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Abstract

The recent sequencing of the genome of the sea urchin Strongylocentrotus purpuratus

opens up exciting perspectives for scientists. One of the most exciting and also most
challenging goals is to fully understand the mechanisms driving the development of a
fertilized egg to an adult organism.

This understanding is achieved by combining experimental and computational meth-
ods to establish and validate hypotheses about the developmental process.

In this work, I describe the design of mathematical models of the Sea Urchin gene
regulatory network that controls endoderm and mesoderm formation, a key step in em-
bryonic development. The models are loosely based on a network proposed by Davidson
et al. and the associated data. They are validated by comparison to various data.

Validation of the constructed models clearly shows that the models suffer from a lack
of data. Especially the model based on the proposed network is unable to reproduce the
experimental data.

The validation of the models employs a novel approach using sampled parameters to
infer features of large ODE models with unknown kinetic parameters.
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Genes/Proteins:

APC SpAPC, a hypothesized APC homologue, part of the canonical Wnt-pathway

Axin The (hypothesized) SpAxin homologue of LvAxin described in [81]

β-catenin Spβ-catenin. Lvβ-catenin is described in [59]

Blimp1 SpBlimp1 as described in [54]

Bra SpBrachyury,

Brn SpBrn1/2/4 as described in [86]

Dishevelled The (hypothesized) SpDishevelled homologue of LvDsh described in [81]

Dkk SpDickkopf

Eve SpEve

FoxA SpFoxA as described in [65]

Frizzled SpFrizzled, a hypothesized frizzled homologue that is part of the canonical Wnt-
pathway

GataE SpGataE as described in [51]

Groucho The (hypothesized) S.pur. homologue of LvGroucho described in [68]

GSK3β The (hypothesized) SpGSK3β homologue of LvGSK3β described in [81]

Hox SpHox11/13b as described in [37]

Pmar1 SpPmar1 as described in [64]

Otx SpOtxβ1/2 as described in [52]

TCF SpTCF/Lef as described in [39]

Wnt SpWnt8 as described in [82]

Methods:

KO Knock-out

MASO Morpholino-substituted antisense oligo nucleotide

QPCR Quantitative real-time ploymerase chain reaction

WMISH Whole mount in situ hybridization

Cell Types:

PMC Primary mesenchyme cells

veg1 Vegetal Layer 1



veg2 Vegetal Layer 2

Miscellaneous:

CV coefficient of variance

GRN Gene regulatory network

hpf Hours post fertilization

M-C Monte-Carlo Methods

mRNA messenger RNA

ODE Ordinary differential equations

SBML Systems Biology Markup Language

S.pur. The sea urchin Strongylocentrotus purpuratus

TF Transcription Factor
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1 Introduction

The sea urchin Strongylocentrotus purpuratus (S.pur.) is a model organism for develop-
ment [21]. With the recent finishing of the sequencing of the genome of S.pur. [74], a
large amount of new data has become available. Using computational techniques to guide
experimental research, knowledge of the mechanisms controlling and regulating develop-
ment of the sea urchin will expand rapidly. One of the most compelling tasks here is
to design a mathematical model representing our knowledge of these mechanisms. Using
such a model, theories and assumptions concerning developmental mechanisms can be
verified or falsified and revised accordingly.

To develop from a fertilized egg into an adult organism, the cells of the developing
organism are bound to cleave and differentiate in a determined way. This determined way
of cleavage and differentiation is carried out by a complex program of gene expression
and cell-cell signaling that must be encoded in the fertilized egg already, i.e. its genome.
Maternal transcription factors (TFs) drive the transcription of their target genes in the
embryo which cause downstream parts of the developmental program to be activated [20].
The establishment of gradients of secreted molecules along different axes of the growing
embryo or among neighboring cells leads to the specification of certain cell types, i.e. the
activation of different developmental subprograms [22].

Developmental changes, thus, not only occur inside single cells but also between cells
and within groups of cells. Among these macrocellular changes are morphological events,
such as gastrulation [19].

Constructing a mathematical model containing all mechanisms that partake in the
development from fertilized egg to at least a larval stage is a more than challenging
task today. The data needed to construct such a model is still out of reach while the
computational methods to tackle a model of such a - necessarily - gigantic, multi-cellular
growing system are also unavailable.

A full model of the embryonic development capable of reproducing the major devel-
opmental events needs to be comprised of multiple cells, enabling the establishment of
gradients as well as morphological changes to occur. An understanding of the processes
in the single cell - which ultimately guide the large-scale processes - is inevitable before
a full model can be constructed.

Using a model comprised of only one cell to study the small-scale mechanisms con-
trolling development poses other problems. Morphological changes and their effects on
molecule gradients or neighboring cells can hardly be taken into account. Molecule gradi-
ents must be artificially constructed and adapted to fit the cell type and developmental
stage studied. Nevertheless, using a single cell system to model regulatory processes will
provide knowledge necessary to construct larger models.

The need to study these small components of the developmental program using the
knowledge we have is best illustrated by a metaphor. If one is to interpret the research on
single molecules and interactions of single molecules as taking a car apart and analyzing
the single screws and bolts, systems biology is the attempt to reassemble the car using the
knowledge of the single components. In this sense, I would like to interpret the modeling
of single-cell systems as (theoretical) studies on the sparkplugs or cylinders in isolation
before reassembling the entire engine. While a sparkplug or a cylinder cannot work in its
intended way in isolation, assembling an engine without at least approximate knowledge
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of the interplay of the parts and groups of parts will most certainly not result in a working
engine.

An elaborate attempt to reconstruct the developmental program from known data is
the ’Sea Urchin Endomesoderm Network Model’ by Davidson et al [20]. This network
graphically displays the presumed links between genes and their respective TFs in three
different cell types. It also displays a few interactions between cells. This network only
displays the topology of the mathematical model needed to infer the validity of the
underlying assumptions.

In this work, I attempt to infer the validity of this network by transferring it into
a mathematical model of one cell, modeling different cell types by changes in artificial
inputs. These differences are used instead of molecule gradients or other yet unknown
components of the full system and will serve the emergence of three different expres-
sion patterns from one model without changing either the character or strength of any
interaction.

By comparison of in-silico and in-vivo experiments, the validity of the network is
estimated and new experimental approaches can be proposed.

The experimental data underlying this network is rather sparse. For large parts of the
model, temporal or spatial expression patterns are not published and TF-gene interactions
have only been validated for a few genes [20]. This lack of experimental data restricts the
validity of the network itself as well as the validity of the mathematical model.

To construct a mathematical model of high validity, I designed a second model loosely
based on the proposed network scheme. This model includes only a small set of well-
characterized genes from the above network and data that has not yet been incorporated
in the ’Endomesoderm Network’.

The advantage of this small model is not only its manageable size but also the choice of
genes: most of them are vital to the development of the sea urchin [22]. The manageable
size allows a faster refinement and correction of the model, while the choice of genes
implies a fundamental relevancy of the findings from this small model.

As mentioned, the experimental data underlying the network - and thus the derived
models - is very sparse. Therefore, nearly all parameters required for the constructed
models had to be guessed or estimated. I present one approach for estimating the param-
eters of the small model and another approach for the analysis of the large model using
sampled parameters.

This work aims at amplifying our knowledge and understanding of the development
of the sea urchin by critical evaluation of the assumptions made so far. Understanding
the development of S.pur. is not a trivial goal. As echinoderm, it belongs to the deuteros-
tomes and thus shares certain features with the chordates as well. Because embryonic
development is one of the most basic but at the same time one of the most vital mech-
anisms, the understanding of the developmental mechanisms of S.pur. must not be seen
isolated but as one step to the understanding of chordate development [21].
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2 Background

2.1 Sea Urchins and Development

The following part is designated to give a short introduction to the biological backgrounds
of this thesis. It is mainly based on reference [33].

2.1.1 The Sea Urchin as Model Organism

Elementary insights in the mechanisms underlying development have been gathered from
the study of sea urchins. As early as 1876 the process of fertilization of a sea urchin egg
was shown [36]. Further studies on the fundamentals of development include [38, 26, 10].

Figure 1: Phylogenetic tree depicting echinoderms and chordates, reproduced from [33]

The choice of the sea urchin as a model system for embryonic development is not
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exclusively based on historical reasons. Another reason is the phylogenetic relationship
between sea urchins and humans, as outlined in Fig.1. As an echinoderm, the sea urchin
belongs to the deuterostomes, as do the chordates. The evolutionary distance between
chordates and sea urchins is therefore less than that between chordates and most other
model organisms like worms or flies. Although chordates are far more complex than
echinoderms, both groups of species share certain features and, of utmost interest here,
are similar in many aspects of their embryonic development.

Based on these similarities, the study of the development of the echinoderms will shed
light on the development of chordates and, ultimatively, humans as well. This includes
the definition of a deutorostome and chordate ”tool kit”, the set of conserved genes and
interactions common to these sets of species [22].

Apart from the reasons mentioned above, there are practical advantages in using the
sea urchin for experimental research. Sea urchins are available in large numbers and easy
to keep in the laboratory. Embryos are easy to handle and ideal for manipulation and
staining. The manipulation of sea urchin embryos is possible in a variety of ways [27] and
gene transfer into the eggs is especially simple [21].

2.1.2 Embryogenesis of the Sea Urchin

The sea urchin develops from the fertilized egg into an embryo that further develops into
a larvae from which the adult animal is formed. In this work, I focus on the embryonic
development from the fertilized egg to about 40 hours post fertilization (hpf). During
this time, the embryo undergoes a series of morphological changes and the foundations
of most of the adult animal’s cell types and tissues are defined by the end of this period.

Figure 2: Overview of the embryonic development of the sea urchin, reproduced from [33], from fertilized egg (A), early
cleavages (B,C,D,E) to blastula (F/G). Gastrulation movements are shown in (H, I, J) and later development to larvae
(K,L,M).

The first two cleavages of the fertilized egg are synchronously as well in regard to
cell size as in regard to cleavage intervals among cells. Within the next cleavages, cells
of different size are formed, roughly outlining later embryonic territories. A schematic
overview of these processes is shown in Fig.2.

11



Experimental [16, 58] and computational [12] studies suggest that the different size
of the resulting cells cause - among other mechanisms - an asynchronization of cleavage
intervals.

In the 128 cell blastula stage, which arises about 6.5 hpf in S.pur., all future territories
of the developing embryo are outlined: oral and aboral ectoderm, the vegetal plate (veg1,
veg2), primary mesenchyme cells (PMC) and small micromeres.

Figure 3: Development of the sea urchin from early to late Gastrula, reproduced from [53]. Dark purple depicts the small
micromere precursors of mesoderm, red are PMC cells, light purple is veg2 mesoderm, blue veg2 endoderm and green and
yellow depict ectoderm territories. PMC ingression is visible in the second row, archenteron formation 30 to 56 hpf .

By the end of the blastula stage, Gastrulation begins with the ingression of the PMC
cells. After the PMC cells form a ring along the vegetal side of the embryo, cells from the
vegetal plate invaginate to form the archenteron. The archenteron is elongated until it
reaches and penetrates the ectodermal side of the embryo. Further morphological changes
then form the pluteus larvae. These morphological changes are sketched in Fig.3.

Although the sequence of these events is similar among all indirect developing sea
urchins, the exact time at which the events occur varies between species.

The number of cells is grows throughout the developmental phases of the embryo even
while morphological changes occur [57].
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2.1.3 Developmental Mechanisms

General mechanisms of gene regulation have been identified for various scenarios [66].
General developmental mechanisms of gene regulation might thus also be identified. The
identification of those general mechanisms would greatly ease the construction of devel-
opmental gene regulatory networks (GRNs).

Among these mechanisms are certainly asymmetric cell divisions that change the
nuclear complement of TFs and extracellular gradients among embryonic axes [63]. These
mechanisms are easy to observe and then link to developmental functions. For example,
if a gene’s product is observed to constitute a gradient in the embryo, it is likely to be
important for developmental processes and targets of this protein should be analyzed for
possible developmental function.

Identifying regulatory mechanisms common to families of networks is done by topo-
logical analysis. One approach to classify families of GRNs is to measure transcription
cascade lengths of sequential regulation [70]. It has been shown that developmental GRNs
generally exhibit a greater cascade length than sensory GRNs (i.e. GRNs that mediate
the transcriptional response of a cell to a given outside stimulus) [70]. Furthermore, indi-
cations were found that cascade length is directly correlated to response delay by about
one cell cycle round of response time per cascade step [70]. This finding is of more general
nature and is not necessarily helpful for the design of individual developmental GRNs but
might prove powerful when attempting to use one known developmental GRN to estab-
lish another, unknown developmental GRN. Another approach to characterize networks
based on topological features is given in section 2.2.1.

A very specific and yet general study was performed, comparing and analyzing the
design of known signaling pathways regulating development [6]. In this study, it has
been shown that these developmental signaling pathways commonly exhibit three mech-
anisms: activator insufficiency, cooperative activation and default repression. The results
are summarized in Fig.4.

Activator insufficiency describes the fact that signaling activity alone is often insuffi-
cient to activate target genes. Activation of target genes can only occur when a locally
present activatory TF binds to the target gene’s regulatory unit in addition to the sig-
naling activity mediating TF (cooperative activation). To minimize ectopic expression
caused by local activators in absence of signaling activity, default repression is employed.
This default repression is often mediated by the same TF as the positive signaling activity.
For an example of those habits, see the Wnt-pathway in section 4.1.1.

2.1.4 Experimental Methods

Studying the development of the sea urchin, diverse experimental techniques have been
applied to this model organism. In the following section, I give a short introduction to
the experimental methods that were used to obtain the data underlying the modeling of
sea urchin development.

Information inevitable to the design of regulatory networks are temporal expression
profiles, i.e. measuring transcript numbers for a given gene at different time points. To
measure transcript numbers, mRNA is isolated from an organism at the timepoints for
which transcription numbers are to be determined. These samples are amplified via QPCR
(quantitative real-time PCR) until a certain threshold is reached. By comparison to se-
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quences for which transcript number is known (usually Ubiquitin), the transcript number
in question is determined. For details of the method, see [37].

Figure 4: Common habits of developmental
signaling pathways, reproduced from [6]

To this date, transcript numbers of genes in the
sea urchin embryo are measured per embryo. Thus
the number of transcripts in all territories is mea-
sured. Additionally, transcript numbers are not di-
rectly linked to activation or inactivation of transcrip-
tion since transcript numbers are also regulated via
their stability as reviewed in [23].

Besides the temporal expression, knowledge of the
spatiotemporal expression pattern (or where a gene
is expressed at what time) is of elementary impor-
tance to the study of regulatory systems. To detect
spatial expression, embryos are stained using whole
mount in situ hybridization (WMISH) as outlined in
[62]. WMISH produces a staining that is specific to a
certain sequence and thus allows to infer the territory
of expression of a certain gene at the developmental
time point at which the embryo was fixed. In contrast
to the method described above, WMISH can only gen-
erate qualitative expression data.

To infer regulatory linkages between TFs, a widely
used practise is to perturb the expression of one TF
and compare the transcript numbers of genes likely
to be effected under this perturbation with transcript

numbers determined in unperturbed embryos.
The perturbation can be of various kinds: A gene can be knocked out or the translation

of a gene is repressed by injection of antisense morpholino oligonucleotides to reduce the
effect of the perturbed gene. The effect of a TF on its target genes is forced negative by
fusion with the Engrailed repressor domain. The amount of available mRNA of a given
gene can be increased by injection of extra mRNA to cause ectopic expression. For details
on these methods and their application to the sea urchin, see [27].

As described above, quantitative temporal expression data is determined for the entire
embryo. The qualitative spatiotemporal expression data specifies the territory of the
embryo in which a gene is expressed at a given timepoint. By combining this information,
one can infer the quantitative temporal expression profile of a certain gene in the cells of
a given territory. The only additional knowledge needed is the number of cells comprising
the embryonic territories of interest at the measured time points.

For the early embryo, this data is available in the form of fate maps and cell counts.
These are based on studies of the cell cycle and unequal cleavage events in the early sea
urchin embryo [19, 77, 58, 16]. Later studies employ stereo imaging and 3d-reconstruction
to infer cell numbers for later stages of development [75, 57].
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2.2 Mathematical Modeling of Gene Regulatory Networks

Mathematical models allow for the formalization of hypotheses about a system and to
validate these hypotheses. Using an appropriate formalism, nearly all systems imagineable
can be modelled. Using computational tools, the behavior of such a model is tangible to
simulation and analysis.

In molecular biology, models are used to validate hypotheses arising from experimental
data. The model represents the current understanding of the studied system and by
comparison between simulation and experimental results, the model is revised until it
satisfactory reproduces the experimental data, as outlined in Fig.5 [43].

Figure 5: Analysis of biological models, according to [43]

Besides simulating the behavior of the model, the model can be analyzed to determine
structural and dynamic properties. The methods applicable for simulation and analysis
of a model depend on the choice of the modeling formalism. The review by Hidde de
Jong [43] gives a very good overview of the different methods. Here, I will give a short
introduction to the methods used in this work.

2.2.1 Directed Graphs

A directed graph G consists of a set of nodes V and a set of edges E, where an edge e is
a tuple i, j, with i, j ∈ V where i denotes the source and j denotes the target of e.

The analysis of topological features of a system is one application to directed graphs.
Determining the connectivity distribution of a graph enables a classification of the net-
work. Families of networks with a similar connectivity distribution exhibit similar prop-
erties.

Most biological networks belong to the so called scale-free networks. Characteristic
of scale-free networks is the existence of a large number of edges with a low connectiv-
ity contrasted by the existence of a few highly connected nodes resulting in a typical
connectivity distribution. The probability P (k) of a node having k incoming or outgoing
edges is roughly proportional to k−γ . A scale free topology gives rise to a high robustness
against random deletion of nodes at the cost of a low robustness against directed deletion
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of the highly connected nodes [5]. As most biological mechanisms rely on a high stability
against random perturbations (arising, for example, from random mutations), the scale
free network is the expected type of network of a GRN.

Extracting and analyzing network motifs is another powerful tool to characterize a
directed graph. Network motifs are significant patterns of connection, as exemplified in
Fig.6.

Figure 6: All possible three-node Network Motifs of directed graphs, reproduced from [60]

Certain network motifs can be linked to certain functions, i.e. the feed forward loop
is a common motif in regulatory sysems. Networks can be characterized by comparing
the accumulation of different network motifs in one graph to the expected accumulation
of these motifs in a random graph of comparable size and connectivity. This comparison
often employs z-scores. Using the z-scores of different motifs, it has been shown that
certain networks exhibit characteristic patterns of z-scores [60].

Given a directed graph, the program mfinder [44] detects network motifs and calculates
z-scores.

Further studies in this field might reveal why certain types of networks exhibit distinct
patterns of network motif accumulation as well as dynamic properties of certain motif
assemblies.

2.2.2 Boolean Models

A Boolean model consists of a set X of Boolean variables and a set of Boolean functions
B. The state of a variable xi ∈ X at time point t + 1 is determined by evaluating the
corresponding function bi(t). The state S of a Boolean model at time point t is the vector
consisting of xi(t) for all xi in X [43]. An example of a simple Boolean model is given in
Fig.7.

To construct a Boolean model of a GRN, the genes are expressed as Boolean variables
and the interactions between genes are expressed in terms of Boolean functions. This
approach assumes that a gene has exactly two states of activity. It must either be active
or inactive, a strong simplification of reality [43].

In spite of this simplification, it is possible to identify steady states or oscillations
from Boolean models and perform basic simulations of the system on them [43]. Boolean
models have the advantage of requiring only very basic knowledge of the system compared
to other modeling approaches. They are therefore useful as schemes for more detailed
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models, with which the basic topology and nature of interactions in the model can be
tested.

Figure 7: Example of a Boolean model of a GRN consisting of a gene
coding for an activatory TF A, a gene coding for an inhibitory TF I

and an effected gene G. Shown are the topology of the network (a),
the Boolean formula controlling the state of G (b) and a truth table
with the state of G relative to the states of its inputs A and I. The
graphic representation of the network topology was constructed using
BioTapestry software. [56]

Extensions and variations of
Boolean models, such as generalized
logical models, have many distin-
guished applications and allow for a
wide range of analysis, such as model
checking [43].

2.2.3 Ordinary Differential Equa-

tion Models

In ordinary differential equation
(ODE) models, the concentrations
of the substances are modeled as
time-dependent variables from the
realm of the positive real num-
bers. A variable’s concentration x

at time t is determined by an ini-
tial concentration and a differen-
tial equation of the form dxi

dt
=

f(x1, x2, ...xn, p1, p2, ...pn, t), where x1, x2, ...xn is the set of all variables and p1, p2, ...pn is
the set of all parameters [43]. f(x) usually consists of one or more synthesis terms and
one or more degradation terms. These synthesis and degradation terms are generally rate
laws that determine the speed of the modeled reaction. An example of a simple ODE
model is given in Fig.8.

Once a vector of initial concentrations is chosen and all necessary parameters are
identified, it is possible to compute a numerical simulation. Computational tools for the
design and numerical simulation of ODE models, such as CellDesigner [31], are widely
available. Due to this availability and the wide range of model analysis applicable to ODE
models, this is a very popular modeling formalism, although most properties of models
are determinable using simpler modeling formalisms.

In general, not all parameters are available from literature. Thus, parameters are
often chosen in a way that enables the model to reproduce the given experimental data.
Depending on the available data, parameters can be estimated using computational tools
like SBML-PET [87].

Once the parameter values are obtained, it is possible to simulate and analyze an ODE
model. Stable states of the system can be determined and their stability is accessible [43].
Metabolic control theory contains a set of tools to analyze the sensitivity of steady states
to parameter or concentration changes [45].

2.2.4 Parameter Estimation

With the emergence of systems biology, parameter estimation is growing in importance
as well: For an ODE model, a great number of parameters is required. These param-
eters are - theoretically - obtained from experimental biology. In practice, modeling of
biological processes aims at improving the understanding of these processes. Therefore,
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Figure 8: Graphical representation of an ODE model containing different compartments. Arrows in the topology represent
reactions. Arrows crossing boundaries indicate transport reactions. Lines with circles represent catalysis. NAs and AAs are
the pools of single nucleic and amino acids. The network contains a positive feedback loop. Notice that just a little initial
amount of the TF results in a stable steady state with high protein and mRNA concentration. The model was designed
and simulated using CellDesigner3.2 [31].
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the mechanisms underlying the model are not fully understood. Thus, some parameters
are unknown. Some of the parameters necessary are impossible to measure using todays
experimental methods. Thus, the need to estimate parameters is growing as the number
of models is increasing.

The approach I employ here is to estimate the unknown parameters in such a way that
the simulation results resemble a set of experimental data. SBML-PET [87] implements
this approach using an evolutionary algorithm based on Stochastic Ranking Evolution
Strategy [42].

2.3 Automatic Model Reconstruction from Experimental Data

To construct a mathematical model of a system, the experimental data thereof has to be
evaluated and analyzed. When the systems in question exhibit enough similarity and the
underlying mechanisms are thoroughly understood, this evaluation and analysis of the
experimental data can be automated.

An advantage of this automation would be that the amount of time and labor to
construct a mathematical model would be greatly reduced. Another advantage would be
that the resulting models could be directly compared and personal bias of a researcher
cannot affect the resulting model.

On the other hand, automatically inferring a mathematical model directly from ex-
perimental data demands detailed and standardized available data, exact knowledge of
all possible underlying mechanisms and a sophisticated algorithm.

Creating an algorithm that can produce a sensible mathematical model even from
sparse data of a GRN would thus revolutionize the way mathematical models of GRNs
are constructed.

Although much reseach is done on that topic (see, for example [46]) and various
approaches have been proposed, the anticipated revolution has not taken place yet due
to the complexity of the task.

Altogether, the computational tools available combined with the experimental data
can aid in the construction of a mathematical model, for example predict TF-binding sites
from sequence data. But the complete task of designing and refining the mathematical
model cannot - yet - be fully automated.

2.4 Monte-Carlo Methods

Monte-Carlo methods are based on the law of great numbers: Repeating a calculation
that involves a great amount of freedom with a great number of different parameters, the
calculation is assumed to approximate the exact behavior that was previously inaccessible
[30].

If a model of a biochemical system can be assumed to be relatively robust to parameter
changes and parameters are sampled from a reasonably applicable random distribution,
key features of the system are expected to be (qualitatively) conserved when enough
different parameter sets are used.

These, necessarily robust, features are distinguishable from dynamical features that
heavily depend on parameters once the parameter values are obtained.
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Estimating parameters is based on the assumption that the correct parameters are
a prerequisite for the model to exhibit the expected behavior. Many biological networks
exhibit a strong robustness to changes of parameters [18, 4], indicating that the system
itself is rather indifferent towards parameter changes within a reasonable range.

These findings imply that the key features of a system are accessible with very limited
knowledge of the exact parameters. This idea is exploited in generalized logical networks
[43]. I want to employ another approach based on Monte-Carlo methods: A large number
of parameter sets is sampled and employed in the simulation of ODE models. Comparing
the simulation results of perturbed and unperturbed models enables the assessment of
downstream effects of these perturbations. Aligning these results with experimental data
might allow for a rough evaluation of the model’s validity.

2.5 SBML - Systems Biology Markup Language

SBML is a computer-readable format for the implementation of models of biochemical
systems. It is based on XML and uses MathML to encode mathematical formulas. It is
widely applicable to most biochemical systems and readable by a multitude of software
tools. An advantage as well as a disadvantage of SBML is its wide applicability and
neutrality towards software encoding. This allows a wide variety of programs to use
SBML while each program can process the model differently. Thus, two SBML-compliant
programs need not necessarily produce the same output when performing similar tasks
(e.g. simulation of the model) on a model. For detailed information about SBML, see
[40, 29, 2].

3 Data

3.1 Network Scheme and Perturbation Data

This thesis is mainly based on the ’Sea Urchin Endomesoderm Network’ [20] and asso-
ciated papers. Other resources are complementary publications on experimental data as
well as unpublished results generated within the group of Evolution and Development at
the Max-Planck-Institute for Molecular Genetics, Berlin [1]. The most important sources
of data are introduced and explained here.

Although introduced as the ’Endomesoderm Network Model’, the endomesoderm net-
work is not a distinguished mathematical model (although it certainly is a directed graph)
but rather a network of interacting genes. The choice of interactions is based on the inter-
pretation of perturbation data, which will be explained later. The endomesoderm network,
as depicted in Fig.9, is a graphical representation of the network. It is enlightening be-
cause it presents a visualization of inferred and validated interactions, thus summarizing
the experimental data available. It is, at the same time confusing because TFs seem to
have different sets of targets depending on the cell type.

Assuming a gene’s regulatory unit remains invariable, this difference in targets of a
TF is almost impossible. Although it is possible that a TF-gene interaction that is active
in one cell type is inactive in another cell type due to specific (competitive) repressors
or repression of the TFs transcription or translation. In this case, the possibility of an
interaction remains and must be taken into account. The only case in which a TF cannot
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Figure 9: Endomesoderm Network, 27 October 2006, reproduced from [3]. Bars with arrow represent genes, Text insets
indicate Proteins or complex pathways (ECNS ≡ early cytoplasmatic nuclearization system) black and white circles indicate
protein interactions. Arrows indicate positive inputs to protein interactions and regulatory regions of genes, barred lines
likewise indicate inhibitory inputs. Portions of the Network are colored to indicate the spatial domain of transcription in
the early embryo.
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bind to a previously available binding site on a gene is when the structure of the DNA has
been modified via chromatin reorganization. Chromatin reorganization is not outruled as
a molecular mechanism of development, but rather improbable [19].

Another possible explanation for these different interactions is that the downstream
interactions are a result of indirect effects wrongly interpreted as direct effects. One
possible case here is that gene A is perceived as activator for gene C in just one cell type.
The real activator of C might in fact be a gene B that is activated, in part, by A. Once
the intermediate TFs or spatially restricted competitive inhibitors are determined, these
irregularities are expectedly eliminated. This explanation is complementary to the habits
outlined in section 2.1.3.

The network is far from complete. As of today, about 62 genes constitute the network.
A recent study [37] has revealed 96 homeobox TFs in S.pur. Out of these, 65% are
expressed within the first 48 hours of development, thus indicating a role in developmental
processes for 62 homeobox TFs alone. Because the network does most certainly not consist
exclusively of homeobox TFs, this finding illustrates the incompleteness of the network.

This incompleteness is allowed for by regularly updating the network to integrate
new experimental data. It is further demonstrated by the vast number of TFs labelled
’Ubiq’ in Fig.9. These ubiquitous TFs are basically placeholders either for unidentified
interactions or unidentified TFs.

The representation of protein-protein interactions as well as signaling to and from the
extracellular space are merely sketched. This lack of detail certainly serves the clarity of
the network, but it confines its abilities as a realistic representation.

The network is mainly designed from perturbation and expression data
[20, 3]. The perturbation data, as far as documented [3], results from the three different
experimental setups as explained above.

Another prominent source for data was the Evolution and Development Group [1].
Here, experimental research focuses on genes that are not yet included in [3] but are
expected to be important regulators of development.

3.2 Expression Data and Fate Maps

Quantitative temporal expression data is available for some genes in the sea urchin GRN
for the specification of endomesoderm. As described above, the number of transcripts per
embryo of a given gene is measured at different time points.

For the set of genes that is later used to construct the core model, such measurements
could be obtained from literature or ongoing work by A. Kühn, Dr. A.J. Poustka and Dr.
G. Panopoulou. This set includes Blimp1 [54], Bra (ongoing work), Brn [86], Dkk ([49]
and ongoing work), FoxA [65], GataE [51], Hox [37], Otx [52], Pmar1 [64] and Wnt8 [82].

Transcript numbers per embryo or generally per organism are not necessarily equal
to the transcriptional activation of a gene.

First, one must discriminate between transcript numbers and transcriptional activity.
Transcript numbers are dependent on transcriptional activity, but other sources can in-
fluence the transcript number as well. If transcriptional activity remains unaltered but
the half life of the transcripts is modified, the number of transcripts will rise or fall
accordingly.
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Second, transcript numbers per embryo are not transcript numbers per cell. This
might seem obvious, but the resulting implications have not yet been applied.

The embryo consists of a growing number of cells which belong to different cell types
or embryonic territories. The different territories grow at different rates.

A gene is almost never expressed at the same rate throughout the whole embryo. Most
regulatory genes’ expression is in fact confined to a distinct territory. Some genes might
switch their territory of expression or emit complex spatial expression patterns.

Assume now that gene A is expressed in the whole embryo. If the number of tran-
scripts remains constant over a phase of observation and influences on transcript number
other than transcriptional activity are ruled out, a seemingly obvious conclusion is that
transcriptional activity is declining: As the number of cells is growing and the number of
total transcripts remains stable, the number of transcripts per cell is declining.

In general, the number of transcripts per cell can be calculated by dividing the number
of transcripts by the number of cells expressing the gene. For genes with simple expression
patterns, this seems quite simple: observe the territory where the gene is expressed at a
given time point via WMISH and infer the number of cells that constitute this territory at
the time point studied. The number of cells that make up different embryonic territories
is described in [77, 58, 16, 75, 57]. The number of cells for each cell type inferred at
various timepoints is depicted in Fig.10. The results presented are rough estimates based
on experimental results from different species (Lytechinus variegatus apart from S.pur.)
and different methods.

Figure 10: Inferred number of cells for each cell type as described in the text. The x-axis depicts hpf , the y-axis shows
numbers of cells. Numbers of cells were inferred at the marked timepoints only. For references to the original data, see
section 3.2.

This simple approach can - in most cases - only serve as a basic guideline, since

23



gradients in transcriptional activity among cells (as arise from gradients of extracellu-
lar signalling molecules) cannot be inferred this way. This approach is also insufficient
to account for more complex spatial expression patterns, where, for example, gene A is
expressed in a certain territory T and after a certain while A’s expression switches to
territory U. If the expression in territory T and U is temporally overlapping, the tran-
scriptional activity of gene A in cells of either T or U is indiscriminable from the other.
In Fig.11, the expression of FoxA exhibits an oscillating pattern. Whether this pattern
arises from transcriptional regulation in each cell or from changes in the number of cells
expressing the gene is unknown.

In general, I expect this approach to produce significantly more valid data, although
it surely lacks refinement. The results of according recalculations for some genes of the
core model are exemplified in Fig.11

Figure 11: Expression of several genes of the endomesoderm Network. X-axis shows hpf , y-axis shows relative expression
levels. Each panel shows the relative expression per embryo (as obtained from literature) and per cell expressing the
gene (recalculated from the original data). For details of the data and the recalculations, see 3.2. The expression level is
normalized to the respective maximum for each curve. The absolute maxima of cellular and embryonic expression usually
differ by several orders of magnitude.
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4 Modeling

4.1 Summary of Assumptions and Approaches

The complex network controlling the development of an organism comprises a large set
of different interactions with the interactions between TFs and their target genes in each
cell that lead to distinct patterns of gene expression at its heart.

This microscopic set of interactions is as well the source for macroscopic interactions
like the constitution of extracellular gradients as their target. While the microscopic
interactions constitute the macroscopic events, macroscopic events and interactions play
a crucial role in regulating the microscopic interactions.

To construct a simple model catching both the macroscopic and the microscopic in-
teractions is a task far too complex to tackle in this thesis. Here, I attempt to construct a
mathematical model of the microscopic interactions at the heart of this complex system.

As this attempt focuses on intracellular processes, the model will consist of only one
cell. Interactions with the surrounding medium are modelled as artificial inputs that do
not emerge from the model but are controlled by external input.

The basis of this model is the proposed ’Endomesoderm Network’ as described in [20],
an updated version available on [3]. This network is proposed as the GRN controlling
specification of the endoderm, mesoderm and PMC cell lines. The mathematical model
therefore must enable the reproduction of three different sets of temporal expression
patterns based on the different external inputs. The proposed model consists of about 76
species and about 190 interactions in its actual form. These species are not exclusively
genes but also consist of proteins, signaling cascades and protein complexes. Most of these
non-gene species are only sketched since the underlying mechanisms are partly as complex
as the entire network itself (see work on Delta-Notch and Wnt singlaing pathways).

4.1.1 The Canonical Wnt-Pathway

A direct example of the lack of protein-interaction representation in the ’Endomesoderm
Network’ is the canonical Wnt-pathway and its role in the endomesoderm network: It
has been shown that nuclear β-catenin is necessary for the specification of vegetal cell
fates in the sea urchin [55]. Further studies have revealed that Frizzled [14], GSK3β [28],
Dishevelled [81] and TCF [78] are involved in this process. All of these are involved in the
canonical Wnt-pathway. Competitive binding of Groucho and β-catenin to TCF in the
sea urchin has also been experimentally shown. TCF can act as transcriptional inhibitor
(when Groucho is bound) or transcriptional activator (when β-catenin is bound) [68, 17].
As this data suggests, the canonical Wnt-pathway is assumed to be conserved in S.pur.

[15].
The canonical Wnt-pathway plays a crucial role in the early specification events of

S.pur.. Extracellular Wnt binds to the Frizzled receptor which in turn activates Dishev-
elled. Activated Dishevelled inhibits the degradation of β-catenin via the GSK3β/Axin/APC
complex. This degradation is the main regulatory step in the regulation of nuclear β-
catenin concentration and thus the role of TCF, although several other interactions can
positively or negatively effect this pathway, which is only briefly sketched in the network
diagram in Fig.9. As illustrated by Fig.12, Wnt thereby controls the transcriptional effect
of TCF which, as depicted in Fig.9 again influences Wnt. This feedback leads to a strong
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influence of the exact gradient of β-catenin/TCF and Groucho/TCF and a bistability
of the resulting network: If Wnt is expressed, β-catenin accumulates and can thus bind
to TCF to maintain Wnt expression. If Wnt is absent, β-catenin is degraded and TCF
is mainly bound to Groucho, which leads to an even stronger downregulation of Wnt
expression.

The core components of this evolutionary well conserved pathway have been modeled
and analyzed in [48, 50]. An overview of the topology of these models is given in Fig.12.
This network’s function is an example of the common habits of developmental signaling
pathways as described in section 2.1.3.

Figure 12: Schematic diagram of the Wnt-pathway, reproduced from [50]

This well documented pathway is an example of where I was able to improve the
proposed network by integrating new data. Other pathways, for example the delta-notch
pathway are not as well documented in the sea urchin and could therefore not yet be
integrated.

4.1.2 Modeling of Artificial Inputs

Since the models are incomplete and consist of only one cell which is influenced by its
environment, certain components are missing. Regardless of the origin of these missing
components, their influence must be integrated into the model.

Most of the artificial input’s activity has been qualitatively characterized [3]. Integra-
tion of artificial inputs into Boolean models is therefore obvious and straightforward.

To integrate the inputs into ODE models and conserve steadiness of the system, a
more sophisticated approach is necessary.

All programs used here for the simulation of ODE models (CellDesigner, PyBioS and
SBML-PET) enable the use of ’events’ in one way or another. Events evaluate a certain
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condition (for example, whether simulation time has exceeded a certain threshold). If
that condition is satisfied, a variable or parameter of the system is changed.

A straightforward approach is to set the concentration of an external input by an
event. This results in a loss of steadiness of the time curves of the artificial input which
causes numerical problems in the simulations.

To avoid this loss of steadiness, events are used to regulate the parameters of spe-
cially devised functions derived from the Hill-equation [35]. These functions regulate the
increase or decrease of the concentration of the artificial inputs and are of the form:

dx

dt
= S1 · k ·

th

Θh
1 + th

+ (1 − S1) · k · (1 −
th

Θh
2 + th

) (1)

where t is simulation time in arbitrary units, h is the hill-coefficient. k specifies the maxi-
mal concentration of x (the maximal concentration also depends on the degradation term
of x). Θ1 and Θ2 are equal to the value of t where x reaches its half-maximal concen-
tration. Obviously, the function consists of two sumands. The first summand contains
an ’activatory’ Hill-equation that is growing with t, the second contains an ’inhibitory’
Hill-equation that is declining if t is growing. Requiring S1 ε {0, 1}, only one of the two
sumands is not equal 0.

By switching S1, an event can control whether the slope of the concentration is rising
of falling while the simulation progresses. By changing Θ1 or Θ2, the onset of the rise
or fall of the concentration is controlled. Variations in k lead to different maxima of the
concentration of x

The values to witch these parameters are set must be chosen carefully to retain steadi-
ness of the system.

When the parameter values are carefully chosen and multiple events are used to control
one artificial input, complex time curves, for example the expression curve of GataE in
Fig.18, can be mimicked.

4.1.3 Assumptions

The integration of new data into a model as complex as the proposed endomesoderm
network poses a difficult task. Besides, the network itself is little more than an annotated
directed graph. It is impossible to simulate the dynamic behavior of a system that is only
described by a directed graph. Analysis of topological features is nevertheless possible.
This lack of simulation spawns a vital question: Does the network, as depicted in Fig.9,
adequately resemble the system’s key interactions? This question is of utmost impor-
tance, since the integration of new data into a flawed model will certainly not result in a
sensible model. Even more irritating, topological features derived from a flawed topology
or common developmental mechanisms derived from a false model will obscure the true
features and mechanisms.

To answer this vital question for the ’Endomesoderm Network’ and design a working
model of its well explored key components, I chose two parallel approaches. To infer the
validity of the entire ’Endomesoderm Network’, I constructed a model - hence called the
endomesoderm model - of the entire network. To design a valid model for those parts
of the network for which excessive data is available, I construct a smaller model, which
is only loosely based on the Endomesoderm Network, called the core model. The name
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core model is chosen because most of these well-explored genes belong to the ’core’ of
the network, i.e. a - expectedly - evolutionary conserved subnetwork that controls and
initializes basic developmental steps in all deuterostomes [22].

Both the endomesoderm model and the core model are based on a few simplifying
assumptions that limit the complexity of the model: No chromatin reorganization oc-
curs in sea urchin embryos during the first 50 hours post fertilization and transcriptional
regulation occurs only in the form of TF-binding mediated increase or decrease in tran-
scriptional efficiency.

The first assumption is needed to employ time-invariant functions to model activa-
tory and inhibitory strengths. The second assumption is used because the mechanisms
underlying differential mRNA stability, splicing, mRNA interference and protein stability
are generally not fully understood or quantified in the sea urchin and thus are not taken
into account (except for β-catenin, where protein stability is regulated by the canonical
Wnt-pathway).

The general approach employed in both models was to first construct a Boolean model
based on the available data. The qualitative temporal expression pattern for the TFs reg-
ulating the transcription of each gene and the qualitative nature of each input (activatory
or inhibitory) are given in [3]. The logical combination of these inputs that best repro-
duces the experimentally determined output of the gene (the assumed transcriptional
activity) is chosen as the Boolean function controlling the state of the gene. Since per-
turbation data is very sparse (about 266 of 3969 theoretically possible [as the network
contains about 63 genes, there are 632 pairwise interactions possible] interactions have
been evaluated), it is not taken into account in the design step but rather in the vali-
dation of the model. The Boolean model here is generally designed and evaluated using
spreadsheet software such as Gnumeric or OpenOffice.

The Boolean model is then automatically transformed to an SBML-compliant ODE
model that is refined using SBML supporting software tools like Celldesigner [31].

Before I immerse into the details of the design of the two models, I summarize the
rate equations used in the respective steps of the ODE models.

4.2 Kinetic Laws

The models employ rate laws to describe biochemical reactions. These rate laws generally
follow mass action kinetics first described in [79].

The rate law determining the speed vi of a reaction

Xi
vi−→ Xj (2)

is - in the simplest case - of the form

vi = ki · [Xi] (3)

where [Xi] denotes the concentration of substance Xi and ki is a kinetic parameter.
If a backward reaction is necessary, i.e. the reaction is of the form

Xi

vi
⇀↽v

−i
Xj (4)
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, the speed of the forward and backward reaction are modeled using two rate laws:

vi = ki · [Xi] (5)

v−i = k−i · [Xj ] (6)

Combining the rate laws that control the changes of a species’ concentration yields:

d[Xi]

dt
= vsynth − vdegr + vimp − vexp (7)

where vsynth is the speed of the synthesis reaction for [Xi], vdeg the speed of the degradation
reaction and vimp and vexp are speeds of two transport reactions.

The most detailed model, as exemplified in Fig.8 has the following set of reactions:

• Protein degradation

vProtein−deg = kProtein−deg · [Proteincytosol] (8)

• mRNA degradation

vmRNA−deg = kmRNA−deg · [mRNAcytosol] (9)

• Nuclear transport (bidirectional)

vmRNA−export = kmRNA−export · [mRNAnucleus] (10)

vmRNA−import = kmRNA−import · [mRNAcytosol] (11)

vProtein−export = kProtein−export · [Proteinnucleus] (12)

vProtein−import = kProtein−import · [Proteincytosol] (13)

• Transcription
vtranscription = ktranscription · [Proteincytosol] (14)

The last equation concerning transcription is actually a placeholder. I will explain the
details of the kinetics controlling transcriptional activation below.

Although biochemical networks generally depend heavily on the law of mass conser-
vation, this network obviously does not satisfy the law. Assuming that mRNA is synthe-
sized from single nucleotides and proteins are synthesized from single amino acids and
that both single nucleotides and single amino acids are so excessively available that the
modeled reactions do not significantly alter their concentrations (a gross simplification),
it is permittable to exclude them from the above reactions.

Still, mRNA is not produced from nothing. Assuming a simplified model of tran-
scription, a polymerase and the gene in addition to a TF act as enzymes catalyzing the
reaction of many nucleotides to a strand of mRNA. When emitting the single nucleotides
from the reaction, this will yield a new version for eq.14:

vtranscription = ktranscription · [Proteinnucleus] · [Polymerase] (15)

The gene itself is omitted here. A similar approach is used to modify the other reactions,
adding ribosomes for translation and similar species for degradation. If the concentration
of the added species is constantly kept at 1 (arbitrary units assumed here), the result
of the simple reactions remains unchanged (again assuming excessive concentrations of
these catalysts).
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Figure 13: Topology of a simple GRN model. The expression of gene G1 is regulated by an activatory TF A and an
inhibitory TF I. NAs represents the pool of nucleotides from which mRNA1 is synthesized.

4.3 Transcription

Different approaches have been used to realistically model transcriptional regulation by
TF binding [8, 7, 9, 11, 69, 32, 71, 72]. Most of these approaches employ rather complex
equations to realistically model the exact processes involved, such as binding kinetics
between TFs and DNA, specificity of binding affinity and other mechanisms. For this
work, in which a great number of regulatory interactions between TFs and genes has to
be modelled, I propose a rather simple method to model transcriptional regulation by
TF binding.

Generally a TF binds to a specific DNA-sequence motif and, by interaction with other
sequence motifs, TFs or molecules involved in the transcriptional machinery inhibits or
activates transcriptional activity. Regardless of the exact mechanisms, a TF must either
have an inhibitory or activatory effect. The binding of a TF to a specific binding site
depends on the binding specificity, affinity between TF and binding site and the TF
concentration. Structural rearrangements of the genomic DNA can influence the affinity.
Since specificity and affinity are both unknown for virtually all interactions in the model,
they are emitted (assuming equality among these factors for all interactions). Thus, the
binding of a TF solely depends on TF concentration in this model.

Once binding between TF and DNA-sequence is established, the strength of the ac-
tivatory/inhibitory effects depends on the location of the TF, the nature of the TF and
interactions between the bound TF and other TFs.

Assuming that there is only one binding site for each TF on a given gene (another gross
simplification), the location of the TF binding and the nature of the TF are combined
into one parameter.

I will construct two elementary formulas that will model an activatory or inhibitory
influence of a TF on transcriptional activity. These two elementary formulas can be
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combined in a modular manner so that interactions between multiple transcription factors
are simple to model.

Thus, postponing the problem of interactions betwen TFs, the effect of a TF on
transcriptional activity depends on the TF’s concentration and one or more specific pa-
rameters.

For an activatory TF A, its influence on transcriptional activity, ϕGA
, on a given gene

G is given by

ϕGA
=

kAG
· [A]

cAG
+ [A]

(16)

where kAG
is the parameter indicating the activatory strength of A and cAG

is a threshold:

If [A] equals cAG
, [A]

cAG
+[A]

= 0.5. As indicated by the notation, the parameters cij and kij

are unique to each pair of TF and gene.
In the case of an inhibitory TF I, its influence on the transcriptional activity on gene

G is defined as

ϕGI
=

kIG
· cIG

cIG
+ [I]

(17)

with parameters defined analogously to above. In case the absence of the inhibitor results
in some kind of default activity of the gene, kIG

> 1, in the case that there is no default
activity in absence of the inhibitor, kIG

= 1. In both cases, repression of the gene’s activity
will occur when [I] significantly exceeds the threshold cIG

.
Any number of these two elemental formulas may be combined using addition or

multiplication. Logical OR is transferred to addition of atomic formulas, since the presence
of any of the involved factors will have an effect. Multiplication here corresponds to a
logical AND in a Boolean model. Only when all TFs involved in the multiplication are
present, a regulatory change will occur.

Notice that theoretically, multiplication is not the continuous equivalent of logical
AND. Here, the choice of parameters is used to adapt the function to behave as de-
sired, although these parameters need not necessarily directly correspond to measurable
chemical constants like kd values.

To exemplify these combinations, consider a network like the one depicted in Fig.13,
in which the transcriptional activity is controlled by two TFs. One of these TFs has an
activatory effect, the other one an inhibitory. There are exactly two possible combinations
of the two inputs to the gene: Either the activator must be present AND the inhibitor
must be absent or the activator must be present OR the inhibitor must be absent (this
OR is not exclusive, the overall condition is also satisfied if both individual conditions are
satisfied). The two possibilities result in a total transcriptional activity ϕG of the gene G

ϕG =
kAG

· [A]

cAG
+ [A]

·
kIG

· cIG

cIG
+ [I]

(18)

for the AND-case. The OR-case is given by

ϕG =
kAG

· [A]

cAG
+ [A]

+
kIG

· cIG

cIG
+ [I]

(19)

The expression that results from these two different combinations is depicted in Fig.14.
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Figure 14: Simulation results of a model resembling the topology shown in Fig.13. Note that the y-axis has a logarithmic
scale. Different scales are combined on the y-axis: For proteins and mRNA, the concentration in absolute numbers is used
while reaction rates (transcription GENE G1 and transcription GENE G1) are measured in absolute numbers

time in arbitrary units
Two

genes are expressed here,both have a positive and a negative input. The amount of transcripts for gene G1 is depicted as
mRNA G1, the number of transcripts for G2 likewise as mRNA G2. The number of TFs is depicted by PROTEIN A and
PROTEIN I. transcription GENE G1 and transcription GENE G2 show the transcriptional activity for G1 and G2,
respectively. For gene G1 these inputs are combined using multiplication/logical AND (see eq.18), for gene G2 the inputs
are combined via addition/logical OR (see eq.19). All parameters involved in the regulation of the genes are equal for both
genes. The simulations were carried out using CellDesigner3.2.
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When choosing the right parameters, this algorithm enables easy transfer of a Boolean
model of a GRN to an ODE model.

I would like to stress the point that the parameters that enable the reproduction of
experimental data with this algorithm need not necessarily be realistic parameters (as,
for example, the dissociation constant between a TF and the corresponding sequence
motif). These realistic values are generally unknown and extremely difficult to determine
by experimental methods. Furthermore, the integration of these simple kinetics reduces
the computational demands of simulation runs and enhances legibility of the model. Thus,
their use is justified here.

4.4 Modeling of the Endomesoderm Model

As explained before, the network proposed by Davidson et al. (Fig.9) is - as a model -
not capable of simulation and thus not suited for validation. Therefore, I constructed an
ODE model from the network topology, using the assumptions and kinetics as described
above. The model will thus feature one cell that emits three different expression patterns
based on the external inputs.

Although the network does not explicitly describe the way in which the different inputs
of a gene are to be combined, some publications imply an all-AND or all-OR combination
of most genes (see [73] for an example). Due to the complex expression patterns that are
to emerge, I refrain from this approach and rather use the qualitative expression data as
given in [3] to construct a sensible model.

After designing a sensible Boolean model of the large network, it is automatically
transferred to an ODE model. The script for the conversion of the network (the resulting
SBML-file still needs minor corrections) and sample input is explained in the supplemental
information.

The model is sensible only in considering the qualitative input to each gene related
to the qualitative output of the gene as shown in [3]. The topology is not verified in the
course of modeling. This model is rather used to infer the validity of the topology as
explained in the results section.

This ODE model consists of 290 species in three compartments, the outside, the cy-
tosol and the nucleus. The species interact via 432 reactions which contain 230 parameters.
For the SBML-Code of the model, see the supplemental information.

The general parameters that apply equally to all different species of the same kind are
chosen as follows: ktranslation = 2.0, kmRNA deg = 0.2, kprotein deg = 0.05, ktransport = 0.4.

The artificial inputs that drive specification of the cell types were obtained from
[3]. Used are those components of the network that are independent from other compo-
nents and differ for which activation is assumed to differ between the cell types: UbiqES,
UbiqHnf6, UbiqRofMic and UbiqSoxB1.

4.5 Modeling of the Core Model

This model is based on an approach contrary to that of the endomesoderm model. As
the endomesoderm model is used to test whether the underlying topology can reproduce
the experimental data (the accordance between the data and the resulting model, given
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that the simplifying assumptions are valid), the core model is a new model with its own
topology that is optimized to best reproduce the experimental results.

Because this model is later subjected to parameter estimation, its complexity was
reduced by omitting intracellular compartimentation.

The first step, again, is the construction of a Boolean model. This model consists of
only 16 dependend species. Based on the qualitative information in [3] and the experi-
mentally established interactions (see, for example [85]) a Boolean model with a topology
similar to that of the network is constructed. Since the experimental data is not nearly
reproduced with this network, especially not the establishment of the three cell-type
specific expression patterns, the network is refined.

This refinement includes the integration of new input variables, rewiring of the edges
and corresponding alterations to the logical formulas as well as subsequent elimination
of those input variables that can be exchanged for one or a combination of multiple
dependant variables.

This elimination process can very well lead into dead ends, but it also simplifies the
model and proposes new interactions for experimentally verification.

The resulting network topology is depicted in Fig.15 and the Boolean functions are
given in the supplemental information.

Figure 15: Topology of the Boolean core model, created using BioTapestry [56]
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The developed Boolean model is then transferred into an ODE model, using the
same procedure as with the endomesoderm model. This ODE model is used to estimate
parameters that reproduce the calculated cellular expression data and the differences of
the three cell types.

In the core model, as opposed to the network diagram and the endomesoderm model,
the Wnt-pathway is accredited as a key pathway starting endomesoderm specification.
This model is thus partly based on [48, 50]. Although this model of the Wnt-pathway
could not be directly applied, its basic features have been conserved to guide in the
establishment of the bistability of the canonical Wnt-pathway here.

The results of in-silico perturbation experiments using the estimated parameters can
be compared to results of the same experiments using sampled parameters. This allows
for a rough inference of the applicability of the M-C approach since sensible parameters
are being estimated here.

The general parameters that apply equally to all different species of the same kind
are chosen as follows: ktranslation = 2.0, kmRNA deg = 0.2, kprotein deg = 0.10193 (so that
mRNA halflife is 1

2
· Protein halflife), ktransport is not applicable since compartimentation

is omitted.
Artificial inputs to the model were determined either from experimental data [3] or ne-

cessity in the Boolean model. The artificial inputs are: TCF-repressor (active 24−50 hpf

in endoderm), Notch (active 21 − 50 hpf in endoderm and PMC, 12 − 50 hpf in meso-
derm), PMC-repressor (active in endoderm and mesoderm throughout the simulation),
Otx-repressor (active from simulation start to 14 hpf in endoderm, simulation start to
17 hpf in mesoderm and simulation start to 10 hpf in PMC) and mesoderm-repressor
(active 15 − 50 hpf in mesoderm and 9 − 50 hpf in PMC)

5 Monte-Carlo Topological Verification

To infer dynamical properties of an ODE model in which most of the parameters are un-
known, as is the case with the endomesoderm model, I chose an approach using Monte-
Carlo Methods. Although topological features are tangible by the analysis of directed
graphs or Boolean models, this approach could possibly generate more detailed informa-
tion.

In this approach, a large number of parameter sets is sampled from a reasonable
random distribution. Simulations are computed for each parameter set.

General properties of a model are expected to be generally invariant to parameter
changes, thus the main properties should be detectable as similarities in all simulations.

To validate the endomesoderm model, experimental data from perturbation experi-
ments as well as temporal expression data is available.

As mentioned before, the reproduction of the exact temporal expression data is diffi-
cult to achieve with a single cell model. Furthermore, certain obvious flaws in the actual
version of the Endomesoderm Network hint to an inability of the network in generating
the exact expression patterns. For example, Otx is - in mesoderm and PMC cells - known
to be turned off at a certain time point. In the network, Otx has no negative input but is
part of a positive loop both with itself and with Blimp1 (see Fig.9). One of the features of
the network topology depicted in Fig.9 is that Otx transcriptional activity is impossible
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to shut down once it is activated (compare Fig.8).
To analyze whether the network can at least correctly reproduce the perturbation

experiments which it is based on, I use the Monte-Carlo approach in the following way.
After a reasonable ODE model of the network had been constructed, this model was

imported into PyBioS [83], an environment for the modeling of biochemical systems based
on python and exported again for computation.

This exported version ships with numerous python programs that allow for sampling
of parameters, simulation of models and analysis of results.

The PyBioS code was used to generate a large number of parameter sets for the
model. The kinetic parameters that control transcriptional regulation were sampled from
a lognormal distribution (µ = 1.5, σ2 = 0.5). All other parameters are equal among all
parameter sets.

Different versions of the basic exported model (which had to be slightly revised to
retain the artificial inputs) were constructed. Each of these versions features the KO
(knock-out) of a single gene.

Each of the different KO models and the unperturbed model were simulated for all
parameter sets using an automated pipeline from PyBioS.

The result of these simulations were analyzed with modified version of the original
PyBioS code.

This statistical analysis compares the result of simulations under one specific KO con-
dition to the simulation results under unperturbed conditions. Different results emerge
from simulations employing different parameter sets. All successfully finished simulation
runs of the KO condition in question matching finished simulation runs under unper-
turbed conditions are considered, giving rise to two paired sets of simulation results, KO

and CONTROL. Both KO and CONTROL consist of n result sets obtained from n

parameter sets. KOi and CONTROLi each consist of the simulated concentrations of
mRNAs mRNA1 to mRNAm.

To asses the effect of a KO on the concentration of mRNAj at time point t, all values
of KO and Control pertaining to mRNAi and t need to be considered, namely exp and ctl,
which consist of KO1 mRNAj

...KOn mRNAj
and CONTROL1 mRNAj

...CONTROLn mRNAj
,

respectively.
exp and ctl can be compared in various ways. The possibly simplest is by computing

the ratio Rm = E(exp)
E(ctl)

. This method might become inapplicable when the variances of exp

or ctl are greater than their respective means and also disregards the information of the
paired values.

To include this pairing information in the analysis, it is possible to calculate the mean
of all pairwise ratios as

Mp = E(
exp1

ctl1
,
exp2

ctl2
, ...,

expn

ctln
) (20)

This method is still vulnerable to great variances.
A method based on the calculation of the pairwise ratios is to count whether a certain

fraction of these ratios is above or below a certain threshold. In this application, this
method is used in two versions: T1 indicates whether at least 90% of the pairwise ratios
exp1

ctl1
, exp2

ctl2
, ..., expn

ctln
are greater than 1.5 or less than 0.75. T2 is used to detect less significant

effects and therefore requires only 80% of the pairwise ratios to be greater than 1.1 or
less than 0.9 to detect an effect.
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Statistical tests can also be employed to compare the two lists of samples exp and ctl:
If the values in both lists can be assumed to originate from a normal distribution, the
student’s t-test (first used in [34]) can be used. If normality can not be assumed, non-
parametric test must be used. Here, the Kolmogorv-Smirnov test [24] and the Wilcoxon
signed-rank test for paired values [84] are employed.

A scatterplot can visualize the difference emerging between control and knock-out
conditions. In a scatterplot, paired values (exp and ctl here) are visualized by plotting
the paired values in a coordinate system given by the values of one element (ctl) of a pair
on the y- and the other element (exp) on the x-axis. If all points are on the straight line
f(x) = x, no differences between exp and ctl arose. If the points are mostly above the
line, a significant negative influence of the KO on the plotted species is assumed. If the
points are mostly below the line, a significant positive influence of the KO is assumed.

6 Results

6.1 Results of the Core Model

6.1.1 Model Construction and Parameter Estimation

The final topology of the ODE core model is shown in Fig.15. This version is the result
of constant refinement but nevertheless far from finished.

The first model already contains new data from [1] in the form of Dkk which inhibits
Wnt expression. The first refinement was performed on the Boolean model to improve
reproduction of the experimental data while complying to biological constraints. The
next step was to substitute artificially set inputs like the activity of Dkk for dependencies
on other constituents of the model. This was performed by comparing dependend gene’s
activity to that of artificially set genes. Most of the interactions thus inferred have to be
validated by experimental methods.

The last refinement was performed on the ODE model. After the parameters had been
estimated to reproduce the experimental data, some features of the experimental data
could not be reproduced. One of these features that could be resolved is the expression of
Brn. To resolve it, the ODE model was reduced to a simpler version that is still able to
reproduce the data. The parameters and kinetics involving regulation of Brn transcription
have then been tuned by hand and the simulation results could be improved in regard
to reproduction of the experimental expression time curves. The improvement could be
carried over to the full model.

When investigating the Boolean and the ODE version of the core model and their
capability to reproduce the respective experimental data, one has to keep in mind that
the experimental data differs in each case: The Boolean core model is based on the
qualitative data as given in [3], which is probably inferred from the raw transcript numbers
per embryo. The ODE version of the ore model, on the other hand, uses the refined data
of transcripts per cell expressing, as described in section 3.2.

After a reasonable Boolean model had been established, it was transferred to an ODE
model in SBML syntax. This ODE model was - after refinement - used to perform pa-
rameter optimization using SBML-PET [87]. SBML-PET takes an ODE model in SBML
syntax and a file containing the parameters to be estimated along with experimental time
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courses as input.
In the first attempt to estimate the parameters for the core model, the entire model was

used. Due to the complexity of the parameter estimation and the numerous dependencies
between the parameters, the runtime of this approach was intolerable. Even worse, the
first results were not capable of generating different expression patterns for the three cell
types.

One solution to this problem is to construt a model that contains three copies of the
core model using different inputs but the same parameters to simulate the three cell types
in parallel. Since the runtime of SBML-PET using a model containing only one copy of
the core model is unsatisfying, this approach is obviously inapplicable here.

Because experimental temporal expression curves are available for all genes in the core
model, it is possible to partition the model into a set of models with only one dependend
gene. The inputs of the gene in question are approximated combining activatory and
inhibitory Hill-Kinetics (first developed in [35]) that mimic the experimental data for
the transcription of the genes that constitute the input of the dependend gene. The only
problem that arises with this approach is the identification of exact parameters for the
Wnt-pathway. But by hand-tuning the results of a first estimation thereof, a reasonable set
of parameters for the canonical Wnt-pathway could be obtained. One problem concerning
the applicability of the model of the canonical Wnt-pathway here is that no experimental
data concerning the TCF, β-catenin or Groucho transcript or protein numbers could be
included. Publications suggest a transcriptional regulation of these key components of the
pathway by the pathways activity itself (TCF for example [41]). Thus, the implementation
of the canonical Wnt-pathway employed here is only a rudimentary approach that needs
refinement. The partitioning of the core model as used for parameter estimation is shown
in Fig.16.

After sensible parameters were estimated for each submodel, the submodels were
combined again to form the original core model. A model containing three copies of the
core model with estimated parameters was used to generate simulation results for the
three cell types in parallel. As described above, this model was refined again and the
simulation results of this refined core model with estimated parameters are shown in
Fig.17.

For comparison, the experimental data for each gene, recalculated to
transcripts

cell expressing
is depicted in Fig.18.

Comparing the simulation results from Fig.17 with the experimental data in Fig.18,
accordances between simulation and experimental results are apparent. The curves of the
simulation results often mimic the curves of the experimental measurements. In cases
where the match between simulation and experimental data is not apparent, the qualita-
tive features of the experimental data are nevertheless reproduced.

6.1.2 Simulation Results and Comparison to Experimental Data

Experimental data suggests expression of Blimp1 in endoderm cells with a peak at 12 hpf

of 31.25 transcripts per endoderm cell. It rapidly declines to a lower level of expression
between 10 and 20 transcripts per cell until about 40 hpf and then falls to 0. This temporal
behavior is roughly reproduced by the simulation results in Fig.17: The expression rises
sharply in all cell types (up to almost 25 in endoderm and 22 to 18 for mesoderm and
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Figure 16: Topology of the submodels of the core model as used for parameter estimation. Each rectangular box represents
a gene, trapezoids are the corresponding mRNA and the arrow from gene to mRNA represents the transcription. Activatory
(lines with circles at the end) and inhibitory (lines with bars at the end) inputs to the respective transcription are shown.
The concentration of the TFs (ovals) were controlled to resemble experimental data. The parameters of the Wnt-pathway
were also estimated during the estimation of parameters for Wnt transcription. With minor adjustments, the Wnt-pathway
was included where necessary as shown in the Blimp1 -subnetwork.
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Figure 17: Simulation results of the final version of the core model. The topology of the underlying network is given
in Fig.15. Each panel shows the expression of one gene in the three different cell types(endodermal expression in blue,
mesodermal expression in green and PMC expression in red) as absolute numbers of mRNA. The upper left panel depicts
concentrations of the protein complexes TCF/Groucho (lighter blue) and TCF/β-catenin. The x-axis depicts hpf , the y-
axis absolute transcript numbers per cell. Note that some curves might overlap, so that underlying are not visible anymore
(this is the case with Wnt8, TCF/β-catenin and TCF/Groucho, where all three territories exhibit the same behavior and
Pmar1, where endodermal and mesodermal expression overlaps). Simulations were performed using CellDesigner3.2.
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Figure 18: Experimentally determined gene expression for each Gene of the core model, recalculated as described in
section 3.2. The x-axis indicates hpf , the y-axis indicates absolute transcript numbers per cell expressing the given gene.
TCF/β-catenin and TCF/Groucho are not shown since no experimental data exists.
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PMC cells) and then declines to 0. Endodermal expression is sustained and declines only
to about 10 transcripts per cells. Endodermal expression does not fall below 10 transcripts
per cell, but that might be an effect of slight shifts on the time scale.

Brn has a very distinct temporal expression profile. The number of transcripts falls
from a suspected 12 transcripts/cell at fertilization to almost none at 15 hpf . At about
28 hpf , the expression sharply rises to about 7 transcripts per cell. Again, expression is
mainly confined to endodermal cells. The simulation results fail to quantitatively repro-
duce the experimental data but the qualitative changes of transcript numbers and the
spatial confinement of Brn expression is reproduced.

The recalculated expression pattern of Wnt8 is reproduced very closely. From an
expected initial concentration of about 120 transcripts directly after fertilization, the
number of transcripts falls in an exponential manner.

The experimentally determined expression of Pmar1 declines from 150 transcripts per
PMC cell at 5 hpf . At 10 hpf , the number of transcripts per cell is already dropped to
about 20. For the simulation results, an initial concentration of 0 transcripts was chosen.
Thus, the number of transcripts rises sharply in PMC cells to about 73 transcripts per
cell at 10 hpf and then declines again. Although the exact temporal expression pattern
is shifted again, the simulation results lead to the same qualitative results, especially
concerning the spatial confinement of expression.

As with Brn, Wnt8 and most other genes in the core model, there are no measure-
ments of transcript numbers in the fertilized egg (or early stages of development before
5 hpf) available for Pmar1. It is therefore not determinable whether the spatiotemporal
expression patterns of some genes do result from unequal cleavages where the nuclear
complement of TFs or mRNA is changed.

The experimental data of Bra expression is exceptionally sparse but is observed to
rise sharply from about 15 hpf on. Bra expression is confined to endodermal territories
and is thought not to be expressed in the early endoderm [13]. The simulation results
show significant expression in the early endoderm, and a strong rise in expression from
about 30 hpf on, especially in endoderm.

The expression of Dkk, as experimentally determined, rises from about 10 hpf on
to a level of about 2.3 transcripts per cell, a level that is sustained until 35 hpf , from
whereon it declines again. Dkk expression is considered to be confined to mesodermal
territories. Since in the core model, it is used as an ubiquitous inhibitor of Wnt activity,
the expression in the core model is not confined to a specific territory. It rises to a
level of 0.5 transcripts per cell at the very beginning of the simulation and then more
or less continuously rises to about 4 transcripts per cell. The simulation results thus
not reproduce the experimental data. Since there are no publications concerning the
regulation of Dkk available yet, this part of the model is only a basic attempt to include
new data. Furthermore, I must denote that Dkk is not really a TF that inhibits Wnt
expression but rather an extracellular molecule that inhibits the binding of extracellular
Wnt8 to the Dishevelled receptor. Thus, this part of the model clearly needs refinement,
focusing on the canonical Wnt-pathway and extracellular gradients (of Dkk) again.

Eve transcription, as experimental data indicates, rises from 0 transcripts at fertiliza-
tion to a maximum of about 12 transcripts per cell at 6 hpf and then sharply declines
to about 6 transcripts per cell. It gradually sinks from about 25 hpf on. The simulation
results show a strong rise to about 14 transcripts per cell at about 10 hpf . It then rapidly
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declines, not exhibiting the low level of transcription as in the experimental data. Experi-
mental data indicates Eve expression in endomesoderm up to 12 hpf and in endoderm at
later stages of development. The simulation results show Eve expression in all three cell
types, although PMC expression is weakest and shortest while Endodermal expression is
stronger and significantly longer lasting.

The experimentally determined expression of GataE rises to about 3 transcripts per
cell, where it remains from about 18 to 25 hpf , and then rises steeply to about 12
transcripts per cell at 35 hpf . The experimental data does not indicate whether it rises,
falls or remains stable after 35 hpf . In the simulation results, GataE expression rises to
about 3 transcripts per embryo at 4 hpf , declines slightly and then rises from about 20 hpf

on and reaches 10 - 14 transcripts per embryo at 50 hpf . Although experimental data
shows that GataE is clearly expressed in endodermal and mesodermal territories only,
the simulation results show the strongest expression for PMC cells, where no endogenous
expression at all is observed in experiments.

Hox is shown to be expressed in endoderm and mesoderm. Initially, it remains at low
transcript numbers, then rises sharply from 6 hpf on to almost 14 transcripts per cell at
12 hpf and then declines to about 2 transcripts per cell at 36 hpf . The simulation results
do not exhibit the low initial transcription but show a direct rise resulting in almost
12 transcripts per cell at about 11 hpf and then an exponential decline, leaving only 2
transcripts per embryo at about 34 hpf . Although this temporal expression is very close
to the experimentally determined values, the spatial confinement could not be reproduced
but all three cell types’ simulations exhibit an equal expression pattern.

Experimental data for Otx is again exceptionally sparse. Only three time points have
been obtained, showing a rise from about 80 transcripts per cell at 14 hpf to 220 tran-
scripts per cell at 38 hpf . Otx is assumed to be expressed in endoderm and mesoderm,
mesodermal expression is shut down at 18 hpf . The simulation results show an increase
from initially 0 transcripts to about 120 transcripts per cell, where endodermal expression
remains from about 20 hpf on. Mesodermal expression only rises to about 105 transcripts
per cell at 12 hpf before it decreases again. PMC expression rises to about 80 transcripts
per cell at 6 hpf and then declines.

The experimentally determined expression of FoxA exhibits an oscillatory pattern: The
number of transcripts per cell rises to 28 at 9 hpf , declines to almost none at 12 hpf , then
rises to over 60 at 21 hpf , falls to less than 30 at 24 hpf , rises to over 40 at 30 hpf , falls
to about 20 at 33 hpf and then remains - with minor oscillations - at about 20 transcripts
per cell up to 50 hpf from where on it slowly declines. The simulation results reproduce
the initial rise in FoxA expression in all cell types. Mesodermal and PMC expression is
then shut down while endodermal expression declines and then rises again, reproducing
the spatial restriction to endodermal territories as determined in experiments.

6.1.3 Perturbation Experiments using Estimated Parameters

To further validate the core model, perturbation data [3] was considered. The model
was simulated with genes knocked out to compare the results with those of the MASO
(Morpholino-substituted antisense oligo nucleotide) experiments. To knock a gene out in
the model, its normal transcriptional activity was reduced by 95%. Only Blimp1, Eve,
FoxA, GataE and Otx were knocked out since the other gene’s expression either has no
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effect in the model or there is no comparable experimental data.
The results of these perturbed simulations are exemplified in Fig.19, which depicts

the simulation results of Blimp1 knock-out.
Although one can estimate qualitative effects of knock-outs from the results as de-

picted in Fig.19, a quantitative assessment of the effects is rather difficult. To quantify
the regulatory effects, I computed the ratio of transcript numbers of the effected genes
under normal and knock-out conditions. This quantification is depicted in Fig.20.

Using Fig.20, the effects of the simulated knock-outs are easily accessible: Eve and
FoxA knock-outs have the least effect. While Eve knock-out only slightly decreases the
number of Blimp1 transcripts, FoxA knock-out leads to a strong reduction of Brn tran-
script numbers and a slight drop in Bra and Otx expression.

The knock-out of Blimp1 and Otx each leads to a decrease in transcriptional activity
for most genes of the network: Knocking out Blimp1 leads to a slight reduction of Bra,
Brn, Dkk and GataE transcriptional activity. Medium to strong descents in transcrip-
tional activity are detectable for Eve, Hox, Otx, Pmar1 and Wnt8.

When Otx is knocked out, the simulations reveal slight decline in transcript numbers
for FoxA, Eve, GataE and Hox. A medium decrease in transcriptional activity is detected
for Dkk and Pmar1. A strong reduction of transcript numbers is measured for Bra and
Brn transcripts. Wnt8 transcriptional activity sinks up to 19 hpf and is slightly increased
from 25 hpf on.

Wnt8, along with Blimp1, Eve, Hox and Pmar1, is also stronger expressed if GataE is
knocked out. Meanwhile, Otx expression is slightly dampened and Brn, Dkk and GataE

expression is strongly decreased.
As seen in Fig.20, all effects are detectable in all three cell types, though they vary

considerably in strength and duration between the cell types.
These findings will later be compared to the experimental data of analogous experi-

ments as depicted in Fig.21.

6.1.4 Perturbation Experiments using Sampled Parameters

500 different parameter sets were sampled for the core model, using a lognorm distribution
with µ = 1.5 and σ2 = 0.5. Only parameters concerning transcriptional regulation were
sampled. Parameters controlling degradation of species or translation and the parameters
involved in the regulation of the canonical Wnt-pathway were retained as in the original
model. Using these parameter sets, 500 different simulations for each knock-out mentioned
above and the unperturbed model were computed. The methods described in section 5
were applied to analyze the results.

Since the distribution of the simulation results (transcript numbers for a gene at a
certain timepoint) of all parameter sets can in general not be approximated by a normal
distribution (see Fig.22 for an example), the student’s t-test could not be applied in the
analysis of the results.

Thus, only the ratio of the means , Rm, of the simulation results under control and
knock-out conditions, the mean of the paired values, Mp, computation of T1 and T2, the
Wilcoxon signed rank test, W , and the Kolmogorov-Smirnov test, K − S, were applied
to the results. For details of the applied methods, see section 5.

The results show that in most cases, there is no significant difference between Rm and
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Figure 19: Simulations of the core model under Blimp1 KO conditions. The x-axis shows hpf , the y-axis shows absolute
transcript numbers per cell. Note that these plots have the same scales on the y-axis as in Fig.17 and analogous overlaps
occur.
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Figure 20: Effects of selected knock-outs in the core model using estimated parameters at selected timepoints. Rows
indicate the knock-out and the celltype and timepoint. Columns show the selected genes. Each cell contains the ratio of
transcript numbers for the indicated gene under the indicated knock-out by the number of transcripts without knock-
out. Color codings indicate the size of the ratio r: downregulation: yellow (0.8 < r ≤ 0.9), orange (0.7 < r ≤ 0.8), red
(0.6 < r ≤ 0.7), dark red (0.6 ≥ r), upregulation: light green (1.1 < r ≤ 1.2), lime (1.2 < r ≤ 1.3), tan (1.3 < r ≤ 1.4),
dark green (1.4 <≤ r)
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Figure 21: Portion of the perturbation data from [3] applicable to the core model

Figure 22: Distribution of simulation results for Bra at timepoint 8 under Blimp1 knock-out and control conditions for
all parameter sets.
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Mp. Computation of T2 detected, as expected, more effects than T1. Using restrictive
settings (T1), the algorithm detects significantly fewer results than under loose settings,
indicating a more direct and palpable influence of the knocked out gene on the target or
a stronger robustness to parameter changes for an interaction that is detected under the
restrictive settings.

For the Wilcoxon signed rank test and the Kolmogorov-Smirnov test, a confidence
interval of 95% was chosen. The findings of these tests differ from the findings of the
counting algorithm. The Kolmogorov-Smirnov test detects even small differences very
reliable. The Wilcoxon signed rank test on the other hand is over-sensitive for this ap-
plication: For nearly all tested result pairs, the null-hypothesis that the pairs originate
from the same distribution, was rejected.

The exact findings are included in the supplemental information, along with scatter-
plots for each pair of knock-out and effected gene. An example is depicted in Fig.23.

The strongest differences from Fig.23 are illustrated as scatterplots of the respective
values in Fig.24.

To analyze the results of the different comparison methods, I characterized each
species’ concentrations at each time point measured in respect to how many of the com-
parison methods detected deviations between control and knock out simulation results.
This characterization allows for easy assessment of the overall strength of the deviations:
great changes are generally observable through the means regardless of their robustness.
Robust changes are detected by the counting algorithm (small changes are only detectable
under the loose threshold settings while strong changes should be detected under both
loose and restrictive threshsold settings). Very small changes are only observable using
the Kolmogorov-Smirnov test.

The results of this characterization, as depicted in Fig.25, show the following:
Blimp1 -KO has a significantly detected downregulating effect on Wnt8, Hox and Eve,

especially in PMC cells.
The knock-out of Eve has only slightly detected downregulating effects on Blimp1

and Hox.
The effect of FoxA knock-out are also only slightly detectable as a reduction of Brn

and Otx transcripts.
The effects of GataE knock-out are stronger: Eve transcription is only slightly damp-

ened, Brn transcription is moderately reduced. Strongly detectable decline of transcript
numbers applies to Dkk and Otx. An well detectable increase in transcript numbers is
visible in the column depicting Wnt8.

The effects of Otx knock-out differ greatly between cell types: Endodermal expression
is usually only effected up to 19 hpf , mesodermal expression is detectably effected up to
45 hpf and PMC expression is effected to the greatest extend throughout all timepoints.
The only exception to this observation is the increase in transcript numbers of FoxA,
which is strongest detected in endoderm and weakest in PMC. The only other gene
upregulated by Otx knock-out is GataE. Brn is slightly downregulated at 8 hpf and then
upregulated at 19 hpf (also 14 hpf in mesodermal cells). All other genes except for Eve

are downregulated by Otx knock-out.
As with the estimated parameters, all effects occurring in one cell type also occur in

the others, though the strength and duration of the effects varies between cell types.
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Figure 23: Analysis of the results of 500 simulations of the core model under both control and Blimp1 KO scenarios. The
colors indicate decrease (yellow to dark red) or increase (light to dark green) of transcript numbers in Blimp1 knock-out
simulations compared to unperturbed simulations. Cells of the K-S column that are black indicate a difference detected
in the Kolmogorov-Smirnov test. Notice that the Wilcoxon signed rank test detects differences everywhere using a 95%
confidence interval.
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Figure 24: Scatterplots for selected pairs of control/Blimp1-KO simulation results. On the x-axis are the result values
under knock-out conditions, on the y-axis are the result values under unperturbed conditions. Units are absolute transcript
numbers per cell. Depicted from left to right, top to bottom are: Blimp1(endoderm) at timepoint 8, Eve(PMC) at timepoint
8 and 14, Hox (mesoderm) at timepoints 8,14,19, Wnt (endoderm) at timepoints 8,14,19.
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Figure 25: Overview of the characterized detected changes in the Core model using sampled parameters (left table) and
the analogous experimental results (right table). Rows depict the knocked out genes and the spatiotemporal definition of
the changes (E: Endoderm, M: Mesoderm, P: PMC cells). Columns indicate the effected genes. Color codings are as follows:
yellow to dark red indicate decrease in transcriptional activity in growing detection intensity, light to dark green indicate
increase in transcriptional activity. For the simulation data, white cells indicate no detectable effect of the perturbation.
For the experimental results, grey cells indicate no significant detected changes and white cells represent effects for which
no experimental data is available.
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6.2 Endomesoderm model

The endomesoderm model contains too many unknown parameters to estimate param-
eters. Furthermore, experimental data to fit parameters is only available for a small
fraction of the components. Therefore, no parameter estimation was performed on the
Endomesoderm Network.

Instead, it was only simulated using sampled parameters. 500 parameters were sam-
pled from a lognorm distribution with µ = 1.5 and σ2 = 0.5. The model was simulated
using these 500 parameter sets for various conditions: unperturbed, Alx1 -KO, Blimp1 -
KO, Bra-KO, Brn-KO, Dri -KO, Ets1 -KO, Eve-KO, FoxA-KO, FoxB -KO, GataC -KO,
GataE -KO, Gcm-KO, Gsc-KO, Hnf6 -KO, Hox -KO, Krl -KO, Otx -KO, Pmar1 -KO, snail -
KO, SoxB1 -KO and Tbr -KO. All of the named perturbations have counterparts in ex-
perimental data.

In simulations of the model and calculation of the artificial inputs, the time scale
was multiplied by 10. Only endodermal conditions were considered. Because no realistic
expression time curves are expected and the perturbations are assumed to have a similar
effect in all tissues, this simplification is applicable.

Of the 500 simulations computed for each condition, only about 200 to 300 were
successful. The failing of the simulations is mostly due to numerical reasons.

Since realistic expression time curves are not expected to be generated by the sampled
parameters, the expression time cureves computed are not shown or discussed.

Thus, the results were only analyzed in respect to the perturbation experiments as
with the core model. For the endomesoderm model, the means of both the paired values
and the overall concentration means exhibit CVs (coeffiecients of variance) often exceed-
ing 1 by multiple orders of magnitude. Since this indicates variances far greater than
the mean, these mean values are excluded from the analysis. On the other hand, the
Wilcoxon signed rank test produced more significant results than before. Since neither
the Wilcoxon signed rank test, the Kolmogorov-Smirnov test or the counting algorithms
showed sufficient to unambiguously detect effects of a perturbation, the scatterplots were
included in the analysis.

Most of the 5922 produced scatterplots exhibit clear tendencies towards downregula-
tion, upregulation or no regulation. Some have numerous outliers, indicating either effects
very vulnerable to parameter changes or numerical issues hinted to above. Fig. 26 shows
examples for both cases.

The scatterplots of certain KOs (Otx and SoxB1 ) exhibit more outliers than others.
This is probably due to numerical difficulties arising in the simulation these KOs.

The results of the characterization of the effects from scatterplots are appended to ta-
bles showing the result of the statistical methods. To allow for comparison to experimental
data, the experimentally detected effects were also included. An example is depicted in
Fig.27

The cells of the tables are colored to allow for quick characterization of the detected
effects. Red indicates downregulation by the perturbation for the counting algorithm,
scatterplots and experimental data, green a respective upregulation and blue indicates
effects detected by the K-S or Wilcoxon test.

As mentioned earlier, not all simulation runs finished successfully. When comparing
the results of the experimental and control experiments, only those parameter sets are
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Figure 26: Scatterplots derived from the simulation results of the endomesoderm model. Shown are the concentrations
under control conditions on the y-axis, concentrations under KO conditions on the x-axis. All graphs depict the measure-
mentsat 25 hpf . Top left: effect of FoxA-KO on Alx1 ; bottom left: effect of FoxA-KO on Dpt. Both plots show obvious
tendencies of the effect. Top right: effect of Otx -KO on Brn; bottom right: effect of SoxB1 -KO on FoxA. These plots contain
a great number of outliers that permit a unambiguous qualification of the depicted results.
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Figure 27: Example results for in-silico perturbation experiments on the Endomesoderm Network using sampled param-
eters. The example shown is Hnf6 -KO. Color Codings are as explained in the text.
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considered that have finished simulation runs under both perturbed and unperturbed
conditions. Thus, the compared results differ in each case: Alx1 -KO 187, Blimp1 -KO
207, Bra-KO 274, Brn-KO 288, Dri -KO 203, Ets1 -KO 199, Eve-KO 205, FoxA-KO 240,
FoxB -KO 281, GataC -KO 197, GataE -KO 276, Gcm-KO 227, Gsc-KO 291, Hnf6 -KO
194, Hox -KO 249, Krl -KO 293, Otx -KO 202, Pmar1 -KO 203, snail -KO 271, SoxB1 -KO
147 and Tbr -KO 188.

The sample size on which the the statistical tests are performed thus varies signifi-
cantly in between experimental conditions and is generally about one half of the sample
size used in the core model.

7 Discussion

7.1 Reproduction of Temproal Expression Data in the Core

Model

The core model satisfactorily reproduces most temporal expression profiles and produces
significantly different temporal expression profiles for the different cell types as described
in section 6.1.1. For some genes, the temporal expression profile was not reproduced.
These mismatches between experimental data and simulation results need refinement,
which is - in the best case - based on the integration of new experimental data.

The most striking discrepancies between experimental data and simulation results
apply to expression of GataE and Hox, for which spatial confinement of expression could
not be reproduced. Blimp1 and Brn, too, do not clearly exhibit spatial restriction. This
lack of spatial confinement might be caused by missing repressors that mediate a de-
fault repression or by too little activator insufficiency (these two habits of developmental
signaling pathways are described in section 2.1.3).

Experimentally determined expression of FoxA could also not be reproduced. The
temporal expression pattern of FoxA exhibits an oscillatory behavior. Whether this be-
havior arises from changes in spatial restriction of FoxA expression, inhibition of FoxA

expression by FoxA itself or other mechanisms (as interactions between FoxA and Gcm)is
not determined yet. In the core model, I employed self-inhibition but using the estimated
parameters, the oscillatory behavior could not be reproduced.

The simulated expression of Dkk also disagrees with experimental data. This is due
to the design of the model but the aim was to include Dkk as a realistic suppressor
of Wnt8 activity - a key player in the model by this role - that is not included in the
’Endomesoderm Network’.

7.2 Reproduction of Perturbation Data in the Core Model

The need for more detailed experimental data is obvious when considering the experi-
mental perturbation data. The simulation results show many effects which could not be
verified or falsified because of missing data.

Where comparable experimental data is available, the core model was able to repro-
duce only about one half (8 of 15) of the experimentally determined effects correctly,
indicating that the model demands refinement.
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The effects of Blimp1 MASO injection, namely a reduction in transcriptional activity
of Eve, Otx and Wnt8, is correctly reproduced in the simulations of Blimp1 knock-out.

The perturbation with Eve MASO leads to a reduction of GataE, Hox and Blimp1

transcriptional activity in experiments. Of this experimental data, only the decline in
Blimp1 transcript numbers was accurately reproduced in simulation results using Eve

knock-out conditions.
The experimental findings concerning FoxA MASO experiments are not reproduced

by the simulation results at all.
GataE MASO injection leads to a decrease in Bra, FoxA and Otx transcript numbers

reproduced in the according simulation results. The reduction in Wnt8 transcriptional
activity from experimental data is not reproduced in the simulation results. Instead, Wnt8

transcriptional activity is increased in the simulation results.
The experimentally detected reduction of Brn transcription in Otx MASO experi-

ments is accurately reproduced by the simulation results.
Thus, the Core model shows a high validity when considering only the temporal ex-

pression patterns. That it is not a sensible model that accurately captures the mechanisms
underlying the endoderm and mesoderm specification in the early sea urchin embryo is
shown by comparison of simulation results with experimental data of perturbation exper-
iments. Some genes seem to be accurately modeled (i.e. Otx, Blimp1 ) while others show
significant mismatches between simulation and experimental data (i.e. FoxA and GataE ).

For some genes, the regulation chosen here seem to be correct (reproduction of tempo-
ral expression data, for example Wnt8 ). For other genes, their influence on target genes
chosen here seems valid ( reproduction of perturbation data, for example Blimp1 ). Otx

seems to be realistically regulated but its influence on downstream target genes is flawed.
GataE seems to neither be sensibly regulated nor does sensibly regulate. GataE, FoxA

and the newly added Dkk are the genes for which the core model most urgently needs
revision.

These necessary refinemets might concern simple rewiring of the involved interactions
or the addition of new genes that give rise to more indirect interactions and enable more
complex patterns of expression. Especially, since the experimental data also do not allow
for a certain determination whether the effect of a perturbation is direct or indirect.

A general observation is that a number of specific activators has been found. But, as
shown in section 2.1.3, spatial restriction of expression depends on inhibitory interactions.
It is rather improbable that the endomesoderm specification network of the sea urchin
contains so few inhibitory interactions compared to the number of activatory interactions.

7.3 Core Model and Sampled Parameters

The results of the simulated knock-outs using sampled parameters for the core model are
described in section 6.1.4. I will first discuss to what extend they accurately reproduce
the results of MASO experiments (depicted in Fig.21) and then describe how well they
match the results of simulated knock-out experiments using the estimated parameters.

The experimental results exhibit an early decrease in transcriptional activity for Eve

and Otx in case of Blimp1 MASO injection. These results are accurately reproduced by
the simulation results. The decline in Wnt8 transcriptional activity under Blimp1 MASO
injection is reproduced, although the effect in the simulation results is strongest at 8 and
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14 hpf , whereas this early decrease is not significantly detected in the experimental
results.

Experimental data further indicates a fading in transcriptional activity for GataE, Hox

and Blimp1 when Eve MASO is injected. The reduction of Hox and Blimp1 transcript
numbers is reproduced in the knock-out simulation results while the drop of transcript
numbers of GataE under knock-out conditions compared to normal is not reproduced at
all.

When FoxA MASO is injected, experimental data shows significant increase in Bra

transcription between 30 and 36 hpf and a decrease in GataE transcriptional activity
between 41 and 48 hpf . Both experimental findings cannot be reproduced in the knock-
out simulations.

The injection of GataE MASO leads to a decline in transcript numbers of Bra, FoxA,
Wnt8 and Otx. Although the reduction in FoxA and Otx transcriptional activity is re-
produced in the knock-out simulation results, the reduction in Bra transcription rate is
not reproduced and instead of a reduction of transcriptional activity for Wnt8, Wnt8 is
upregulated in the simulation results.

The experimental finding that, under Otx knock-out, Brn transcriptional activity
declines can be accurately reproduced by the simulation results.

Altogether, five out of ten experimental results are reproduced in the simulations
using sampled parameters.

In the following, I will compare the results of in-silico knock-out experiments using
the sampled and the estimated parameters. Fig.28 illustrates this comparison.

The presented results indicate a high degree of matches between the two sets of
results. Assuming that the estimated parameters are realistic, shades of green represent
accordances between the two sets of results, shades of red in Fig.28 indicate false positives
(effects in the realistic model not detected using the sampled parameters), Black indicates
false negatives (effects detected using the sampled parameters that are not existent in
the realistic model) and cells colored in blue represent changes detected in both sets of
simulations but of opposite nature. For Blimp1, Eve, FoxA and GataE, most cells of the
table show matches between the two sets of simulations with just a few false negatives
and very few false positives. The part of the table depicting the comparison between Otx

knock-out simulations show a significantly higher rate of false positives. This might be
due to the high connectivity of Otx that leads to the establishment of perturbation effects
downstream of the original perturbation.

Fig.29 shows a summary of the results. This summary shows that overall, about 73%
of the single comparisons have similar indications while 16% reveal false negatives and
the rate of false positives is about 8%. Whether these results only hold for relatively small
models as the core model or whether they generally apply to the method of conducting
simulations of knock-out experiments with sampled parameters remains to be determined.
But the result indicate that the method can generate valid results.

The results of the Monte-Carlo knock-out simulations can further be used to character-
ize the robustness of the network. The scatterplots depicted in Fig.30 show an interaction
robust to parameter changes: the scatterplots indicate a recovery of the concentration of
FoxA-mRNA from the effects of the knock-out of Otx.
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Figure 28: Comparison between simulated knock-out experiments using sampled and estimated parameters. Color codings
indicate matches and mismatches between the two sets of simulations: shades of green indicate matches, shades of red
indicate effects detected with the estimated parameters that are not detected using sampled parameters, blue indicates
contrary effects in both sets of simulations, black indicates effects detected using sampled parameters that are not detected
using the estimated parameters.
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Figure 29: Summary of the results presented in Fig.28. Color codings are accordingly: green indicates matches, red and
orange false negatives, blue contradictory effects and black false positives. The second column shows the absolute numbers,
the third column contains according percentages. columns four and five contain sums of percentages from top to bottom.

7.4 Reproduction of Perturbation Data and the Endomesoderm

Model

The results of the in-silico experiments were compared to the experimental data based
on the tables and scatterplots described in section 6.2.

As explained before, most of the scatterplots clearly indicate the effects (or absence
of effects) of the KOs. In the cases of SoxB1 and Otx though, numerous outliers were
observed. These outliers generally form a parallel to the x- or y-axis, indicating expression
either in control or experimental conditions and a complete shutdown of expression in
the other condition(see Fig.26, bottom right plot). Often, both outliers on parallel to the
y-axis and to the x-axis are observable (see Fig.26, top right panel). These outliers hint to
a possible bistabilities of the system that are highly susceptible to parameter changes or
changes in SoxB1 and Otx expression. Further investigation of these phenomena might
reveal intersting properties of the underlying topology.

To compare the computational and experimental data, matches between the two
datasets need to be defined. I define a match between the two datasets if the effect
of a perturbation on a gene’s expression is detected at any timepoint in experimental
data and a similar effect is detected at any timepoint in the simulated data. The two
timepoints at which the effect is detected need not necessarily be the same. This time
independence is necessary because first, the timescale in the simulation might be shifted,
second because some effects are not clearly detected at the anticipated timepoint also a
tendency towards this effect is palpable and third because experimental measurements
are only available for a few timepoints. If a perturbation is shown to have a complex
effect (first an increase and then a decrease in the effected gene’s transcriptional activity,
as the effect of Hnf6 -KO on Krl expression for example), all different elements of the
effect have to be reproduced in the correct temporal order in the computational data to
produce a match.

For an effect to be detected as such in the simulation results, either the analysis of the
scatterplots or according results of more than 2 of the statistical methods are required to
indicate the effect.

The comparison of the detected effects is shown in Fig.31. As seen in the Fig.31,
only 0.425 of the experimental data could be reproduced. This indicates that either the
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Figure 30: Scatterplots showing the robustness of Otx expression under GataE -KO in the core model. The plots show the
results measured at 8 hpf (top left), 14 hpf , 19 hpf (bottom left), 25 hpf (top right), 33 hpf and 45 hpf (bottom right)
Simulation results under control conditions are plotted on the y-axis, simulation results under GataE -KO conditions are
plotted on the x-axis.
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method used to generate the results is inapplicable or the model is flawed. I showed
that the method is applicable to a smaller model and the results as depicted in Fig.26
are generally of comparable quality as the results for the core model (see Fig.24). I also
mentioned that the ’Endomesoderm Network Model’, which the ’endomesoderm model’
is based on, contains some obvious flaws. Furthermore, the data that the network is based
on is poorly documented.

Figure 31: Comparison of experimental and simulated data
for the endomesoderm model. Number of detected effects in
experimental results and matching simulation results for the
KO of each gene listed are shown. Totals are given at the
bottom.

Reference [3] indicates that more ex-
perimental data exists, but this additional
data is not available. This additional data
is classified as ’Genes not effected or shown
to be effected only indirectly’. Includ-
ing this data into the comparison would
greatly improve the result of the compari-
son because ’genes not effected’ in experi-
ments should also not be effected in simu-
lation results when the model is valid and
’genes effected only indirectly’ would also
be detected in the simulation results if the
model is valid. Additional data might thus
help to clarify wether the model is valid or
where it lacks correction in case it is in-
valid. How and why these genes were clas-
sified as irrelevant to the network topology
is not explained and thus the whole quan-
tification must be mistrusted.

Based on these facts, I conclude that
the endomesoderm model, along with
the underlying ’Endomesoderm Network
Model’ is erroneous. The topology of the
model is unable to reproduce the experi-
mental data and must be revised.

Additional information supporting this
conclusion is produced by [1] (ongoing
work): Experiments similar to those in [3]
employing a slightly different set of genes
show contradictory results, especially for
those genes that produce the worst results
here that are also investigated by [1] (Gsc,
Krl). This indicates that the assumed in-

puts and outputs of Gsc and Krl are not realistic in the ’Endomesoderm Network Model’.
The ongoing work might reveal evenmore misconceptions of the ’Endomesoderm Network
Model’ than the comparison of the simulation results to sparse experimental data could
reveal.

When performing the revision of the network and models, special consideration should
be payed to protein interactions, signaling pathways, ubiquitous repressors of transcrip-
tional activity, the presumed key components of the network (as outlined in modeling the
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core model) and computational methods to predict possible binding sites.
The determination of the correct TF binding sites is crucial because neither temporal

expression curves nor perturbation experiments can unambiguously detect interactions
between TFs and genes. Although computational prediction of binding sites is equally
unreliable, it can serve as a basis for efficient experimental verification of TF-gene inter-
actions.

7.5 ’Core Genes’ and Developmental Mechanisms

Since the set of ’core genes’ used here and its function in development is expected to
be conserved among most the deuterostomes [22], the implications gathered from the
modeling and experimental analysis of the sea urchin might prove valuable for further
research even in more complex species.

These ’core genes’ are originally described as ’kernel’ genes (Blimp1, Otx, Bra, FoxA,
GataE and Delta) in [22]. The set of ’kernel genes’ is based on observation that they are
conserved among sea urchins and starfish, which diverged about half a billion years ago
[22]. It is assumed that malfunction among any of these conserved genes has catastrophic
effects on the developing embryo [22]. Since not all ’kernel genes’ are modeled here and to
avoid confusion, I termed the set of genes used in the small model ’core genes’, because
they are partly contained in the set of ’kernel genes’ and are clearly the hubs (nodes
having significant more edges than the other nodes) of the ’Endomesoderm Network’.

The simulation results show that malfunction of the kernel genes is not necessarily
unrecoverable (see Fig.30).

I described a few developmental mechanisms in section 2.1.3. Of these established
mechanisms, the most intricating seems to be the trinity of activator insufficiency, default
repression and cooperative activation. Since many of the genes depicted in the ’Endome-
soderm Network’ 9 are activated by β-catenin/TCF, either the interaction between these
genes and β-catenin/TCF as well as Groucho/TCF has to be experimentally validated
or the interaction has to be changed to an indirect one since most of these genes are still
expressed when Groucho/TCF is assumed to act as the default repressor. Furthermore,
the models developed here should also be checked to whether they truly incorporate these
mechanisms. Nevertheless, spatial confinement is not satisfactorily achieved in the core
model. This is most certainly due to a lack of default repression.

Another important point to clarify when considering these developmental habits and
the canonical Wnt pathway is the experimental data on TCF, β-catenin and Groucho.
Since no data is available, one can either assume that TCF and Groucho concentra-
tions are stable throughout development (thus leading to default inhibition from the
time that nuclear β-catenin is depleted on) or that their concentrations also decrease
from some point in development on (thus relieving the default inhibition mediated by
Groucho/TCF).

7.6 Data

As mentioned numerous times before, the experimental data is very sparse. Although it
seems to be sufficient to establish hypotheses about the molecular mechanisms controlling
development of the sea urchin embryo, it seems to be quite insufficient to verify these
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hypotheses. These hypotheses can also be verified by further experimental research, but
computational (or computationally guided experimental) verification of the hypotheses
is a cheaper and more efficient way.

Most temporal expression data is measured only at long intervals (sometimes only
three measurements between fertilization and 60 hpf). This sparse data does not pro-
vide sufficient data to either estimate sensible parameters or verify a model from the
reproduction of expression data.

No measurements of transcript numbers from early stages of development exist for
most genes. This poses a huge problem to the simulation of ODE models, since no initial
values are known.

As noted earlier, transcript numbers per embryo have to be recalculated to transcript
numbers of cells expressing. A very basic approach has been proposed here (see section
3.2), which urgently needs refinement. The exact amount of cells constituting a certain
territory and the exact spatial expression pattern need to be obtained. Then, the num-
ber of transcripts per cell needs further refinement in distinguishing between cells at the
borders of territories of differential expression. Apart from recalculation of data obtained
from whole embryos, isolated cells could be studied in which the concentrations of ex-
pected TFs that drive the expression of a certain target gene can be controlled externally.

Not only the expression data is too sparse. The perturbation data as given in [3] is just
as sparse. Although it might be a utopistic view to test all perturbations on all possibly
effected genes at numerous timepoints, the results of modeling can produce guidelines
to which perturbations are necessary to provide experimental verification for a certain
model. For more criticism on the available perturbation data, see 7.4.

Since the entire genome of S.pur. is available now, computational tools can be used to
infer TF binding sites on assumed target genes. These inferred binding sites could then
be verified using microarray screenings. Furthermore, the annotation of the 23, 500 genes
can provide vital information and hint to parallels in other orgnanisms.

Another prominent part of the developmental program that is scarcely covered by
experimental data is the part of protein interactions. Most of the parameters involved in
protein interactions relevant to the development of sea urchins are unknown. Furthermore,
it is not even experimentally validated that the canonical Wnt-pathway as depicted here
is correctly applied to the sea urchin. Findings in Xenopus, for example, show that the
Wnt-signaling network is very complex and uses multiple different subpathways for the
transmission of different signals [80, 76].

Indications from ongoing experimental work of [1] show results contradictory to those
given in [3]. If the new results prove to be correct, the whole data that the ’Endomesoderm
Network Model’ is based on must be scrutinized and the network likewise.

8 Conclusions and Outlook

The models presented in this work have been developed using the existing data. Both
models fail to correctly reproduce all available data. This does not mean that the mod-
eling was fruitless. The detection of errors in the established hypotheses concerning de-
velopment in the sea urchin shows that modeling of these hypotheses should have been
attempted before.
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To refine the models and thus drive the research on developmental mechanisms,
a closer collaboration between experimental and computational scientists is necessary.
Based on the current experimental research, hypotheses about the developmental mech-
anisms are established. These can be formulated using mathematical models. Computa-
tional analysis of the models is used to falsify or verify the established hypotheses and
thus guide experimental research. This combined approach should be complemented by
further computational studies using the now available genome sequence of S.pur. and
other resources.

These approaches can lead to an increasing amount of verified single-cell and simple
multicellular models that each capture only rather atomic features of the whole develop-
mental program.

Along with these insights, general characteristics of developmental GRNs will be de-
termined, providing information urgently needed for the automated modeling of GRN
from data. General characteristics can consist of topological features and their character-
ization (network motifs as described in section 2.2.1 , for example) or common dynamic
features (habits of developmental GRNs as described in section 2.1.3, for example).

Using the metaphor of a disassembled car engine again, this increasing number of
verified models corresponds to an increasing knowledge of the function and interplay of
the various parts and subsystems of the engine. The amounting knowledge can - after
exceeding a certain threshold - be employed to reconstruct the engine.

This reconstruction of the developmental program from single pathways and interac-
tions will not be successful or satisfactory upon first attempt (as the models presented
here), but exactly the made errors are the goal: To find incoherences between our under-
standing of the processes and their true behavior enables us to improve our understanding
and refute false assumptions.
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Supplemental Information

The SBML code of the Network and core models as well as detailed simulation results and
documentation on parameter estimation are included on the CD. In case you have no CD,
please try http://www.molgen.mpg.de/∼kuehn or http://www.mi.fu-berlin.de/∼ckuehn.
Contents:

Thesis.pdf electronic version of this document

Thesis.ps likewise

models/ SBML-code of the ODE models and boolean

models in excel format

pet/ details of the parameter estimation

plots_Core/ scatterplots produced from the core model

and sampled parameters

plots_Endomes/ scatterplots produced from the Endomesoderm

Model and sampled parameters

models_KO/ models of the KO experiments using the

core model and estimated parameters

tables_Core/ tables used in the analysis of the core model

tables_Endomes/ tables used in the analysis of the

endomesoderm model

programs/ perl scripts and python programs used in this

thesis
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