an identifier occurs in a model and a
0 if not. The qualifiers of the annotations were ignored. This matrix was then
loaded into MATLAB [36] and clustered with the clustergram function which
uses a hierarchical clustering algorithm. The clustered matrix was visualized
and manually analyzed.

Multiple groups of models were recognized. Figure 26 shows an overview of
the complete database with two regions outlined in blue and green. In the out-
lined regions dense red areas can be recognized. The areas represent clusters
of MIRIAM annotations and models. The best observable cluster (blue out-
line, enlarged image in Figure 27) contains 5 models that describe the glycolysis
(BioModel 42 [37], 61 [13], 64 [12], 71 [38], 63 [39]). The second cluster that
can easily be recognized (green outline, enlarged image in Figure 28) contains
9 models that describe the reaction networks of the mitogen-activated protein
kinase (BioModel 9 [40], 11 [41], 14 [41], 10 [42],26 [43],28 [43],30 [43],27 [43] ,31
[43]). 5 of these 9 models originate from the same work.

Figure 27: Close-up of a cluster of models that describe the glycolysis and
similar biochemical networks. The dashed line indicates that part of the image
was removed.

Figure 28: Close-up of a cluster of models that describe reaction networks
around the mitogen-activated protein kinase. The dashed line indicates that
part of the image was removed.

62

The clustering is a demonstration of an alternative usage of the semanticSBML
annotation API. The experiment was conducted with rather vague assumptions.
To achieve better results only annotations with the qualifier “is” should be used.
Furthermore it is recommended to choose a more suiting clustering algorithm.
However even with these loose assumptions the clustering shows the potential of
an easy access to MIRIAM annotations. The clusters that were presented in this
experiment could easily be found by a manual comparison, but if the amount of
available models rises a manual search for similar models could become a very
time consuming task. The clustering of models deliver a great alternative to the
manual search for similar models.

4.2 Analysis of Merging Two Glycolysis Models

The example in the introduction Section 1 shows two models that described
similar aspects of the glycolysis of Saccharomyces cerevisiae. In this experiment
it is attempted to merge the glycolysis model of Hynne et al. [13] (BioModel
61) and the glycolysis model of Teusink et al. [12] (BioModel 64) with seman-
ticSBML. The merging process will be analyzed and discussed.

The merging starts with the comparison of elements and a creation of a ran-
domly merged model (see Section 3.3.2). The following table shows the result
of the comparison by listing the number of mergable elements by type for each
model and the number of elements that were recognized as duplicates.

Element Type Teusink Model Hynne Model Matching Elements
compartment 2 2 2
species 21 25 13
reaction 18 26 10
parameter 21 0 0

The first thing that can be recognized is that all matching elements have con-
flicting values.

Both compartments in each model were matched but contain conflicts in their
annotations. The annotation resource (URI and Identifier) in these annotation
are recognized as identical. However in the Hynne model the MIRIAM anno-
tations have the qualifier “is version of” while in the Teusink model annotates
the elements with the qualifier “is”. A matching of the elements was possible
since the merging algorithm allows the matching of elements with weak annota-
tions (see Section 3.3.2 and 3.3.4). The option is given to chosen which qualifier
each of the annotations should have in the merged model. The GUI marked
the qualifier “is” as preselected and since this qualifier was chooses it was only
needed to press the “resolve” push-button.

Out of the 13 matching species 11 of the species had conflicting initial con-
centrations. No other conflicts occurred in these 11 species. The conflicts were
resolved by choosing the preselected concentrations. The two remaining match-
ing elements had next to a conflicting initial concentration also a conflict in
their annotations.

63

The species “High energy phosphates” (the element names are used in this
description) of the Teusink model matched the species “ATP” in the Hynne
model. The analysis of the annotation conflict revealed that the element of
the Teusink model had two resource (KEGG compound identifier C00002 and
ChEBI identifier ChEBI:15422) with the qualifiers “has part” that were identical
to the resources in the Teusink model with the qualifiers “is”. On checking the
Teusink model a species “P” was found that would biologically match the species
“High energy phosphates” in the Hynne model. However the “P” species was
not MIRIAM annotated and was thus not recognized as a match. This problem
could be resolved by manually matching the two biologically matching species.
In the current state of semanticSBML the manual matching of elements does
not update depending elements and thus excluded this solution. As an alter-
native solution a user could add the correct annotations to the Hynne model
species “P” before the merging is performed. This conflict resolution bypasses
the species “ATP” since no similar species could be found in the Teusink model.
This is a hint that there are more severe problems between the concepts of the
two models.

The second pair of matching elements with conflicting annotations were the ele-
ments “Triose-phosphate” (Teusink model) and “Glyceraldehyde 3-phosphate”
(Hynne model). Similar to the problem in the paragraph above the Teusink
model had two annotations with the qualifier “has part” matching the annota-
tions with the qualifier “is” found in the Hynne model. In addition to that the
species “Triose-phosphate” showed that there was a second matching element
in the Hynne model “Dihydroxyacetone phosphate” (the generation of a list
of similar elements was described in Section 3.3.2). The hyperlinked external
resources reveal that the two species matching the “Triose-phosphate” are very
similar, and a further investigation in the linked resources show that there is a
reaction that converts the chemical compounds into one another. In the analy-
sis of the reactions of the models it shows that the conversion reaction is part
of the Hynne model but absent in the Teusink model. In the current version
of semanticSBML this problem is very difficult to solve since an aggregation /
splitting of elements is not possible.

The species that were not matched were analyzed. It was found that at least two
species were not recognized as matching due a problem in their annotations. The
species “Glucose 6 Phosphate” and “Fructose 6 Phosphate” (Teusink model)
should have matched with the species “Glucose-6-Phosphate” and “Fructose-6-
Phosphate” (Hynne model) however the match was missed because the Teusink
model annotated the elements with α-D-glucose 6-phosphate (ChEBI identifier
ChEBI:17665 and KEGG Compound identifier C00668) and β-D-Fructose 6-
phosphate (KEGG Compound identifier C05345) respectively while in Hynne
model the annotations referenced D-glucose 6-phosphate (ChEBI identifier
ChEBI:15954 and KEGG Compound identifier C00092) and
D-Fructose 6-phosphate (KEGG Compound identifier C00085). This problem
could be solved by extending the internal database to provide extended infor-
mation of object relations (in this case one object is the parent of the other
object).

64

All matching reactions had conflicting kinetic laws. The choice of the kinetic
law needed a deeper understanding of the models and therefore the the prese-
lected values were chosen.

Six of the ten matching reactions had conflicting reaction participants (reac-
tands, products). In four cases the participants were conflicting in the inclusion
and exclusion of ATP/ADP/P as reaction participant. In one case the already
mentioned problem of the splitting of the “Triose phosphate” species in the
Teusink model into two species in the Hynne model can be seen again. The
reaction “Aldolase” (same name for both models) has in the Teusink model one
product and in the Hynne model two products. The reaction participant conflict
of the matching “Glucose-6-Phosphate isomerase” (Teusink model) “Phospho-
glucoisomerase” (Hynne model) elements hints that the comparison step missed
biologically matching elements (in this case glucose-6-phosphate and fructose-6-
phosphate as discussed above). The further analysis of non matching reactions
revealed similar problems as the ones already mentioned.

It should be noted that there were no conflicts between units.

The analysis of the merging shows that a manual matching process is inevitable.
Furthermore it can be seen that an aggregation of elements is an interesting field
and that semanticSBML needs further improvement. The matching of weak an-
notations was proven to be usefull but it could also be seen that weak matches
deserve special attention in the merging process. The creation of the randomly
merged model revealed missed matches and thus also proved to be usefull. The
merging of the two models in this experiment might not be possible in the
current state of semanticSBML but it showed the strength and weaknesses. Ex-
periments like this will help in the improvement of semanticSBML and possibly
also other tools currently in development.

4.3 Merging of Respiratory Oscillation Model

To verify the functional efficiency of the new merge algorithm (see Section 3.3)
a model created by Wolf et al. [21] (BioModel 90) was used. The model con-
stits of an oscillating reaction network within a cell which is powered by two
extracellular substances. The model was merged with itself in a way that the
cell was duplicated while entities in the extracellular space were merged. In a
successful merging of the oscillation of the cell should be seen in both cells with
identical concentrations for each substance. A simulation was performed with
COPASI 4.2.23 (development) and the results were analyzed.

The model was prepared by creating a copy of the original model and renam-
ing the copied model. Since the manual modification of dependant elements is
currently not possible in semanticSBML the models were prepared in such a
way that the compare step (see Section 3.3.2) would directly yield the desired
matches. On this account all MIRIAM annotations except for those of extra-
cellular entities (including the compartment “extracellular space” itself) of the
copied model were removed. The removing of the annotations was done using
the semanticSBML annotation algorithm. The original model and the copy was

65

Figure 29: Simulation of the “Respiratory Oscillation Model” (Wolf et al. 2001)
in COPASI with four representative species that show oscillating concentrations
over time.

then merged. Since the models were identical (except for their MIRIAM anno-
tations) there were no conflicts in the matching elements and the model could
be merged directly.

The original model and the merged model were loaded successfully into
COPASI and a time course simulation was conducted for 100 steps. The con-
centrations values of the species were plotted against time. Figure 29 shows the
result of the simulation for the original model. Four non extracellular species
were selected that showed oscillating concentration values. The Figures 30 and
31 show the results of the simulation of the merged model. The same species
were selected to show the oscillation in the merged model. The concentration
values of each species in one of the cell compartments were exactly the same.
The concentration values in the merged model however differed from those in
the original model. This is due to the fact that the substance powering the
reactions in the cell were used up by two cells in the merged model. This means
that only half of the substance amount can be used by each cell.

The experiment proves the functional efficiency of the new merging algorithm
to create complete and simulatable models. The created model has little sci-
entific value in itself but it shows an alternative usage of semanticSBML than
merging different models into one model. Even though the merging algorithm is
still incomplete, a successful merging could be conducted using only functions
of semanticSBML.

66

Figure 30: Simulation of the merged respiratory oscillation model. Four oscil-
lating concentrations of selected species are shown. The values are identical to
those of the identical species in the second cell (see Figure 31).

5 Conclusion

In the first phase of the development a fully functional release of
semanticSBML was created. The release includes a clean installation of seman-
ticSBML. The GUI was completed by adding the creation and merging of SBML
models functions (Section 2.3). A CI was developed which includes a batch pro-
cessing ability that enables a user to automate the functions of semanticSBML
(Section 2.4). In addition to that a simplified API was introduced that enables
the usage of semanticSBML as a external programming library (Section 2.2).
The functions of semanticSBML in the first development phase are based on
SBMLmerge. In Section 2.3.2 the GUI to the SBMLmerge merging algorithm
was introduced and the problems of the old merge algorithm were shown. In
the second development phase this information was used for the creation of a
new merging algorithm.

The SBML MIRIAM annotation plays and important role in the merging of
SBML models and in the creation of models that should be released to the
public. On this account the MIRIAM annotation manipulation algorithm was
updated to fit the current status (Section 3.2). The update was achieved by
a complete rewrite of the annotation algorithms since the underlying library
libSBML added a native support for MIRIAM annotations as well as for the
fact that a more flexible design could be achieved. The new annotation algo-
rithms also introduced a new API and an improved GUI for the manipulation

67

Figure 31: Simulation of the merged respiratory oscillation model. Four oscil-
lating concentrations of selected species are shown. The values are identical to
those of the identical species in the first cell (see Figure 30).

of MIRIAM annotations. In an experiment the new annotation API was used
to cluster similar models in the BioModels database (Section 4.1).

Just like the annotation algorithm the merging algorithm was rewritten (Sec-
tion 3.3). A datastructure for the merging was created that has in its center
semanticSBMLs own abstraction of a systems biology model. For a number of
problems strategies were developed to enable a safe and userfriendly merging of
models. While the merging algorithm is not in a state that it can be released to
the public, it does deliver a strong framework that can be used to create function
merged models. Its problem resolution strategies were analyzed in an experi-
ment (Section 4.2) and in another experiment (Section 4.3) its functionality was
proven.

68

6 Further Work

The development of semanticSBML is not complete. The next important step
is the development of a computational lightweight method to update elements
after a manual manipulation of the model structure. The merging algorithm
has to be tested intensely and remaining problems have to be eliminated. The
testing will mostlikely reveal problems in the semantics of the created models
that have to be prevented by integrating further semantic checks. The GUI of
the merge algorithm has a couple of small problems e.g. missing scrollbars that
have to be corrected in order to provide a pleasant merging experience with
semanticSBML. The CI delivers a method of automating the merging process.
The CI is currently not working with the new merge algorithm. In the updating
process of the CI it is aspired to create a method for the documentation of the
merging process. This means that all operations that were conducted during
the merging process should be protocolled so that the merging process can be
repeated.

As it was mentioned in the discussion of the new annotation algorithm (Sec-
tion 3.2.7) the internal database needs to be restructured. In the current state
the functions of the internal database to retrieve information of the identity of
different identifiers needs improvement. As it was shown in the experiment in
Section 4.2 semantic information of identifier relations can improve the merging
process. String representations of annotations are a good aide in the identifica-
tion of entities. An extension of the amount of data (while retaining a fast data
access) would help the identification of entities by a user and thus improve the
the usage of semanticSBML.

The semanticSBML project is now in its third year of development and has
improved the program greatly. It is my hope that the development can continue
in the future to create a software that will aide the systems biology community
to better understand biological life.

69

A Frequently used Terms

The following list explains special terms that are used in this thesis.

dictionary
Hashtable implementation in the Python programming language.

module
A module represents a file in Python. A module usually contains classes
but it can also contain functions directly.

function
A subroutine, also known as method, procedure, or subprogram.

init / new
A special method used to initialize classes, similar to a constructor in other
programming languages

biological entity
A biological object e.g., the chemical compound ATP, the compartment
cytosol, the reaction that converts Glucose into Glucose-6-phosphate.

qualifier
A qualifier defines the relationship (e.g., “has part”, “is version of”) be-
tween two objects e.g., the relationship between a biological entity (ATP)
and a database entry (Reactome entry for ATP). A detailed description
of qualifiers can be found in Section 3.2.1.

widget
A graphical element e.g., a push putton.

to patch
Correcting of a flawed algorithm.

to wrap
Creating a function that has the same input and output of another func-
tion.

to raise
Raising an exception is also known as throwing an exception.

signal - slot
Qt concept of executing functions on (user generated) events e.g., the
execution of the function that creates a pop-up window on the pressing of
a push-button.

to port
Updating of interface functions of an integrated library. For example the
function setCaption in Qt3/PyPt3 was renamed to setWindowTitle in
Qt4/PyQt3.

serialization / deserialization
In the context of this thesis it is the process of writing an object / class
instance to the harddrive (serialization) and then creating the object /
class instance again from the file on the harddrive (deserialization).

70

B SBML base elements

The SBML format is a hierarchic format that has in its first level a row of element
types that represent the main concepts of the SBML model. These elements are
referred to as base elements or libSBML elements in this thesis. In libSBML
the base elements can be accessed from the model instance with the listOf*
functions. In this thesis the SBML elements are written in a slanted font. Since
the names of the elements also represent biological concepts the element and
the concept can not always be differentiated. The following description gives
and overview of the most important SBML base elements used in this thesis. A
full description can be found in the SBML specification [10].

species
The species element represents a physical entity e.g., a chemical compound
like ATP or a protein or protein complex.

compartment
The compartment represents a bounded space in which species are located
e.g. the nucleus, the cellwall or the cytosol

reaction
The reaction element represents a transformation, transport or binding
process, typically a chemical reaction, that can change the quantity of one
or more species. The reaction contains a mathematical statement (the
kinetic law).

parameter
Not all symbols used in mathematical statements in SBML must be defined
by e.g. species, compartment. The parameter defines a symbol that is
associated with a values. However in different models a parameter can be
represented by a species or compartment and vice versa.

initial assignment
An assignment of an initial value of an entity (e.g., species, compartment,
parameter) can be archived by either setting the value attribute of the
element or by using a mathematical expression (the initial assignment).
An initial assignment always refers to another element.

rule
The libSBML element rule contains a mathematical statement that is used
to define dynamic properties of an entities (e.g., species,
compartment, libSBML parameter) value. There are three different types
of rules: algebraic rule, rate rule and assignment rule. The rate rule and
assignment rule always refer to another element. The algebraic rule rep-
resents a mathematical statement that has the general from 0 = f(x) and
can thus refer to many elements.

71

References

[1] Snoep, J. L., Bruggeman, F., Olivier, B. G. & Westerhoff, H. V. Towards
building the silicon cell: a modular approach. Biosystems 83, 207–216
(2006). URL http://dx.doi.org/10.1016/j.biosystems.2005.07.006.

[2] Nielsen, P. F. & Halstead, M. D. The evolution of CellML.
Conf Proc IEEE Eng Med Biol Soc 7, 5411–5414 (2004). URL
http://dx.doi.org/10.1109/IEMBS.2004.1404512.

[3] Hermjakob, H. et al. The HUPO PSI’s molecular interaction
format–a community standard for the representation of protein in-
teraction data. Nat Biotechnol 22, 177–183 (2004). URL
http://dx.doi.org/10.1038/nbt926.

[4] Luciano, J. S. PAX of mind for pathway re-
searchers. Drug Discov Today 10, 937–942 (2005). URL
http://dx.doi.org/10.1016/S1359-6446(05)03501-4.

[5] Hucka, M. et al. The systems biology markup language (sbml): a medium
for representation and exchange of biochemical network models. Bioinfor-
matics 19, 524–531 (2003).

[6] Strmbck, L. & Lambrix, P. Representations of molecular pathways: an eval-
uation of sbml, psi mi and biopax. Bioinformatics 21, 4401–4407 (2005).
URL http://dx.doi.org/10.1093/bioinformatics/bti718.

[7] Home site for the systems biology markup language (sbml) (2007). URL
http://sbml.org/ (retrieved December 2007).

[8] Extensible markup language (xml). URL http://www.w3.org/XML/.

[9] Finney, A. & Hucka, M. Systems biology markup language: Level
2 and beyond. Biochem Soc Trans 31, 1472–1473 (2003). URL
http://dx.doi.org/10.1042/.

[10] Hucka, M., Finney, A., Hoops, S., Keating, S. & Novre, N. L. Systems bi-
ology markup language (SBML) level 2: Structures and facilities for model
definitions. http://sbml.org/specifications/sbml-level-2/version-3/release-
2/sbml-level-2-version-3-rel-2.pdf.

[11] Novre, N. L. et al. Minimum information requested in the annotation of
biochemical models (miriam). Nat Biotechnol 23, 1509–1515 (2005). URL
http://dx.doi.org/10.1038/nbt1156.

[12] Teusink, B. et al. Can yeast glycolysis be understood in terms of in vitro
kinetics of the constituent enzymes? testing biochemistry. Eur J Biochem
267, 5313–5329 (2000).

[13] Hynne, F., Dan, S. & Srensen, P. G. Full-scale model of glycolysis in
saccharomyces cerevisiae. Biophys Chem 94, 121–163 (2001).

[14] Schulz, M., Uhlendorf, J., Klipp, E. & Liebermeister, W. SBMLmerge, a
system for combining biochemical network models. Genome Inform 17,
62–71 (2006).

72

[15] Sanner, M. F. Python: a programming language for software integration
and development. J Mol Graph Model 17, 57–61 (1999).

[16] Trolltech. Qt: Cross-platform rich client development framework. URL
http://trolltech.com/products/qt/.

[17] Karp, P. D. et al. Expansion of the BioCyc collection of pathway/genome
databases to 160 genomes. Nucleic Acids Res 33, 6083–6089 (2005). URL
http://dx.doi.org/10.1093/nar/gki892.

[18] Vastrik, I. et al. Reactome: a knowledge base of biologic
pathways and processes. Genome Biol 8, R39 (2007). URL
http://dx.doi.org/10.1186/gb-2007-8-3-r39.

[19] Snoep, J. L. & Olivier, B. G. JWS online cellular systems modelling and
microbiology. Microbiology 149, 3045–3047 (2003).

[20] Novre, N. L. et al. BioModels database: a free, centralized database
of curated, published, quantitative kinetic models of biochemical and
cellular systems. Nucleic Acids Res 34, D689–D691 (2006). URL
http://dx.doi.org/10.1093/nar/gkj092.

[21] Wolf, J., Sohn, H., Heinrich, R. & Kuriyama, H. Mathematical analysis of
a mechanism for autonomous metabolic oscillations in continuous culture
of saccharomyces cerevisiae. FEBS Lett 499, 230–234 (2001).

[22] Riverbank. PyQt: Python bindings for trolltech’s qt application framework.
URL http://www.riverbankcomputing.co.uk/pyqt/.

[23] Epydoc: Automatic API documentation generation for python. URL
http://epydoc.sourceforge.net/.

[24] Kanehisa, M. The KEGG database. Novartis Found Symp 247, 91–101;
discussion 101–3, 119–28, 244–52 (2002).

[25] Ashburner, M. et al. Gene ontology: tool for the unification of biol-
ogy. the gene ontology consortium. Nat Genet 25, 25–29 (2000). URL
http://dx.doi.org/10.1038/75556.

[26] Easy-Software-Products. EPM: ESP package manager. URL
http://www.epmhome.org/.

[27] Funahashi, A. & Kitano, H. CellDesigner: a process diagram editor for
gene-regulatory and biochemical networks. BioSilico 1, 159162 (2003).

[28] RDF/XML syntax specification (revised) (2004). URL
http://www.w3.org/TR/rdf-syntax-grammar/.

[29] Berners-Lee, T., Fielding, R. & Masinter, L. Uni-
form resource identifier (URI): Generic syntax. URL
http://www.gbiv.com/protocols/uri/rfc/rfc3986.html.

[30] Berners-Lee, T. Uniform resource locators (URL): a syntax for the
expression of access information of objects on the network. URL
http://www.w3.org/Addressing/URL/url-spec.txt.

73

[31] The BioModels qualifiers. URL http://www.biomodels.net/index.php?s=Qualifiers
(retrieved December 2007).

[32] Degtyarenko, K. et al. ChEBI: a database and ontology for chemical entities
of biological interest. Nucleic Acids Res 36, D344–D350 (2008). URL
http://dx.doi.org/10.1093/nar/gkm791.

[33] Huffenberger, M. A. & Wigington, R. L. Chemical abstracts service ap-
proach to management of large data bases. J Chem Inf Comput Sci 15,
43–47 (1975).

[34] 3DMET: A database of three-dimensional structures of natural metabolites.
URL http://www.3dmet.dna.affrc.go.jp/.

[35] Hoops, S. et al. COPASI–a COmplex PAthway SIm-
ulator. Bioinformatics 22, 3067–3074 (2006). URL
http://dx.doi.org/10.1093/bioinformatics/btl485.

[36] The MathWorks. MATLAB r2007a. URL
http://www.mathworks.com/products/matlab/.

[37] Nielsen, K., Srensen, P. G., Hynne, F. & Busse, H. G. Sustained oscillations
in glycolysis: an experimental and theoretical study of chaotic and complex
periodic behavior and of quenching of simple oscillations. Biophys Chem
72, 49–62 (1998).

[38] Helfert, S., Estvez, A. M., Bakker, B., Michels, P. & Clayton, C. Roles of
triosephosphate isomerase and aerobic metabolism in trypanosoma brucei.
Biochem J 357, 117–125 (2001).

[39] Galazzo, J. L. & Bailey, J. E. Fermentation pathway kinetics and metabolic
flux control in suspended and immobilized saccharomyces cerevisiae. En-
zyme and Microbial Technology 12, 162–172 (1990).

[40] Huang, C. Y. & Ferrell, J. E. Ultrasensitivity in the mitogen-activated
protein kinase cascade. Proc Natl Acad Sci U S A 93, 10078–10083 (1996).

[41] Levchenko, A., Bruck, J. & Sternberg, P. W. Scaffold proteins may bipha-
sically affect the levels of mitogen-activated protein kinase signaling and
reduce its threshold properties. Proc Natl Acad Sci U S A 97, 5818–5823
(2000).

[42] Kholodenko, B. N. Negative feedback and ultrasensitivity can bring
about oscillations in the mitogen-activated protein kinase cascades. Eur
J Biochem 267, 1583–1588 (2000).

[43] Markevich, N. I., Hoek, J. B. & Kholodenko, B. N. Signaling
switches and bistability arising from multisite phosphorylation in pro-
tein kinase cascades. J Cell Biol 164, 353–359 (2004). URL
http://dx.doi.org/10.1083/jcb.200308060.

74

