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Abstract

Kinetic modeling is one of the major methods in systems biology. Every modeling effort
is highly dependent on (i) information about the underlying metabolic pathways and (ii)
the kinetic data derived from experimentalists. The kinetic data for a model, available
from ever-growing web resources, is often incomplete, hard to accumulate, or simply not
available at all. Incomplete kinetic data is the scope of this thesis; a problem that every
kinetic modeler is faced with.
The introduced approach to cope with incomplete kinetic data is a parameter estimation
within a Bayesian framwork. Its foundations are the dependencies among different
types of kinetic parameters that allow the estimation of missing kinetic parameters by
being provided with other, available kinetic parameters. Furthermore, the approach
is extended by taking inhomogenities in the measuring circumstances (pH value and
temperature) of the input data into account.
The parameter estimation is tested on one small model to check for the reliability of the
results. Moreover, I have examined the results of my approach applied on larger scale
models and created several test scenarios to see the impact of input data variations (e.g.
different pH and temperature values, and the limitation of the input data to several
parameter types).
The comparisons of the original model data to the results of my parameter estimation
approach show the reliability of the latter. Nevertheless, a few problems occurred during
the testing phase. I was able to either solve these problems, or at least identify and
name them in order to prevent their occurence. The application of the introduced
approach will soon be available for users as an extension of the Systems Biology tool
semanticSBML.

Zusammenfassung

Kinetisches Modellieren ist einer der Hauptanwendungsbereiche der modernen System-
biologie. Jeder Modellierungsansatz hängt zum einen von ausführlichem Wissen über
das zu modellierende metabolische Netzwerk und zum anderen von den kinetischen Da-
ten ab, die von Experimentalisten zur Verfügung gestellt werden. Kinetische Daten,
die aus Webressourcen bezogen werden können, sind jedoch oft unkomplett, schwer zu
sammeln oder auch einfach nicht verfügbar. Der Themenbereich dieser Masterarbeit
bezieht sich auf unkomplette kinetische Datensätze; ein Problem, mit dem sich jeder
kinetische Modellierer konfrontiert sieht. Der vorgestellte Lösungsansatz ist eine Pa-
rameterschätzung innerhalb eines Bayesian Framework. Die Grundlage der Schätzung
sind die Abhängigkeiten der verschiedenen Parametertypen untereinander, die es er-
lauben, auf der Grundlage von erhältlichen kinetischen Parametern andere, fehlende
kinetische Parameter zu schätzen. Dieser Ansatz wird noch dadurch erweitert, dass In-
homogenitäten der Messumstände (pH-Wert und Temperatur) der Eingabedaten mit in
Betracht gezogen werden.
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Die Parameterschätzung wird an einem kleinen Modell getestet, um die Verlässlichkeit
der Ergebnisse untersuchen zu können. Darüber hinaus wird die Schätzung auf großska-
lige Modelle angewandt, und es werden verschiedene Testszenarien, welche den Einfluss
von Variationen der Eingabedaten (zum Beispiel verschiedene pH- und Temperatur-
Werte oder die Einschränkung der Eingabedaten auf wenige Parametertypen) simulie-
ren, verwirklicht.
Der Vergleich der erhältlichen, originalen Modelldaten mit den Resultaten meiner Pa-
rameterschätzung zeigen die Verlässlichkeit letzerer. Nichtsdestotrotz traten während
der Testphase auch Probleme auf. Diese Probleme konnte ich entweder lösen, oder doch
zumindest identifizieren und benennen, um ihr Auftreten verhindern zu können. Die
Anwendung des vorgestellten Parameterschätzverfahrens wird als Erweiterung der be-
stehenden systembiologischen Software semanticSBML bald öffentlich erhältlich sein.
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12 1. Introduction

1. Introduction

1.1. Kinetic Modeling in Systems Biology

Systems Biology Systems Biology is the study of organisms via integrated and inter-
acting networks. These networks can include genes, proteins, and biochemical reactions.
Systems biologists are focussed on all of the organisms components and the interactions
among them as part of one system. Living systems cannot be understood completely by
studying just individual parts, sophisticated computational approaches are needed for
this task. The advances in information technology in combination with inexpensive com-
puting power and comprehensive databases have significantly increased the importance
and feasibility of mathematical modeling, and the simulation of complex biochemical
processes (Kriete & Eils, 2006).

Kinetic Modeling The broad field of kinetic modeling in Systems Biology comprises
the examination of metabolic networks by the use of mathematical models. These models
represent the structure and the dynamics of a model in order to predict their behaviour
under different conditions. Kinetic data from experiments are needed to make numeric
simulations possible.

1.2. Kinetic Data

Problem: The Incompleteness of Kinetic Data The connection between iterative
experimental testing and mathematical modeling of the interactions of cellular compo-
nents is one definition of Systems Biology (Kitano, 2002). The modeling cycle comprises
the first step of developing a model using experimental data, the usage of the model for
a prediction of its behaviour, and finally the validation of this prediction. The predic-
tion, either valid or not, is used for alterations on the model in order to gain improved
predictions.
There exists a strong dependence of the modeler on the experimentalists. Since the
computational modeler wants to produce models as close to nature as possible, a vast
number of experimental results is needed. Despite an ever-growing number of biochem-
ical data, the modeler will always be facing the problem of incomplete knowledge about
the corresponding biochemical networks. On the one hand, this is due to the fact that
metabolism is a broad and partially unexplored field, on the other hand, it is not easy to
collect all the available experimental knowledge. Finally, of course not every measurable
value has already been measured.

Why are Kinetic Data Important? The analysis of any metabolic network in com-
bination with proven predictions can be considered one more step in solving the uncer-
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tainties of biology. With growing knowledge about biochemical reactions and pathways,
scientists becomes more capable of understanding biological processes. While this con-
clusion is very globally spoken and can have a significant impact on human life (e.g.
by pharmaceutical sciences), it does originate in the small things. The bottom-up ap-
proach proposes the understanding of biology by investigations on the pathways and
networks. The knowledge about pathways and networks is derived from our knowledge
about the underlying reactions. Reactions themselves - as well as the involved species
- are characterized via their kinetic parameters: equilibrium constants, turnover rates,
Michaelis constants, velocity constants, and many more. The more we know about these
parameters, the better we can step by step build up our knowledge about everything
they and their corresponding reactions stand for.
The analysis of networks and efforts to cope with incomplete data are widely spread
and known. Among others, the tool anNET (Zamboni, Kuemmel & Heinemann, 2008)
is an example of such investigations and has been established as good working basis
for a network-embedded thermodynamic analysis. AnNET uses a constraint-based ap-
proach for the analysis of fluxes and parameter estimation. Similar to this approach
is the constraint-based flux-balance analysis of Holzhütter et al. (Hoppe, Hoffmann &
Holzhuetter, 2007), both of which underlie several difficulities, since they rely on hardly
provable optimality principles. The parameter estimation tool SBML-PET (Zi & Klipp,
2006) supports the import and export of model data in the format SBML (see Chapter
2.1), while the parameter estimation itself is performed via a stochastic ranking evolu-
tion strategy (SRES). A wide range of accessories is provided by Potters Wheel (Raue,
Kreutz, Maiwald, Bachmann, Schilling, Klingmuller & Timmer, 2009) that work on the
profile likelihood approach. It can detect ”structural and practical non-identifiabilities”
on the basis of functionally related model parameters. The output is given in form of
confidence intervals corresponding to the likelihood.

An Example Network Having a look at an example network (see Figure 1.1) makes it
possible to explain the data we are dealing with when analyzing biochemical networks
via mathematical modeling. We can see three species involved in two reactions, which is
considered to be the biochemical network, or, in kinetic modeling terms, the model. The
second type of information we need are the kinetic parameters for the model (formation
energies, rate constants, or concentrations of the involved species).

The obvious problem of this model and the given data is incompleteness of the kinetic
parameters. Although large numbers of these parameters are stored in ever-growing web
resources (e.g. Brenda (Barthelmes, Ebeling, Chang, Schomburg & Schomburg, 2007)
and Sabio-RK (Wittig, Golebiewski, Kania, Krebs, Mir, Weidemann, Anstein, Saric &
Rojas, 2006)), we cannot assume that we are given an equilibrium constant for every
reaction of the model, a turnover rate for every species, or every single Michaelis con-
stant we need. Furthermore, it is improbable that the given values from the literature or
databases are comparable at all, since they might have been measured under completely
different circumstances (pH, temperature, etc.), or might not at all be appropriate for
a specific model (Chassagnole, Rais, Quentin, Fell & Mazat, 2001).
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14 1. Introduction

Figure 1.1.: An example network: The model itself (species and reactions) can be pro-
vided in SBML, the kinetic parameters G(0) (Gibbs free energy of forma-
tion), kM (Michaelis constant), keq (equilibrium constant), kI (inhibitory
constant), and kA (activation constant) can be taken from SBtab kinetic
parameter files (see Chapter 2.3). These can also include more parame-
ter types than shown in the figure (e.g. turnover rates, velocity constants,
enzyme concentrations, or reaction affinities).

1.3. Data Representation

How are the Data Represented? The parameter estimation approach introduced in
this thesis is using two different kinds of data: the biochemical network model and the
corresponding kinetic parameter sets. While biochemical models can be provided in the
markup language SBML, kinetic parameter sets for the models (including kinetic data
like Gibbs free energies, turnover rates, inhibition constants, and many more) are often
available in the form of spreadsheets of differing syntaxes. An effort to establish a gen-
eralized form for this data is the SBtab format (which is currently under development,
see Chapter 2.3); the kinetic parameter tables used for my approach are provided in this
format.
The Systems Biology tool semanticSBML (Krause, Uhlendorf, Lubitz, Schulz, Klipp &
Liebermeister, 2010) will be the interface for the automatization of parameter balancing.
SemanticSBML comprises possibilities to annotate, modifiy, and merge SBML models.
It will be extended to integrate quantititative data from SBtab files into corresponding
SBML models with the possibility of automated parameter balancing. Another Systems
Biology tool, SBMLfill (Liebermeister, Uhlendorf & Klipp, 2010), realizes the integra-
tion of the data into the model.

1.4. Parameter Balancing

What is my Approach to Solve the Problem? Assuming an SBML model and a
corresponding incomplete kinetic data set in SBtab format are given, the goal is to
obtain as much information on the whole network as possible, based on

1. the model,

2. the kinetic parameters,

Timo Lubitz Parameter Balancing in Kinetic Models
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3. and information taken from literature or web resources.

My approach to retrieve this information is a parameter estimation within a Bayesian
statistical framework (Liebermeister & Klipp, 2006). The thermodynamic and kinetic
data is integrated, and a distribution of parameter values describing thermodynamically
feasible model parameters is obtained. I receive an incomplete parameter set for a
model and by taking this set and any available data from literature and web resources
into account, the missing parameters can be estimated.
The key to these estimations are the constraints between certain kinetic parameters:
biochemical reactions and their corresponding kinetic parameters need to be seen as a
whole in their underlying network. If information on several parameters in the network
is available, further information on the missing parameters can be derived from this
knowledge. There are many laws and relations among the parameter types, which will
be called dependencies. Examples for these dependencies are the Haldane relationship
(relating the equilibrium constants of the reactions with the turnover rates and the
Michaelis constants of the metabolites) or another relationship linking the Gibbs free
energies of formation with the equilibrium constants. Based on the dependency derived
from this relationship, we can calculate the equilibrium constant of a reaction with
only a small effort, as soon as the Gibbs free energies of the reactions metabolites are
available.
When taking these and even more relations among the parameter types into account, a
set of connected parameters can be obtained that offers the possibility to be estimated by
one another, if certain parameters are missing. As further knowledge, a prior distribution
of values generated from web resources will be needed. Having the model, a set of kinetic
parameters and the prior values, I am able to perform parameter estimates within a
Bayesian framework. The underlying workflow considering the input/output data is
visualized in the flowchart of Figure 1.2.

In addition to the former works (Liebermeister & Klipp, 2006; Borger, 2008) I add
the possibility of a temperature and pH value regression that allows the user to take
the measuring circumstances of the input data into account for the balancing process.
It is important to note that the measuring circumstances can have significant influence
on the magnitude of several parameter type values. The Gibbs free energies as well as
the equilibrium constants are directly dependent on the temperature and pH value they
have been measured in. Furthermore, a consideration of reaction affinities and Gibbs
free energies will be a part of my work. A graphical user interface will be guiding the
user through the process of parameter balancing and the integration of the results into
the model file.

What do I Expect to Achieve by my Approach? The extensive testing of this pa-
rameter balancing approach on several SBML models with corresponding kinetic data
sets will show, whether my approach can generate reliable data that is a contribution to
the scientific community. If the results are turning out to be appropriate, an approach
to conquer the problems of incomplete kinetic data sets for biochemical models by sta-
tistical estimations can be offered.
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Figure 1.2.: Chart of the workflow: semanticSBML is taking an SBML model file and
an SBtab file with an incomplete corresponding kinetic parameter set as
input. It balances the kinetic parameters in order to complete them. The
user can choose a rate law to be attached to the reactions of the model.
The balancing results will be the kinetic parameters of these attached rate
laws. Optionally, the user can export the balanced kinetic parameter set as
an SBtab file.
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2. Materials and Methods

The materials and methods section is mainly focussing on the formats of the input data
(SBML and SBtab), the tools that are used for the manipulation of the data, and the
parameter balancing process in detail.

2.1. SBML - a Format for the Mathematical
Representation of Biochemical Models

The Systems Biology Markup Language (SBML) (Hucka, Finney, Sauro, Bolouri, Doyle,
Kitano & others, 2003) is an XML based, computer-readable format for representing
computational models of biological systems. It has been developed since 2000 for all
kinds of Systems Biology software tools. In the growing amount of available file for-
mats, SBML is intended to be a generalization for the mathematical representation of
biochemical models. Meanwhile, it is accepted by large parts of the Systems Biology
community and due to its open accessibility it is constantly improved by software de-
velopers and users.
SBML is able to store many kinds of information needed for dynamic modeling and for
performing simulations on the models. It works on a list based structure, holding lists
of reactions, species, compartments, parameters, etc. The list elements can be of many
different types, some of the most important ones are

Compartment holds the information, where a species is located.

Reaction describes how certain entities (reactants) are transformed into other entities
(products). They have assigned kinetic rate expressions describing their speed.

Species are the single metabolites and other molecules in a certain compartment.

Parameters are numerical values defined globally or locally for a certain reaction.

The SBML representation of a reaction contains several lists of elements, which are
mostly optional. First, it holds lists of reactants and products, and second, a list of
modifiers. The underlying kinetic law for the reaction can be found as well as a list of
parameters for the law. The corresponding SBML code to such a reaction is shown in
Table 2.1.

By using SBML as standard format, the usability of a software is significantly in-
creased, since more and more software developers and users revert to it. There exists
a growing number of available SBML models and the agreement of using generalized
standard formats like SBML is improving the collaboration of scientists everywhere.
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<?xml ve r s i on =”1.0” encoding=”UTF−8”?>
<sbml xmlns=”http ://www. sbml . org /sbml/ l e v e l 2 / ve r s i on3 ” . . . >
<model name=”EnzymaticReaction”>
. . .
<l i s tO fReac t i on s>
<r e a c t i o n id=”veq”>
<l i s tOfReac tant s>

<s p e c i e s R e f e r e n c e s p e c i e s=”ES”/>
</l i s tOfReac tant s>
<l i s tOfProduct s>

<s p e c i e s R e f e r e n c e s p e c i e s=”E”/>
<s p e c i e s R e f e r e n c e s p e c i e s=”S”/>

</l i s tOfProduct s>
<kineticLaw>
<math xmlns=”http ://www. w3 . org /1998/Math/MathML”>
<apply>
<t imes/>
<c i>cyto so l </c i>
<c i>kcat</c i>
<c i>ES</c i>

</apply>
</math>
<l i s tOfParameters>
<parameter id=”kcat ” value =”0.1” un i t s=”p/ s”/>

</l i s tOfParameter s>
</kineticLaw>

</reac t i on>
</ l i s tO fReac t i on s>

</model>
</sbml>

Table 2.1.: The XML based SBML code (Level 2, Version 3) for a reaction holds the
obligatory lists of reactants and products next to informations on the kinetic
law and a list of parameters.

2.1.1. MIRIAM Annotations

Annotations are a way to describe the elements of a model by unique identifiers. These
identifiers are linked to vast biochemical web resources, such as KEGG (Kanehisa &
Goto, 2000) or ChEBI (Degtyarenko, de Matos, Ennis, Hastings, Zbinden, McNaught,
Alcantara, Darsow, Guedj & Ashburner, 2008). A lot of information can be gained
for every annotated element via the database identifier (e.g. the name, structure, or
molecular weight). They are usually taken from the SBML source code. MIRIAM
(“Minimal Information Requested In the Annotation of Biochemical Models”) is a
concept that defines what appears in the annotation and how it is stored (Le Novère,
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Finney, Hucka, Bhalla, Campagne, Collado-Vides, Crampin, Halstead, Klipp, Mendes &
others, 2005). One model element can have several MIRIAM Annotations from different
web resources.

2.1.2. SBO Terms

The Systems Biology Ontology (Laibe & Le Novère, 2007) is a set of controlled vo-
cabularies and ontologies tailored specifically for the kinds of problems that Systems
Biology is confronted with, especially in the context of computational modelling. Just
like MIRIAM annotations, SBO terms can be found in the SBML source code, and they
characterize model elements in either a very general (e.g. as “entity”) or in a more
specific way (e.g. as ”receptor”). Just like by using MIRIAM annotations, a user can
link detailed information to a model element by assigning it a specific SBO identifier.
In contrast to MIRIAM, SBO terms focus rather on what is described than how it is
described.

2.1.3. libSBML

libSBML (Bornstein, Keating, Jouraku & Hucka, 2008) is an open-source library for the
manipulation of SBML models. It can be imported into an application and be used for
manipulation and validation of models written in SBML. It is written in C and C++,
but provides language bindings for Python and several other programming languages.

2.2. SBMLfill - a Tool for the Integration of
Standardized Kinetic Rate Laws Into SBML Models

SBMLfill (Liebermeister, Uhlendorf & Klipp, 2010) is an SBML based web application.
The tool (see Figure 2.1 for the graphical user interface) allows the user to attach
standardized kinetic rate laws to the reactions of an SBML model. The model can be
uploaded together with a corresponding parameter table file in the SBtab format (see
Chapter 2.3). If such an SBtab file is available and valid, its content can be inserted into
the rate laws that will be attached to the reactions of the model. All the rate laws are
based on the same parameter types. In case the user does not have a parameter table,
it is possible to attach standardized kinetic rate laws to the reactions of the model with
all the parameters set to a default value of 1.

When inserting the rate law into the SBML model the user has to make several choices.
The default type of enzyme activation can be set to either complete, partial, or specific,
the default type of enzyme inhibition can be set to the same options. Furthermore,
it is feasible to comprise enzymes in rate constants and to overwrite the existing rate
laws of the SBML model. Since the kinetic constants in the model need to satisfy the
Wegscheider conditions as well as the Haldane relationships, it would be of advantage
to apply a thermodynamically safe parametrisation using independent parameter sets
(Liebermeister & Klipp, 2006). The choice of the rate law itself is the most crucial of
the users choices. Provided by the tool are five types of rate laws, each applicable under
different conditions (see Table 2.2). All of the rate laws are depending on the same
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Figure 2.1.: Graphical user interface of SBMLfill: A user can upload an SBML model
and a corresponding SBtab parameter file. A rate law can be chosen as well
as the integration criteria. The content of the parameter file will then be
inserted into the model.

parameter types (shown in Table 2.7). Inserting the kinetic rate laws into the SBML
file demands the availability of these parameter types including a designated parameter
value. The mathematical background concerning these rate laws can be found in the
corresponding publication (Liebermeister, Uhlendorf & Klipp, 2010).

Common Modular Rate Law (CM) Generalised form of the Michaelis-Menten kinet-
ics. It is based on a random-order enzyme mechanism and resembles the con-
venience kinetics (Liebermeister & Klipp, 2006) with only a slight difference for
molecularities.

Direct Binding Modular Rate Law (DM) Is comparable to the CM-rate law, but con-
tains just the substrate and product terms of the highest order. By doing so, the
reaction rate is generally higher than that of the CM-rate law at the same param-
eter values (especially at low concentrations).

Simultaneous Binding Modular Rate Law (SM) The reaction rates are lower, espe-
cially at high concentrations.

Power-Law Modular Rate Law (PM) A mass action kinetic.

Force-Dependent Modular Rate Law (FM) serves for thermodynamic studies.

Table 2.2.: The five rate laws of SBMLfill that are offered to be attached to the reactions
of a given SBML model.
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2.3. SBtab - an Effort to Standardize Table Formats

SBtab is a standardized table format for Systems Biology data, which is currently under
development (Liebermeister & Klipp, ). Each type of SBtab, stored in the file format
.tsv (tab separated values), is characterized by a set of conventions and holds different
types of information. A list of possible SBtab data types is given in Table 2.3.

• Reactions

• Enzymes

• Compounds (Species)

• Genes

• Chemical reactions

• Biochemical quantities (like parameters and corresponding values)

Table 2.3.: Different types of SBtab files: the format can hold tabular information on
reactions, enzymes, compounds, genes, reactions, biochemical quantities, and
more.

Each of these SBtab tables has certain obligatory columns and, furthermore, several
optional columns. As an example, the “Enzyme SBtab” needs to provide the columns
“Enzyme”, “CatalyzedReaction”, and “Gene”. The optional columns are “Catalyzed-
ReactionID”, “KineticLawID”, “KineticLawName“, ”EnzymeRegulation“, ”GeneID“,
and ”GeneCombination“. All the columns ending on ”ID“ are referring to database
identifiers, like for instance those of the KEGG or ChEBI web resources. An SBtab for
”Enzyme“, stored in .tsv-format and fulfilling the upper criteria, is shown in Table 2.4.

Enzyme CatalyzedReaction Gene GeneId
spermine oxidase oxygen oxidoreductase HSA:54498(SMOX) EC:1.5.3.16
ATP citrate synthase citrate cycle (TCA cycle) HSA:47(ACLY) EC:2.3.3.8
hexokinase Glycolysis HSA:3098(HK1) EC:2.7.1.1

Table 2.4.: Example for an ”Enzyme“ SBtab file: The required columns (Enzyme,
CatalysedReaction, and Gene) are provided, moreover the optional column
GeneID.

As the ”Enzyme SBtab“ stands as a simple example, this thesis is mainly focussing
on a specific type of SBtab, the ”KineticData“ SBtab. This SBtab type provides a
table of different kinetic parameters referring to biochemical reaction kinetics. The
obligatory columns of this SBtab are ”QuantityType“ (the parameter type), ”Reaction“,
”Compound“, and ”Value“; a ”KineticData“ SBtab is shown in Table 2.5.
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QuantityType Reaction Compound Value Unit
inhibitory constant vATP P 1 mM
concentration - Glyc 0.02 mM
concentration - ADP 0.1 mM
equilibrium constant vGly ATP 0.1 mM
Michaelis constant vATP P 1 -

Table 2.5.: Example for a ”KineticData” SBtab file: This file holds information on ki-
netic data for a corresponding model. Next to the required columns (Quanti-
tyType, Reaction, Compound, and Value), this SBtab also holds an optional
column “Unit” for the unit of the content in the ”Value“-column.

The content of a ”KineticData“ SBtab is the kinetic parameter set of a biochemical
model. Inserting this kinetic data into an existing SBML model is a task that can be per-
formed using SBMLfill (see Chapter 2.2) (provided the insertion criteria are matched).
Similar to SBML, SBtab is a generalized standard format. But other than SBML, the
SBtab format is not yet introduced and published for the scientific community.

2.4. semanticSBML

SemanticSBML (Krause, Uhlendorf, Lubitz, Schulz, Klipp & Liebermeister, 2010) is a
Systems Biology tool for the annotation, modification, and merging of SBML models.
While the tool is already freely available on the internet (www.semanticsbml.org) we
are constantly improving and extending it.
The tool was written in Python and the graphical user interface (GUI) developed under
the Python GUI extension PyQt (see Figure 2.2).

After having opened an SBML model, the user can perform the following actions on
it:

Annotate A new tab will be opened that allows the user to add, remove, or modify
the annotations of the model. SBO terms can be added or removed, and further
information on the model elements can be obtained.

View The view option opens a new window showing the selected SBML model in a graph
view (generated with GraphViz (Ellson, Gansner, Koutsofios, North & Woodhull,
2001)).

Check Several semantic checks on the validity of the model are performed, and in case
of invalidity errors are returned:

1. Annotation errors: annotations are missing or cannot be interpreted.

2. Duplicate elements errors: model elements are annotated with identical data-
base identifiers.

3. Overlapping compartments errors: compartments are physically overlapping.
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Figure 2.2.: The starting screen of semanticSBML: The user can open/close SBML mod-
els and perform several actions on them.

4. Atom number balance errors: the atom numbers in a chemical reaction are
not conserved.

Merge Enables the user to merge two or more SBML models. Duplicate elements are
removed, semantic errors can be solved automatically or manually. The difficulty
of this operation is the recognition of similarity in model elements. The elements
can be annotated with identifiers from different databases, yet still be the same
in a biological context. Finding these similarities requires an internal database
including the identifiers from a list of several web resources. This internal database
is provided by semanticSBML and is build up at the first start.

2.5. Internal Database MetNetDB

An important part of estimation within Bayesian frameworks is the availability of a
prior distribution of values. Thus, it is crucial to have access to large sets of kinetic
parameters. This task is performed using our internal database for kinetic parameters,
MetNetDB (Borger, 2008) (not to be confused with the Metabolic Network Exchange
Database, MetNetDB, from the National Science Foundation Arabidopsis). It holds
data that is collected from many different sources. Next to a large amount of published
kinetic data taken from single publications, MetNetDB offers the access to data from
the online databases KMedDB (http://sysbio.molgen.mpg.de/KMedDB) and Brenda
(Schomburg, Chang, Hofmann, Ebeling, Ehrentreich & Schomburg, 2002). Overall the
MetNetDB contains slightly over 100000 parameter values that are divided into the
parameter types shown in Table 2.6.

It is an advantage to be provided with such a huge kinetic database, since the distribu-

Parameter Balancing in Kinetic Models Timo Lubitz



24 2. Materials and Methods

Name Abbreviation Amount

Gibbs free energies of formation G(0) 10629
Michaelis constants kM 62740
Inhibitory constants kI 12827
Species concentrations c 755
Equilibrium constants keq 2088
Turnover rates (forward/backward) kcat 12083

Table 2.6.: Table of kinetic parameters taken from MetNetDB.

tion of prior values is crucial for the estimation. Nevertheless, the MetNetDB contains
no values for activation constants, which is a small drawback for the used approach.

2.6. Parameter Estimation

Parameter estimation is a basic part of kinetic modelling. In this work I am imple-
menting, extending, and applying an estimation approach within a Bayesian framework
(Liebermeister & Klipp, 2006). Some of the parameter values can be measured in exper-
iments and integrated into the mathematical calculations in the ”SBtab KineticData“-
format (see Chapter 2.3) or likewise. Having obtained a set of parameters for an SBML
model, this set will not necessarily be complete. In order to achieve a complete param-
eter set, the given parameters can be used for an estimation of the missing ones. This
estimation is based on linear relationships between the independent model parameters
and the resulting dependent ones.
Let θ denote a vector of the logarithmic system parameters and let x be a vector holding
various derived logarithmic parameters. x can be calculated by the linear relation

x(θ) = Rx
θθ, (2.1)

where Rx
θ is a dependence matrix derived from the network structure. It represents

all the relationships between the parameters and realizes the estimation of missing pa-
rameters via available parameters. The parameter types are

The system parameters should mainly be provided by the user’s input file, while the
dependent parameters can be estimated by the dependencies on the system parameters.

2.6.1. Bayes Estimation

The introduced parameter estimation will take place within a Bayesian framework.
Bayes estimation (Gelman, 2004) can be considered a probabilistic approach that uses
input data (in this case the experimental measurements of kinetic parameters) and ex-
pectations about the model parameters (prior distribution of values) for the estimation
of a posterior distribution. This distribution contains the information how plausible
a certain parameter set appears in correspondance to the prior and experimental data.
Shown in Equation 2.1 is a linear relationship that makes it easy to use the experimental
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G(0) Gibbs free energies of formation
kM Michaelis constants for the reaction metabolites
kI Inhibitory constants for the reaction metabolites
kA Activation constants for the reaction metabolites
E Enzyme concentrations (one enzyme per reaction)
c Metabolite concentrations
kV Velocity constants for the reactions (geometric mean rate constant)
keq Equilibrium constants for the reactions
kcat Turnover rates (forward and backward) for the reactions
vmax Maximal velocities (forward and backward) for the reactions
G Gibbs free energies
A Reaction affinities

Table 2.7.: The list of the parameter types to be estimated.

measurements for the parameter balancing. The posterior distribution depends on the
prior distribution and the likelihood function. The prior reads

θ = N (θ(0), C(0)), (2.2)

with a probability density p(θ), mean vector θ(0), and a diagonal covariance matrix
C(0). Our likelihood function p(x∗|θ) represents a simple model of the measurement
process: the experimental values x∗ are assumed to equal the values predicted by the
model (plus uncorrelated additive Gaussian noise), hence

x∗ = N (x(θ), Cx), (2.3)

with a diagonal covariance matrix Cx = diag(σ)2. For the computation of the poste-
rior, instead of p(θ|x∗), consider the function

F (θ) = (θ − θ(0))
TC−1

(0)(θ − θ(0)) + (x∗ − x(θ))TC−1
x (x∗ − x(θ)), (2.4)

where F (θ) is assumed to be a quadratic function. As x(θ) is linear, the two terms
are quadratic in θ and the corresponding posterior is Gaussian.

The posterior probability density reads p(θ|x∗) ∼ p(x∗|θ)p(θ). N (θ(1), C(1)) is the
multivariate Gaussian distribution with mean and covariance matrix

C(1) =
(
C−1

(0) + (R(0))TC−1
x R(0)

)−1

(2.5)

θ(1) = C(1) ·
(

(R(0))TC(−1)
x x∗ + C−1

(0)θ(0)

)
(2.6)

These formulae are obtained by equating 2.4 to a single quadratic function
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(θ − θ(0))
TC−1

(0)(θ − θ(0)) + (x∗ − x(θ))TC−1
x (x∗ − x(θ)) = (θ − θ(1))

TC−1
(1)(θ − θ(1)),(2.7)

and solving for θ(1) and C(1).

θ(1) is an estimation for the given parameter values x∗ and can be extended by using
the complete dependence matrix Rx

θ that carries the parameter dependencies not only for
the given values, but for every kinetic parameter value of the model. The construction
of these necessary vectors and matrices will be elucidated in the next section.

2.6.2. Preparation of Vectors and Matrices

The parametrisation of an entire biochemical network via vectors and matrices is conve-
nient. This usually includes as a basis the stoichiometric matrix N and the regulation
matrix W (for details see example below).
An overview of the needed vectors and matrices can be found in Table 2.8.

x∗ Vector holding the parameter values that are provided by the user. They are ex-
tracted from the SBtab parameter file and assumed to be incomplete, i.e. not
every kinetic parameter in the model has an assigned value. If there is more than
one value available for a parameter, this vector will hold the same amount of
values.

Cx The diagonal covariance matrix holding the covariances for the values in x∗.

θ(0) Vector holding an average value from the prior distribution for every independent
parameter in the model that shall be estimated. This prior distribution is obtained
by the MetNetDB.

C(0) The diagonal covariance matrix holding the covariances for the values in θ(0).

Rx
θ Dependence matrix for the estimation of the parameters. It contains dependence

rows for every parameter to be estimated.

R(0) Dependence matrix that corresponds to Rx
θ . Unlike Rx

θ , it holds only the rows of
the parameters that are in fact provided in the given parameter set and lacks the
parameter rows that are not provided. It can be thought of as an incomplete Rx

θ

matrix.

Table 2.8.: Overview of the vectors and matrices needed for parameter estimation.

The calculation of the parameter values in Table 2.8 will be described in the following.

Thermodynamic Dependence Between Parameters

When it comes to estimating missing values, the dependencies between parameter types
is crucial. This chapter enlists the dependencies of the parameters that are realized in
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the dependence matrix Rx
θ , and by that are integrated into the process of parameter

balancing. Background information on the shown dependencies are provided in the
corresponding publication (Liebermeister, Uhlendorf & Klipp, 2010).
Derived from the second law of thermodynamics, the Gibbs free energies of formation in
a metabolic system determine the equilibrium constants of the reactions. The natural
logarithm of an equilibrium constant for a reaction l denotes

ln keq
l = −

∑
i

nilG
(0)
i /RT, (2.8)

where nil is the stoichiometric coefficient of metabolite i in reaction l and G
(0)
i is

the Gibbs free energy of formation of metabolite i. R is Boltzmann’s gas constant
(R ≈ 8.314J/(molK)), T is the absolute temperature.

The Gibbs free energy for substrate binding ∆G
(0)
li links the Gibbs free energies of

metabolites l and i with the corresponding Michaelis constants kM:

∆G
(0)
li = RT ln kM

li . (2.9)

Apart from upper equations, the Haldane relationship will play an important role. It
can be expressed in logarithmic form as

ln keq
l = ln kcat

+l − ln kcat
−l +

∑
i

nil ln k
M
il , (2.10)

and it does realize the dependencies between the equilibrium constants keq, the turnover
rates kcat

± , and the Michaelis constants kM. The calculation of the forward and backward
turnover rates kcat

± of a reaction l can be achieved by

ln kcat
±l = ln kV

l ±
1

2

∑
i

nil((G
(0)
i )/RT + ln kM

li ). (2.11)

A look at the maximal velocities vmax
± shows their influence on the enzyme concen-

tration E, the velocity constants kV, the Gibbs free energies of formation G(0), and the
Michaelis constants kM.

ln vmax
±l = lnEl + ln kV

l ±
1

2

∑
i

nil((G
(0)
i )/RT + ln kM

li ) (2.12)

For this parameter balancing approach I am newly introducing the estimation of con-
centration dependent Gibbs free energies G and the reaction affinities A. The calculation
of these values is denoted as

Gi = G
(0)
i + ln ci ·RT, (2.13)
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with ci as the concentration of metabolite i (the concentrations formulated in the unit
of the standard concentration 1 mM) and

lnAl = −
∑
i

nilG
(0)
i −

∑
i

nil ln ci ·RT. (2.14)

These equations are implying that parameters in the whole network are coupled and
dependent on each other. This fact is crucial when trying to estimate certain parameter
types via other parameter types. An overview of the dependencies is shown in Table
2.9.

G(0) kV kM E c
keq X - - - -
kcat
± X X X - -

vmax
± X X X X -

G X - - - X
A X - - - X

Table 2.9.: Parameter type dependencies, according to the model parameters (x-axis)
and the dependent parameters (y-axis). A checkmark denotes the depen-
dence among the parameter types.

Provided Parameter Set and Prior Distribution

The user provides an SBtab file that contains numeric values for the kinetic parameters
of the model. The logarithms of these parameter values are stored in a large vector
(except for the G(0) values, where the actual value is taken) x∗. The size of this vector
is dependent on the provided parameter set. It can contain multiple values for one
single parameter (measured under the same or under different conditions) or the model
parameters can be completely lacking any measured value. Corresponding to the vector
x∗ I can compute the diagonal covariance matrix Cx.
Next to x∗ and Cx a prior distribution is needed for the parameter estimation. For my
parameter set θ the prior distribution is defined as a multivariate Gaussian distribution
N :

θ = N (θ(0), C(0)) (2.15)

The formula provides the prior mean vector θ(0), holding a mean value for every
model parameter I want to estimate. These mean values are taken from the MetNetDB.
Analogously to x∗ and Cx, C(0) describes the corresponding prior diagonal covariance

matrix to θ(0).
The last thing needed for the parameter estimation are the two related matrices Rx

θ and
R(0).
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Construction of Dependence Matrices

The dependence matrix Rx
θ represents all the dependencies between the parameter types

(see Table 2.9) and thus realizes the possibility of estimating missing parameters via
other, given parameters. The construction of Rx

θ is dependent on the given metabolic
network and can be illustrated by a small example network (Liebermeister & Klipp,
2006) (see Figure 2.3).

Figure 2.3.: Small example network with 3 species and two irreversible reactions: species
S1 is converted to species S2, which is then converted to species S3. More-
over, S1 activates reaction V1, species S3 inhibits V1.

The corresponding stoichiometric matrix N (can be obtained from the SBML source
code) and the regulation matrix W are shown in Figure 2.4.

Figure 2.4.: Corresponding stoichiometric matrix N and regulation matrix W . The
columns of N are referring to the reactions of the network, the rows are
the species. If a position of N holds a 1, the species is produced in the reac-
tion, a -1 denotes the consumption of the species. The regulation matrix W
works analogously, except for the columns referring to species and the rows
referring to reactions. A value of -1 in W denotes an inhibitory influence, 1
is an activation.

Assuming that all system parameters, equilibrium constants, turnover rates, and max-
imal velocities can be measured, the matrix Rx

θ reads:
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· · · · · · 1 · · · · · · · · ·
· · · · · · · 1 · · · · · · · ·
· · · · · · · · 1 · · · · · · ·
· · · · · · · · · 1 · · · · · ·
· · · · · · · · · · 1 · · · · ·
· · · · · · · · · · · 1 · · · ·
· · · · · · · · · · · · 1 · · ·
· · · · · · · · · · · · · 1 · ·
· · · · · · · · · · · · · · 1 ·
· · · · · · · · · · · · · · · 1
1 −1 · · · · · · · · · · · · · ·
· 1 −1 · · · · · · · · · · · · ·

−1
2

1
2

· 1 · 1
2
−1

2
· · · · · · · · ·

· −1
2

1
2

· 1 · · 1
2
−1

2
· · · · · · ·

1
2
−1

2
· 1 · −1

2
1
2

· · · · · · · · ·
· 1

2
−1

2
· 1 · · −1

2
1
2

· · · · · · ·
−1

2
1
2

· 1 · 1
2
−1

2
· · · · 1 · · · ·

· −1
2

1
2

· 1 · · 1
2
−1

2
· · · 1 · · ·

1
2
−1

2
· 1 · −1

2
1
2

· · · · 1 · · · ·
· 1

2
−1

2
· 1 · · −1

2
1
2

· · · 1 · · ·
1 · · · · · · · · · · · · 1 · ·
· 1 · · · · · · · · · · · · 1 ·
· · 1 · · · · · · · · · · · · 1
1 −1 · · · · · · · · · · · 1 −1 ·
· 1 −1 · · · · · · · · · · · 1 −1



where the upper part is an identity matrix and every row corresponds to one system
parameter (dots represent zeros). The lower part is showing the dependence of the
equilibrium constants, turnover rates, maximal velocities, Gibbs free energies, and the
reaction affinities to the system parameters, based on lnkeq = −NTG(0)/RT . The
dependence matrix Rx

θ can be written in block matrix form
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G(0) kV kM kA kI E c

G(0)

kV

kM

kA

kI

E
c
keq

kcat
+

kcat
−
vmax

+

vmax
−
G0

A



I · · · · · ·
· I · · · · ·
· · I · · · ·
· · · I · · ·
· · · · I · ·
· · · · · I ·
· · · · · · I

−NT/RT · · · · · ·
1
2
NT/RT I −1

2
Z · · · ·

−1
2
NT/RT I 1

2
Z · · · ·

1
2
NT/RT I −1

2
Z · · I ·

−1
2
NT/RT I 1

2
Z · · I ·

I · · · · · RT · I
−NT · · · · · −NT ·RT


where N is the stoichiometric matrix and each column of the matrix Z corresponds to

one of the kMli values (for a reaction l and metabolite i):

kM
11 kM

12 kM
22 kM

23

v1

v2

 −1 1 · ·
· · −1 1


This corresponds to the stoichiometric coefficients of reaction l and zeros for every

other reaction. Keeping this block matrix form in mind, it is now necessary to perform
several alterations on it. The following construction of R(0) is depending on the given
kinetic parameters. If the vector x∗ holds a value for a specific parameter, then the
corresponding parameter row from Rx

θ is also a part of R(0). Otherwise, if there is no
value for a certain parameter of the model, the corresponding row from Rx

θ does not
appear in R(0). Furthermore, if there are multiple values for one single parameter, this
leads to duplications of the corresponding rows. If four values for a single parameter are
given, the corresponding row from Rx

θ is appearing four times in R(0). If parameters for
the example model in the form of a ”KineticData“ SBtab are provided, the parameter
set can look like shown in Appendix A.1. Given the example network (see Figure 2.3)
in SBML format and the parameter set (see Appendix A.1) in SBtab format, I can
construct the incomplete dependence matrix R(0), based on the complete Rx

θ and the
given parameters (see Table 2.10).

This matrix R(0) is the foundation of the parameter estimation, it can even be ex-
tended to take the pH values and temperatures as differing measuring circumstances
into account (see Chapter 2.6.4).
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G
(0)
1 G

(0)
2 G

(0)
3 kM

11 kM
12 kM

22 kM
23 kA

11 kI
13 E1 E2 c1 c2 c3

G
(0)
1

G
(0)
1

G
(0)
1

G
(0)
3

kM
11

kM
11

kM
12

kI
13

kI
13

c2

keq
1

keq
1

kcat
+1



1 · · · · · · · · · · · · ·
1 · · · · · · · · · · · · ·
1 · · · · · · · · · · · · ·
· · 1 · · · · · · · · · · ·
· · · 1 · · · · · · · · · ·
· · · 1 · · · · · · · · · ·
· · · · 1 · · · · · · · · ·
· · · · · · · · 1 · · · · ·
· · · · · · · · 1 · · · · ·
· · · · · · · · · · · · 1 ·
1 −1 · · · · · · · · · · · ·
1 −1 · · · · · · · · · · · ·
−1

2
1
2

· 1
2
−1

2
· · · · · · · · ·



Table 2.10.: The corresponding R(0)-matrix for my given network. Only the lines with
provided parameters are present (compare to the input data in Table A.1).
If multiple parameter values are given, the lines for this value are duplicated
as well. If one parameter value is missing, the corresponding line does not
appear in R(0).

2.6.3. Calculation Specifics

There are several conditions concerning the calculations that have to be mentioned. It is
important to note the distributions I work with, and how my tool handles mean values
of multiple entries, or reacts on missing standard deviations.

Log-normal Distributions

In order to be able to work with linear relationships between the parameter values, I
am working with log-normal distributions (with the exception of the G(0) values). If the
logarithm of the value is normal distributed, its probability distribution is a log-normal
distribution (Aitchison & Brown, 1969). One value can be described as log-normal, if
it is able to be the multiplicative product of positive independent random variables:
Since the values are normal distributed, it is possible to perform multiplications with
the matrices (see Chapter 2.6.5) and again retrieve normal distributed values as a result.
The linear relationships and normal distributions are consistent, but the mean values
are difficult to translate (due to the dependence on the standard deviation). A possible
solution is the use of the median. Since the mean and standard deviation of the value
are known, parameters µ and σ of the parameter value can be obtained as
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µln = ln(µ)− 1

2
ln

(
1 + (

σ

µ
)2

)
, (2.16)

and

σln =

√
ln

(
1 + (

σ

µ
)2

)
. (2.17)

Computing a Mean Over Multiple Parameter Values

When the given kinetic data includes more than one value for a parameter, its mean
value can be computed for the use in further calculations. If the vector of values for
parameter x is xi and the corresponding standard deviations are σi, the mean can be
calculated as

x =

∑
i
xi
σ2
i∑

i
1
σ2
i

. (2.18)

The corresponding standard deviation to x is

σx =

√
1∑
i

1
σ2
i

. (2.19)

.

Coefficient of Variation

If a parameter entry with a mean value is given, but no corresponding standard de-
viation, a default standard variation that is based on the coefficient of variation, is
constructed. This is the ratio between the standard deviation and the mean:

cv =
σ

µ
, (2.20)

where σ is the default standard deviation chosen arbitrarily by the user (or taken
from standard prior values provided by the tool).

Pseudo Equilibrium Constants

Performed tests of the parameter balancing approach have revealed problems when it
comes to the lack of certain input data. The missing of equilibrium constants has
the biggest influence on many other parameters (such as the velocities, the turnover
rates, and the reaction affinities). In case of a missing equilibrium constant, the tool
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automatically generates a new one via the dependence on the Gibbs free energies. Since
these energies are often provided with high standard deviations and their magnitude
itself differs from the other parameter types (for Gibbs free energies no logarithmic
value is used, see 2.6.3), the produced equilibrium constants are often inappropriately
high and unstable.
To avoid the generation of missing equilibrium constants via the Gibbs free energies, I
have introduced pseudo equilibrium constants. If the equilibrium constant of a reaction
in a model is missing in the input data, the program automatically generates a pseudo
constant that corresponds to the prior values for equilibrium constants. The prior mean
generated from the MetNetDB denotes 2980.96, with a standard deviation of 8886110.0.
These values originate in the assumption of the logarithm of the underlying value to be
balanced at 0 (equilibrium). Using pseudo equilibrium constants for a newly generated
equilibrium constant is a big advantage in comparison to a value generation via the
Gibbs free energies, which is demonstrated in the results section. Furthermore, their
use can be described as equivalent to an alteration of the prior data for Gibbs free
energies of formation, which makes extreme equilibrium constant values unlikely.

2.6.4. Regression of Temperature and pH Values

A significant influence on the parameter values is exerted by the measuring circum-
stances. The Gibbs free energies of formation and the equilibrium constants directly
depend on the temperature and the pH values they have been measured in. It would
be appropriate to take these circumstances into account in order to be able to generate
more reliable estimation results. Fortunately, often the kinetic parameter values from
the MetNetDB are coming with a corresponding temperature and pH value.
The calculation of a Gibbs free energy of formation in dependence of the corresponding
temperature denotes

G
(0)
T = G

(0)
T(0)
·∆T, (2.21)

where T is the temperature that is delivered together with the value, T(0) is the
desired temperature for the reaction, and ∆T is the difference between the two. The
calculation of a dependence on the pH value works analogously. Having in mind the
generation of the dependence matrix Rx

θ , I have to come up with a method to integrate
this dependence into the structure of the matrix. Until so far, the matrix rows for the
parameter entries of the Gibbs free energies of formation are corresponding to the unity
matrix. By expanding these specific rows in reference to Equation 2.21 the temperature
and pH values can be taken into account. In addition to the unity matrix now the values
for dG(0)/dpH and dG(0)/dT values are integrated as factors for the Gibbs free energies
of formation and for the equilibrium constants. The resulting matrix is shown in Table
2.11.

For the calculation of the dG(0)/dT, respectively dG(0)/dpH values not only the pro-
vided value is needed but also a favoured value. In my implementation this value is set
to a default of 300 K for the temperature and a pH value of 7. The user is able to alter
these values according to the requirements.
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G
(0)
1 G

(0)
2 G

(0)
3 G

(0)
T G

(0)
T G

(0)
T G

(0)
pH G

(0)
pH G

(0)
pH kM

11 ...

G
(0)
1

G
(0)
1

G
(0)
1

G
(0)
3

kM
11

kM
11

kM
12

kI
13

kI
13

c2

keq
1

keq
1

kcat
+1



1 · · ∆T · · ∆pH · · · ...
1 · · ∆T · · ∆pH · · · ...
1 · · ∆T · · ∆pH · · · ...
· · 1 · · ∆T · · ∆pH · ...
· · · · · · · · · 1 ...
· · · · · · · · · 1 ...
· · · · · · · · · · ...
· · · · · · · · · · ...
· · · · · · · · · · ...
· · · · · · · · · · ...
1 −1 · 1 ·∆T −1 ·∆T · 1 ·∆pH −1 ·∆pH · · ...
1 −1 · 1 ·∆T −1 ·∆T · 1 ·∆pH −1 ·∆pH · · ...
−1

2
1
2

· · · · · · · 1
2

...



Table 2.11.: The final R(0) matrix including the new columns for pH and temperature
regression. It includes the columns G

(0)
T and G

(0)
pH for temperature and pH

regression. According to that, the rows of the G0 values and the equilibrium
constants have to be extended corresponding to their different temperature
and pH values. The dG(0)/dpH and dG(0)/dT values are representing the
differences between provided value and favoured value.

Finally it is important to note that the newly integrated columns hold the dG(0)/dpH
and dG(0)/dT values for the measuring circumstances of Gibbs free energies of formation
and the equilibrium constants (if available), but are always set to zero for every other
kind of parameter type. Furthermore, the necessity for using this regression method is
that there are more than only one value for the specific parameter provided by the input
file.
The only difference in this approach for Gibbs free energies of formation and equilib-
rium constants, is the multiplication of the dG(0)/dpH and dG(0)/dT values with the
stoichiometric matrix instead of the unity matrix. For clarification please see Table 2.11.

2.6.5. Parameter Balancing

By now I have constructed the vector of given parameter values x∗, the correspond-
ing diagonal covariance matrix Cx, as well as the prior distribution vector θ(0) and its
corresponding prior diagonal covariance matrix C(0). Furthermore I have the complete
dependence matrix Rx

θ and the related R(0). Being equipped with these vectors and
matrices the parameter estimation (Liebermeister & Klipp, 2006) can be realized. The
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posterior covariance matrix C(1) is calculated as

C(1) =
(
C−1

0 + (R(0))TC−1
x R(0)

)−1
. (2.22)

The posterior mean vector θ(1) denotes

θ(1) = C(1) ·
(

(R(0))TC(−1)
x x∗ + C−1

(0)θ(0)

)
. (2.23)

Until now I only have constructed the estimation for the given values according to
the prior distributions. In order to gain the whole vector of parameter values and the
complete covariance matrix I have to include the complete dependence matrix Rx

θ into
my calculation:

xfit = Rx
θθ(1), (2.24)

and

C(xfit) = Rx
θC(1)(R

x
θ )

T. (2.25)

The vector xfit is holding one estimated value for every parameter appearing in the
model, the covariance matrix C(xfit) contains the corresponding covariances.

2.7. SBML Models Under Examination

For classifying the powers of my parameter estimation I have tested it on different
models with various parameter sets. In order to adjust and configure the big number
of matrices and vectors that are constructed out of the model and the model data, I
have chosen a very small SBML model. The phosphofructokinase reaction will be the
foundation for my testings. The other models, numerous in reactions and species, will
deliver estimation results that have to be tested for their reliability. An overview of the
examined models can be found in Table 2.12.

• Phosphofructokinase reaction

• Nazaret citrate cycle model (Nazaret, Heiske, Thurley & Mazat, 2009)

• Teusink glycolysis model (Teusink, Passarge, Reijenga, Esgalhado, van der Weij-
den, Schepper, Walsh, Bakker, van Dam, Westerhoff & others, 2000)

• Chassagnole threonine model (Chassagnole, Rais, Quentin, Fell & Mazat, 2001)

Table 2.12.: The SBML models used in this thesis.

Timo Lubitz Parameter Balancing in Kinetic Models



37

3. semanticSBML Extension

This chapter gives on overview of the implementation results. I have extended the se-
manticSBML GUI for the parameter balancing approach with numerous options and
possibilities. A detailed description of these functions including screenshots and impor-
tant hints can be found in the appendix A.2, while this chapter only holds an extract
concerning its most important informations.

I have implemented a user-friendly interface for working on parameter estimation and
data integration by extending the existing Systems Biology tool semanticSBML (see
Chapter 2.4). Apart from the available functions of SBMLfill, I added the possibility to
access, modify, and integrate kinetic data into an SBML model. The automated process
of parameter balancing is part of this implementation as well.
The insertion of model parameters including parameter balancing via the semanticSBML
user interface can be performed in five steps:

1. Open an SBML model and use the Fill option in semanticSBML (explained in
Appendix A.2.1): This new option offers the possibility to choose a kinetic rate
law that is attached to the reactions of the model. Several insertion options, similar
to those of SBMLfill (see Chapter 2.2), are available.

2. Open an SBtab parameter file that corresponds to the model (explained in Ap-
pendix A.2.2): The user can open an SBtab file, perform a validation test on its
semantics, and has the possibility to do alterations on the file’s content.

3. Automatically generate a new SBtab that matches all SBML insertion criteria
(explained in Appendix A.2.3): In order to match the strict insertion criteria, a
new SBtab file is generated automatically. It consists of the users SBtab file and
entries for those parameters that are required, but not provided by the users SBtab
file.

4. Optional: insert default values (explained in Appendix A.2.4): default mean values
from the prior distribution are attached to the newly generated parameter entries
in the second SBtab file.

5. Start parameter balancing for the parameter set (explained in Appendix A.2.5):
parameter balancing is performed. Several options are available (setting a favoured
pH value and temperature, excluding certain parameter types from the balancing
process).

6. Insert the kinetic rate laws and the balanced parameter set into the SBML model
(explained in Appendix A.2.6): the user can attach the favoured kinetic rate laws
to the model. The balancing process has produced the parameter values for the
kinetic rate laws.
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The implementation is working stable for any SBML model, while the SBtab files are
underlying strict criteria. The extensive manual to the GUI is located in the Appendix
A.2.
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4. Parameter Estimation on Models

This chapter contains the testing of my parameter balancing approach on several SBML
models. In order to configure and adjust all the complex calculations for the matrices
and vectors that need to be generated for every model, I chose to test the program’s
abilities on a very small model. The whole model can be analyzed and its corresponding
vectors and matrices checked by hand, to assure their correctness. Since they are build
automatically for any kind of input model, this process has to be checked in detail
to prevent possible implementation errors. I will perform the subsequent parameter
balancing processes for larger scale models, using visualization methods provided by
Highcharts (www.highcharts.com). The upcoming analyzes comprise:

Phosphofructokinase reaction This reaction is a small model that will hold for
extensive testings of the parameter balancing process and its several options:

1. Collecting all the data vectors and matrices needed for parameter balancing
(see Chapter 4.1.1).

2. Performing a simple parameter balancing (see Chapter 4.1.2).

3. Checking the balancing result for thermodynamic validity (see Chapter
4.1.3).

4. Estimations of the missing equilibrium constant (see Chapter 4.2).

5. Parameter balancing with temperature and pH value regression (see
Chapter 4.2.1).

6. Parameter balancing with limited input concerning the parameter types
(see Chapter 4.2.2).

Citric acid cycle For the model of the citric acid cycle by Nazaret et al. (Nazaret,
Heiske, Thurley & Mazat, 2009) I am performing

1. a parameter balancing with temperature and pH value regression (see
Chapter 4.3),

2. and a repairing of thermodynamic invalidities of the input data (see
Chapter 4.3.1)

Glycolysis model Parameter balancing for the whole glycolysis model by Teusink et
al. (Teusink, Passarge, Reijenga, Esgalhado, van der Weijden, Schepper, Walsh,
Bakker, van Dam, Westerhoff & others, 2000) (see Chapter 4.4).

Threonine model Parameter balancing for the whole threonine model by Chassagnole
et al. (Chassagnole, Rais, Quentin, Fell & Mazat, 2001) (see Chapter 4.5)
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A table that holds information on the models can be found in Appendix A.3.1: the
amount of reactions and species, the available data on MetNetDB, the original model
data, and comparisons of the latter with the balanced results.

4.1. Configuration and Adjust: the Phosphofructokinase
Reaction

Figure 4.1.: The phosphofructokinase reaction: fructose-6-phosphate becomes fructose-
1,6-bisphosphate under the conversion of ATP to ADP. The enzyme phos-
phofructokinase catalyses the reaction, and ATP is inhibiting the reaction.

For the configuration, adjust, and detailed analysis of the parameter balancing process
and its options, I have chosen the small model of the phosphofructokinase reaction
(PFK) (see Figure 4.1), which is part of the glycolysis: it describes the conversion of the
metabolite fructose-6-phosphate into fructose-1,6-bisphosphate by adding a phosphate
group. The enzyme phosphofructokinase catalyses the reaction, and ATP is consumed
and converted to ADP. The analysis of such a small model is actually no waste of
time, since even the very extensive Sabio-RK database (Wittig, Golebiewski, Kania,
Krebs, Mir, Weidemann, Anstein, Saric & Rojas, 2006) does not hold a complete kinetic
parameter set for it. Available are only one concentration, one Michaelis constant,
the reaction affinity, and the maximal velocity. In contrast, the parameter set that is
obtained be the parameter balancing, can be found in Table A.4 in the Appendix.
My objective is to gain a complete kinetic parameter set, hence the program analyses the
input model (PFK reaction) via its SBML code. The code delivers the information on
how many species, reactions, and/or modifiers there are, and which kinetic parameters
will be needed to describe the model in a whole. A list of every kinetic parameter needed
for the PFK reaction is shown in the Appendix Table A.4.
The process of parameter balancing requires the generation of several matrices and
vectors (listed and explained in Chapter 2.6). In the following, I describe how these
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matrices and vectors are built for the example of the PFK reaction. They can be
divided in the model data x∗ and Cx that is provided by the user, the prior distribution
θ(0) and C0 derived from MetNetDB, and finally the dependence matrices Rx

θ and R(0).

4.1.1. Collecting the Required Data for the Parameter Balancing of
PFK Reaction

Model Values for PFK Reaction: x∗ and Cx The model values are without excep-
tion obtained by the data that is provided by the user in the SBtab file format. This
model data is assumed to be incomplete, since several kinetic parameters cannot be
measured, have not been measured, or simply are not available for the user. In order
to get first balancing results, I am submitting an incomplete SBtab file to the program,
which holds values for the concentrations of the species, the inhibitory constant, the
Michaelis constants, and the standard chemical potentials. The values are originat-
ing mainly from Brenda (Barthelmes, Ebeling, Chang, Schomburg & Schomburg, 2007)
and KMedDB (http://sysbio.molgen.mpg.de/KMedDB), but also in several cases from
yeastGFP (Chen, Zhao, Gordon & Murphy, 2007) and some single publications (Beyer
et al. (2004), MolCellProt, Greenbaum et al. (2002), Bioinformatics). An extract of
this initial incomplete kinetic parameter set is shown in the Appendix A.4. The incom-
plete parameter set is representing the model data and by that will be my foundation in
constructing the model vector x∗ that consists of the logarithmic values of the given pa-
rameter values (please note that the Gibbs free energies of formation are not calculated
as logarithms). The prior vector x∗ for the PFK reaction consists of

• 20 Gibbs free energies of formation,

• 19 concentrations,

• 14 Michaelis constants,

• and 8 inhibitory constants (Please note that the inhibitory constant entries car-
rying only a reaction, but no compound, are automatically removed, since they
cannot be identified clearly. Furthermore, the inhibitory constants that appear in
the SBtab holding the wrong compound (ADP instead of ATP) are removed as
well (seldomly wrong assignments might occur)),

and so adds up to a vector of 61 entries. These entries have been measured in 24
different organisms. The largest fraction holds 6 entries (Rattus sp.), followed by Rattus
norvegicus and Saccharomyces cerevisiae (both 4 entries). Corresponding to the entries
of the x∗ vector, the diagonal covariance matrix Cx is of the dimension 61x61 and holds
on its diagonal the covariances for each of the given values. The covariances are taken
from the given standard deviations in the SBtab file, for which we denote

Covx = σ2
x, (4.1)

where Covx is the covariance of the measured parameter value x and σx is the standard
deviation. As it is shown in Table A.4, not every parameter value comes with a stan-
dard deviation. Often this column is set to ’-’, because there is no standard deviation
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available. In this case we use the default standard deviation for the specific parameter
type. This default value is taken from a list of averages for each parameter type, taken
from the data of the MetNetDB. This data is also the foundation for the next step, the
generation of the prior distribution.

MetNetDB data for prior distribution of PFK Reaction: θ(0) and C0 The reason-
able choice of a prior distribution is crucial for the success of the parameter balancing
approach: everytime a parameter value is missing in the input data, this value has to
be generated from the knowledge of the other parameters and the prior distribution.
A prior distribution can be generated by collecting extensive information on parame-
ter values from web resources. The prior distribution that I have constructed for the
parameter balancing is referring to the data available in the MetNetDB (see Chapter
2.5). It comprises 101.122 parameter values. The calculation of average values for each
parameter type is shown in Table 4.1.

Parameter type Average of values Standard deviation Amount of values

Gibbs free energy of formation -435.15 kJ/mol 642.99 10629

Michaelis constant 15.5 mM 392.1 62740

Inhibitory constant 11.9 mM 173 12827

Concentration 1.42 mM 4.5 755

Equilibrium constant 2980.96 8886110.0 2088

Turnover rates 1898 1/s 26757 12083

Table 4.1.: The prior distribution derived from MetNetDB. Used for the prior vector
θ(0) and the prior covariance matrix C0 are the logarithmic values of the
parameter type averages. The generation of these values is explained in
Chapter 2.6.3.

The prior distribution consists of average values from the MetNetDB and the corre-
sponding standard deviations. kV values (geometric mean rate constant) are derived
from the turnover rates kcat. Pseudo equilibrium constants (see Chapter 4.2) are gener-
ated by the values for the equilibrium constants. Since Table A.4 shows which parame-
ters are needed for the model, the corresponding values from the prior distribution can
be obtained. The values that cannot be obtained by the MetNetDB (maximal veloci-
tites, reaction affinities), are excluded from the prior distribution, and the estimation of
these values will be realized via the dependence matrices.
Given this data I construct a prior vector θ(0) of length 15. It consists of the logarithmic
values for the following parameter types (the mean of the logarithm in brackets):

• 4 Gibbs free energies of formation for the 4 species

• 1 catalytic rate constant geometric mean for the reaction (0.66)

• 4 Michaelis constants for the species involved in the reaction (-0.86)

• 1 inhibitory constant for the species ATP (-1.95)
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• 4 species concentrations (-0.92)

• 1 enzyme concentration (-0.92)

Corresponding to this prior vector of length 15 the prior covariance matrix C(0) of the

dimension 15x15 is constructed, holding the covariances of the values in vector θ(0).

The Dependence Matrices for PFK Reaction: Rx
θ and R(0) Finally, the dependence

matrices have to be built. The matrix Rx
θ , representing the dependencies among the

parameter types and build up like shown in Chapter 2.6.2, has the dimension of 26x15.
Its y-axis (length = 15 columns) corresponds to the system parameter values that can
also be found in vector θ(0). Meanwhile, the x-axis (length = 26 rows) corresponds
to the same values as the y-axis plus the dependent parameter types: one row for the
equilibrium constant, two rows for the turnover rates forward and backward, two rows
for the maximal velocities forward and backward, five rows for the G values and one
row for the reaction affinity, which adds up to the amount of 26 rows. How this matrix
looks like is described in Chapter 2.6.2 in detail.
The dependence matrix R(0), which holds all the rows of Rx

θ for which we have measured
values in our model data, has the dimension of 61x15. Its 15 columns are obviously
referring to the same entries of the system parameters that can be found in the complete
Rx
θ matrix. Each of the values that is given in my model data (length of vector x∗:

61) represents one of the 61 rows. By now I have constructed the model data, the
prior values, and the two dependence matrices. Given these vectors and matrices I can
perform the parameter balancing according to Chapter 2.6.5.

4.1.2. Parameter Balancing for the PFK Reaction

Given the required matrices and vectors, the parameter balancing can be performed.
The balancing results for the PFK reaction referring to our given model data and the
prior distribution are shown in Table 4.2. The several influences on the values can be
seen easily: while the automatically generated parameter entries that did not provide
an input value are similar or equal to their corresponding prior values generated from
MetNetDB, the other parameter values are mutually influenced by the prior values, their
provided input values, and the standard deviation.
The results show serious problems concerning the magnitude of the dependent parameter
types: the equilibrium constant, the turnover rates, the maximal velocities, and the
reaction affinity are unusually high. Since the equilibrium constant for the appearing
reaction was not provided by the input data, it had to be constructed automatically. By
that, it is strongly depending on the given Gibbs free energies and their prior standard
deviations (the prior standard deviation is used for them, because they were not provided
with one in the input data). I assume that the prior standard deviation of the Gibbs
free energies of formation is responsible for the high values of the equilibrium constants,
and the other dependent parameter types. To fix this problem, an option will be added
to the GUI that creates ”pseudo equilibrium constants” in case of missing constants, in
order to keep the values in a sensible range, instead of relying on the values of the Gibbs
free energies. This is equivalent to the choice of a better prior standard deviation for
the Gibbs free energies.
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QuantityType Reaction Compound Unit Value Std µ(ln) σ(ln)

Gibbs free energy of formation - F16P kJ/mol -1695.02 10.35 - -

Gibbs free energy of formation - ATP kJ/mol -1643.38 10.35 - -

Gibbs free energy of formation - F6P kJ/mol -1101.83 10.35 - -

Gibbs free energy of formation - ADP kJ/mol -1061.63 10.35 - -

geometric mean rate constant PFK-reaction - 1/s 426.76 1277.38 4.91 1.52

Michaelis constant PFK-reaction F6P mM 2.18 7.46 -0.49 1.59

Michaelis constant PFK-reaction F16P mM 2.18 7.46 -0.49 1.59

Michaelis constant PFK-reaction ATP mM 0.02 0.002 -3.97 0.08

Michaelis constant PFK-reaction ADP mM 1.09 1.94 -0.63 1.19

inhibitory constant PFK-reaction ATP mM 0.21 0.01 -1.58 0.05

concentration of enzyme PFK-reaction PFK mM 0.93 1.79 -0.85 1.25

concentration PFK-reaction F6P mM 0.93 1.79 -0.85 1.25

concentration PFK-reaction F16P mM 0.93 1.79 -0.85 1.25

concentration PFK-reaction ATP mM 2.02 0.43 0.68 0.21

concentration PFK-reaction ADP mM 1.22 0.21 0.19 0.17

equilibrium constant PFK-reaction - 9.0e+16 8.3e+31 4.59 8.30

turnover rate forward PFK-reaction - 1/s 2.8e+06 1.1e+11 4.28 4.6

turnover rate backward PFK-reaction - 1/s 9.8e+06 3.9e+11 5.53 4.6

maximal velocity forward PFK-reaction - 1/s 2.6e+06 2.2e+11 3.43 4.77

maximal velocity backward PFK-reaction - 1/s 9.2e+06 7.8e+11 4.68 4.77

Gibbs free energy PFK-reaction ATP mM -1641.68 10.37 - -

Gibbs free energy PFK-reaction F6P mM -1103.96 10.81 - -

Gibbs free energy PFK-reaction ADP mM -1061.17 10.36 - -

Gibbs free energy PFK-reaction F16P mM -1697.15 10.81 - -

reaction affinity PFK-reaction - mM 7.3e+17 3.3e+33 5.09 8.49

Table 4.2.: Overview of the balancing result for the PFK reaction. The newly generated
equilibrium constant and other dependent values are unrealistically high. A
solution to this problem is offered in Chapter 4.2.
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4.1.3. Check of the Thermodynamic Dependencies of the
Balancing Results for PFK Reaction

It is of big importance to check, whether the results of the parameter balancing are
thermodynamically feasible in reference to the relationship of the equilibrium constants
and the Gibbs free energies of formation (see Chapter 2.6.2). It denotes

ln keq
l = −

∑
i

nilG
(0)
i /RT

ln(9.0e+ 16) = −(−1061.63kJ/mol− 1695.03kJ/mol

+1101.83kJ/mol + 1643.38kJ/mol)/RT

4.59 = 11.45kJ/mol/RTX,

where R is Boltzmann’s gas constant (R ≈ 8.314J/(molK)), and T is the absolute
temperature. The relationship is confirmed and it holds with the balanced values. The
further dependencies that are described in the corresponding chapter have to be valid by
construction, since they are realized by the dependence matrix Rx

θ . Since I am testing the
validity of the approach, the check for these dependencies can be found in the Appendix
A.4.2.

4.2. Estimation of the Missing Equilibrium Constant for
the PFK Reaction by Using a Pseudo Constant

As visible in the output Table 4.2, the dependent system parameters are unnormally
high in magnitude. I am introducing the approach of using pseudo equilibrium con-
stants to cope with this problem: There exists a direct connection between the Gibbs
free energies of formation of the substrates and products of a reaction and the equi-
librium constant, which is derived from the second law of thermodynamics and can be
seen in Equation 2.8. To lessen the dependence of the equilibrium constants on the
Gibbs free energies of formation, pseudo constants are used. Such a pseudo constant
holds the mean value 2980.96 and the standard deviation 8886110.0. These are values
derived from knowledge about our database (for further information see Chapter 4.2),
and their use should show a significant improvement in comparison with the equilibrium
constants being unexceptionally dependent on the Gibbs free energies. In order to test
the functionality of this approach, the parameter balancing process on the PFK reac-
tion model is performed another time, now with a provided equilibrium constant. The
results are shown in the Appendix Table A.5 and they refer only to those parameter
types that we have encountered problems with in the first balancing. The results of the
dependent parameters have significantly improved, the equilibrium constant now has
the value 1837.77. Also the other dependent parameters have taken on more reasonable
values.
It is still important to note that these ocurring problems are only due to the fact of
completely missing equilibrium constants. If a user provides values for the equilibrium
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constants, the balancing results seem very appropriate according to their numeric val-
ues. An example for a parameter balancing for the PFK reaction including a provided
equilibrium constant can be found in the Appendix A.4.4.

4.2.1. Balancing With pH Value and Temperature Regression

An important part of my work is the regression of different pH values and temperatures
according to Chapter 2.6.4. Such a regression can be performed for the Gibbs free en-
ergies of formation and the equilibrium constants, but it is necessary that the user’s
SBtab input file is providing the pH values and temperatures for the parameters. The
input data for this analysis is mainly taken from the Brenda web resource (Schomburg,
Chang, Hofmann, Ebeling, Ehrentreich & Schomburg, 2002), the value for the equilib-
rium constants originate from Nissler et al. (Nissler, Otto, Schellenberger & Hofmann,
1983). The important parts of the input data are shown in the Appendix A.4.5. Apart
from the need for provided temperature and pH values, the user has to choose favoured
values for these parameters. In this example, I set the desired values to a temperature
of 300 K and a pH value of 7. The balanced parameters referring to the input dataset
are given in Table 4.3. According to these circumstances and under the influence of the
Gibbs free energies, the equilibrium constant for the PFK reaction evolves from a mean
input value of 0.013 to a value of 0.0004, with a corresponding standard deviation of
0.003.

QuantityType Reaction Compound Value Std Unit

Gibbs free energy of formation - F16P -1686.06 9.05 kJ/mol

Gibbs free energy of formation - ATP -1652.35 9.05 kJ/mol

Gibbs free energy of formation - F6P -1110.81 9.05 kJ/mol

Gibbs free energy of formation - ADP -1052.66 9.05 kJ/mol

...

equilibrium constant PFK-reaction - 0.0004 0.0003 -

...

Table 4.3.: Parameter estimation including pH value and temperature regression. The
desired pH value is 7, the desired temperature is 300 K. The standard bio-
chemical potentials have all been set to a pH value of 5 and to a temperature
of 360 K.

If the same input data is taken and the favoured circumstances are varied to 310 K and
a pH value of 8, the balancing results (shown in Appendix A.4.6) show the equilibrium
constant at a value of 0.0002, and the corresponding standard deviation at 0.001. As
visible in Appendix A.8, the Gibbs free energies are differing only slightly from the
formerly balanced values. The equilibrium constant that is provided with different pH
values and temperatures (taken from (Nissler, Otto, Schellenberger & Hofmann, 1983))
is sensitive referring to the desired temperature, and behaves differently at different
target values.
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4.2.2. Balancing with Limited Input

The input data that is provided by the user for the underlying model is most likely
incomplete. How are the values behaving when the majority of the parameter types
is omitted? Given the same input table as for the first balancing (see Table A.4), all
the Michaelis constants, inhibitory constants, and concentrations are removed. Instead,
I append an equilibrium constant (mean value = 0.53, std = 0.17) to the input data
set. In fact, the input data is reduced to only equilibrium constants and Gibbs free
energies of formation. The balanced result is shown in the Appendix A.4.7. The choice
of these two parameter types is due to the dependence Table 2.9, which shows, they
have the biggest influence on the other kinetic parameter types. Furthermore, the re-
sults show that the balanced Gibbs free energies of formation are not differing from the
formerly balanced ones. The newly generated values for Michaelis constants, concentra-
tions, turnover rates, and the geometric mean rate constant are very close to their prior
counterpart.
Being provided with the Gibbs free energies of formation and the values for the equi-
librium constant, it is possible to estimate the missing parameters. The dependend
parameters are generated in dependence to the Gibbs free energies, while the system
parameters are resembling the corresponding mean values of the prior distribution.

The PFK reaction has served me as a very detailed example for the analysis of the
parameter balancing process. I have tested the simple balancing process, the impact of
pH value and temperature regression, as well as the use of pseudo constants, and the
limitation of the input data to several parameter types (in this case Gibbs free energies
of formation and equilibrium constants). In the following chapters, I will examine larger
scale models.

4.3. pH Value and Temperature Regression on the
Citric Acid Cycle

The model of the citric acid cycle (Nazaret, Heiske, Thurley & Mazat, 2009) will pro-
vide an example of the pH value and temperature regression under strongly differing
conditions. Details on the amount of species, reactions, parameters, and available data
are shown in Appendix A.3.1. The MetNetDB provides data on two of the equilibrium
constants of the model (21 values for reaction v3, 11 values for reaction v6). Further-
more, it holds 60 Gibbs free energies of formation, which is important to denote, since
the balancing results of equilibrium constants and Gibbs free energies of formation are
so closely related. The first balancing is performed without a regression. After that I
set the input data to different fictitious temperatures and pH values to show the dif-
fering results: the values evolve due to the differences in measuring circumstance. The
favoured pH value is set to 7, the favoured temperature to 300 K. Figure 4.2 shows the
results of the different balancings.

The balancing results get bigger, the more the temperature and pH value differ from
the desired values (temperature: 300 K, pH: 7). The values become very large due to
the standard deviations of the Gibbs free energies of formation.
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Figure 4.2.: Temperature and pH value regression in the citric acid cycle: The blue
bars are representing the equilibrium constant of reaction 3, the red bars
represent reaction 6. On the left hand side of the black bar, the input data
and the balanced result without any regression is shown. The right hand
side of the black bar shows the balanced results under the circumstance
of different input temperatures and pH values: the further the pH values
and temperatures are moving away from the desired values, the higher the
balanced results become.
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4.3.1. Repairing Thermodynamical Dependencies via Parameter
Balancing

The kinetic parameter set for a model that is provided by the user does not automatically
hold valid for the thermodynamic dependencies that are shown in Chapter 2.6.2. I want
to check, whether a kinetic parameter input set for the citric acid cycle that does not
hold the relationship of equilibrium constants and Gibbs free energies of formation (see
Equation 2.8), can be balanced by the parameter balancing approach, so that it does.
The focus lies on the reaction v6, a 2-oxoglutarate aminotransferase, that converts alpha-
ketoglutarat (KG) to oxaloacetate (OAA). The inconsistent parameter set, derived from
NIST and Alberty, is shown in Table 4.4

QuantityType Reaction Compound Value Std Unit

Gibbs free energy of formation - OAA -1691.82 8.97 kJ/mol

Gibbs free energy of formation - KG -1646.59 8.97 kJ/mol

...
equilibrium constant v6 - 0.17 1.21

...

Table 4.4.: A thermodynamically inconsistent kinetic parameter set due to the relation-
ship of Gibbs free energies and equilibrium constants (see Equation 2.6.2).

The relationship of Gibbs free energies and the equilibrium constants for this param-
eter set can be expressed as

ln keq
l = −

∑
i

nilG
(0)
i /RT

ln(0.17) = −(−733.403kJ/mol + 667.03kJ/mol)/RT

−3.72 6= 21.004.

(4.2)

After balancing this kinetic parameter set, the parameter values are as shown in Table
4.5.

QuantityType Reaction Compound Value Std Unit

Gibbs free energy of formation - OAA -330.656 3.94 kJ/mol

Gibbs free energy of formation - KG -383.06 4.53 kJ/mol

...
equilibrium constant PFK-reaction - 2.2e+09 2.97e+09

...

Table 4.5.: The balanced output for the kinetic parameter set holds the relationship of
Gibbs free energies and equilibrium constants.
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ln keq
l = −

∑
i

nilG
(0)
i /RT

ln(99.88) = −(−1693.32 + 1645.09 + 1103.54− 1059.92)/RT

1.847 = 1.847X

(4.3)

The parameter balancing has made the parameter set valid concerning the discussed
dependence. The Gibbs free energies of formation as well as the equilibrium constant
have changed their values significantly, which is probably due to the standard deviation
of the energies.

4.4. Teusink Glycolysis Model

Figure 4.3.: The Teusink glyolysis model (Teusink, Passarge, Reijenga, Esgalhado, van
der Weijden, Schepper, Walsh, Bakker, van Dam, Westerhoff & others,
2000). Its visualization is derived from JWS online (Snoep & Olivier, 2002).

The next model under examination is the glycolysis model of Teusink (Teusink, Pas-
sarge, Reijenga, Esgalhado, van der Weijden, Schepper, Walsh, Bakker, van Dam, West-
erhoff & others, 2000) (see Figure 4.3), which also contains the PFK reaction already
analyzed. Again, information on the model and the available model data is shown in
Appendix A.3.1. The averaged input values in comparison to their balanced results are
shown in the Appendices A.10, A.11 and A.12.
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As visible in these figures, the parameter values are grouped in reference to their pa-
rameter types. An average of the types is calculated and shown as histograms. Due to
several outlier values in the balanced output data, the average of the parameter groups
is not a good foundation for comparisons. Instead, the median of the value distributions
will be used. The values for the averages and the corresponding median are available
for detailed comparisons in the Appendix A.3.1. Their medians are showing reasonable
balancing results: newly generated parameter types are settling to magnitudes that are
similar to the original model data (see Chapter 4.6).
Since the dependent model parameter types (equilibrium constants, turnover rates, max-
imal velocities, reaction affinities) are of high magnitude, they are represented as the
averages of their logarithms and the corresponding median. Again, these values are
unnormally high due to the standard deviations of the Gibbs free energies of formation,
which will be proved and coped with in Chapter 4.5.

4.5. Chassagnole Threonine Model

Finally, also the information on the threonine model of Chassagnole (Chassagnole, Rais,
Quentin, Fell & Mazat, 2001) (see Figure 4.4) are given in Appendix A.3.1. The com-
parison of the averaged input data and the averaged balanced data is visualized in the
Appendices A.13, A.14, and A.15.

Figure 4.4.: The Chassagnole threonine model (Snoep & Olivier, 2002). Its visualization
is derived from JWS online (Snoep & Olivier, 2002).
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The balanced data is very similar to the one for the Teusink glycolysis model. Again,
the dependent model parameters are reaching unnormally high values, and are visualized
in the averages of their logarithms. A far better comparison can be achieved by focussing
on the medians. Nevertheless, I want to examine the presence of high magnitudes
of the dependent parameter types. As formerly stated, it is likely that these values
are unusually high due to the standard deviations of the Gibbs free energies. Since
the dependent parameters are easy to influence by these standard deviations, they can
reach the observed value levels. For the examination of this assumption, I am setting
the standard deviations of the Gibbs free energies of formation to a small value (0.1) and
balance the input data set again. As Figure 4.5 shows, the high values of the dependent
parameters have settled down to more appropriate values, so the assumption is proven
(the figure shows the actual average values of the parameter types, the average of their
logarithms is no longer needed for visualization).

Figure 4.5.: Chassagnole: Shown are the actual average values of average equilibrium
constants, 1 = Average turnover rate forward, 2 = Average turnover rate
backward, 3 = Average maximal velocity forward, 4 = Average maximal
velocity backward, 5 = Average reaction affinity. Still, the turnover rate
forward and the reaction affinity are quite high, but compared to the for-
mer results and keeping in mind that this figure shows actual values and
no longer the means of the logarithmic ones, show the improvement that
occured by setting small standard deviations instead of using the default
values (which is no solution to the problem, but it demasks the origin of my
former problematic results).
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4.6. Comparing Balancing Results to Literature Results

The balancing results generated can only be proven as valuable by comparisons to orig-
inal values from the literature. For comparing my balanced parameters with literature
data, I have used the web resource of Sabio-RK (Wittig, Golebiewski, Kania, Krebs,
Mir, Weidemann, Anstein, Saric & Rojas, 2006) and the original model values from
the underlying publications of the models. Sometimes, not only the consideration of
the median is interesting, but also the average value of the input, output, and original
values. The following chapters are comparing these numbers, and the itemized view of
the comparisons can also be found in Appendix A.6.1.

4.6.1. Comparison of Results for the PFK Reaction

The results generated with the balancing approach are shown in Table 4.2. In the web
resource Sabio-RK (Wittig, Golebiewski, Kania, Krebs, Mir, Weidemann, Anstein, Saric
& Rojas, 2006) the following kinetic parameter values are available: the concentration
of the species fructose-1,6-bisphosphate (start value: 0 mM, end value: 5 mM), and the
Michaelis constant for fructose-1,6-bisphosphate (19.2 mM).
The results produced via the parameter balancing are partially similar to those of the
Sabio-RK. The concentration for fructose-1,6-bisphosphate was estimated to a value of
0.93 mM (with a standard deviation of 1.79) which corresponds to the Sabio-RK value
in a range of 0-5 mM. The Michaelis constant for the same species has an estimated
value of 2.18 (with a standard deviation of 7.46). This is deviating from the Sabio value
(19.2 mM), but due to the fact that I have had no input value for this species and the
Michaelis constant was estimated with a high influence of the prior value for Michaelis
constants, the estimation is decent. The itemized information on this comparison is
found in Appendix A.6.1.

4.6.2. Comparison of Results for the Glycolysis Model

The available data from the original Teusink glycolysis model (Teusink, Passarge, Rei-
jenga, Esgalhado, van der Weijden, Schepper, Walsh, Bakker, van Dam, Westerhoff &
others, 2000) are shown in Appendix A.3.1. The balanced values produced by the pa-
rameter balancing approach can be seen in Appendices A.11 and A.12.
The Michaelis constants that have served as input for the parameter balancing, are
higher in median (2.2 mM) than those declared in the data of Teusink. The balanced
values have decreased in their median and come close to the Teusink median (0.3 mM).
Still, the balanced values are higher than the ones we declare as reliable. This might be
due to the fact that the used prior value (which was used for the generation of numerous
Michaelis constants of the model) is higher (15.5 mM) than the values in this model.
The median of input values for inhibitory constants (1.6 mM), the median of the
balanced values (1.8 mM), and the Teusink model’s median (1 mM) move in a short
range and prove the reliability of the data.
The values for equilibrium constants and maximal velocities are visualized in log-
arithmic form, so I have taken the means of the logarithms of the Teusink data to
compare the two. The input values (average 6, median 0.2) are surprisingly similar to
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the Teusink values (average 7.48, median 1.1). The balanced values (average 92, median
-0.5) suffer from the few outliers, but the median is still in a reasonable range to the one
of Teusink. The maximal velocities that without exception have been balanced without
any input value, suffer from the outliers as well, but the median of the balanced results
(5) are located in the close neighborhood of the Teusink values median (5.48).
The itemized information on this comparison is found in Appendix A.6.1.

4.6.3. Comparison of Results for the Threonine Model

The available data from the original Chassagnole threonine model (Chassagnole, Rais,
Quentin, Fell & Mazat, 2001) are given in Appendix A.3.1. The parameter balancing
for this model has produced values listed in Figures A.14 and A.15.
Different from the Teusink model, the available data for the Chassagnole model also
holds concentrations of species. The average of these original values (2.49 mM) is
much lower than the input data used for the parameter balancing (49 mM). The balanc-
ing process has lowered the average value to 21 mM and the corresponding median as
well (from 2.1 mM to 1.9 mM). Thus, not only the average value has been approached
to the Chassagnole data’s average, also the median is very close to the one from Chas-
sagnole. An improvement from input to output data is clearly visible.
The input Michaelis constants are, just like the concentrations, much higher in av-
erage than the corresponding original data. Nevertheless, the input data’s median (1.5
mM) is close to the one of the original data of Chassagnole (0.22 mM), and by balancing
it even gets closer (0.9 mM). Also the average value is lowered (from 5 mM to 1 mM)
in magnitude and approaches the average value of Chassagnole (0.87 mM).
For the inhibition constants, Chassagnoles data has an average value of 1.92 mM and
a median of 0.39 mM. While the average value of the input data (8.2 mM) is increased
by the balancing process (to 15.2 mM), the median is still staying very low (input data:
0.5, output data: 0.3). The increase in magnitude of the average value might have
arisen through the generation of new inhibition constants that were not provided by the
input data (the prior mean for inhibition constants is 11.9, the corresponding standard
deviation 173).
While the input values for the means of the logarithms of equilibrium constants is
quite low (7.1) compared to the value from Chassagnole (10.62), the balanced value rises
to 15.2. The median of the original data (0.09) lies between the input median (-0.6) and
the balanced one (0.9).
The very low maximal velocities that are provided by Chassagnoles original data
(mean of logarithms average -2.21 and median -2.3) cannot be foreseen by the balancing
process. Without any input data for this parameter type, the calculation estimates are
higher than the ones from Chassagnole (mean of logarithms average 11.6 and median
4.2). The assumption is that for the sensible estimation of the maximal velocity more
input data are needed.
Apart from the estimation of maximal velocities in the Chassagnole model the results of
the parameter balancing are very similar to the data derived from Teusink, Chassagnole,
and Sabio-RK. In most cases, the balancing could produce reasonable results, sometimes
even despite bad input data. The itemized information on this comparison is found in
Appendix A.6.1.
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5. Discussion

The results I was able to obtain with the parameter balancing did not match all of
my expectations in the first place, but I was able to add some regulatory instances
in order to prevent errors and to decrease the instability of the estimation caused by
missing values. Estimates concerning the system parameters of the Gibbs free energies
of formation, Michaelis constants, inhibitory constants, and species concentrations pro-
duced sensible results in comparison with the original data derived from the underlying
publications of the models. Estimates of dependent parameters, such as equilibrium
constans, turnover rates, maximal velocities, and reaction affinities turned out to be
very dependent on the input parameters and the standard deviation of the Gibbs free
energies of formation. Due to this fact, the results for these parameters often include
several outliers and reach unusually high values. This problem, nevertheless, could be
controlled by the introduction of pseudo equilibrium constants as an equivalent to a
better prior standard deviation of Gibbs free energies. Furthermore, the comparison
of the balanced values and those taken from the original model data was satisfactory,
and the check for thermodynamical feasibility of the balancing results confirmed their
validity. Following to these general statements, I want to go further into detail.

5.1. The Prior Distribution

The prior distribution, in this case derived from our MetNetDB, is the key to a success-
ful estimation process. Due to missing or incomplete prior values I have encountered
several problems during my work. A drawback is the complete lack of specific param-
eter types: our database does not contain values for activation constants or geometric
mean rate constants. The result of this incompleteness is that the estimated values are
even more depending on the input data. If the input data does not provide activation
constants I simply do not have the ability to produce them. Values for reaction affinities
are not available as well, but I am able to estimate them via their dependence concern-
ing available entries (the Gibbs free energies and the concentrations). Of course, this
has the side effect that the reaction affinities are exclusively dependent on the (possibly
problematic) input data and cannot at least rely on any kind of values from the prior
distribution.
The prior distribution I constructed, has turned out to be the foundation to reliable esti-
mates concerning the data it was generated from. But the limitations of the distribution
(only few equilibrium constants and high standard deviations) have in turn also lead to
problems in the estimation (outliers in the distribution of dependent parameters). A
direct consequence of the missing standard deviations is discussed in the following.
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The Problems and Benefits of Dependencies The strong connection between Gibbs
free energies and equilibrium constants has been mentioned multiple times. While I was
able to perform perfectly appropriate estimates for the first, the latter confronted me
with problems. Since the MetNetDB contains only few standard deviations for Gibbs
energies and equilibrium constants (and the available ones are often of high magnitude),
I had to use the default prior standard deviation for those two parameter types. Both
of these parameter types can vary strongly depending on the underlying models and
the circumstances they are measured in. This leads to a high standard deviation in
the prior distribution. This circumstance in combination with the strong dependence of
equilibrium constants on Gibbs free energies of formation confronted me with unusually
high equilibrium constant values. This was carrying on the misestimate by influencing
the turnover rates, the maximal velocities, and the reaction affinities. Tests I performed
by altering the input data, showed that reasonable standard deviations for Gibbs free
energies and equilibrium constants are able to prevent this scenario.
Furthermore, I was able to constrain the dependence of equilibrium constants on Gibbs
free energies by introducing pseudo equilibrium constants: in case of missing equilibrium
constants I am automatically appending generated constants to the data set that are of
appropriate value, and far better than the alternative: the very high dependence on the
energies of formation and their lack of availability of many standard deviations, which
turned out to be a major obstacle to the generation of equilibrium constants.

5.2. Technical Difficulties

5.2.1. Problems Concerning SBML

Next to the problems concerning the provision of input data, I also encountered several
technical difficulties. At first, I had to overcome programming difficulties concerning
SBML. Unfortunately, SBML did not hold all the possibilities that I would have liked
to have for my programming challenges. It was hard to gain specific knowledge about
model elements: SBML does not make a difference between a species in general or an
enzyme in specific. This problem would be best solved by introducing a ”ListOfEn-
zymes” into the list structure of SBML. The only way to identify an enzyme was if the
SBtab file held a ”concentration of enzyme” for the species or if there had been added an
SBO term to the species that might have indicated the true identity. Such a proposed
“ListOfEnzymes” must not exclude its enlisted elements from the ”ListOfSpecies”, since
often the differentiation between the two is difficult: An enzyme is always a species, but
not vice versa. So the “ListOfEnzymes” might hold every species that has the potential
to act as an enzyme (and is also represented in the “ListOfSpecies“).
A very similar problem is the identification of species that are inhibitors or activators.
In SBML, they are only marked as being a ”modifying” species, which is just not enough
information. This too was only evitable by attaching an SBO term to the species iden-
tifying it as an inhibitor or activator. If my tool encounters species that are modifier
but cannot be identified as either inhibitor or activator, I have to treat it as a normal
species, in order to prevent misestimates. Nevertheless, I have added the ability of the
tool to identify the species clearly as soon as a SBO term is attached to them.
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5.2.2. Insertion of Parameter Files into SBML

Another obstacle was the restrictivity of the data integration of the balanced values into
the SBML file. As it becomes obvious in Chapter 3, the use of my tool is demanding to
the user. This is due to the fact that very specific criteria have to be fulfilled for the input
data, if the user wants to integrate it into the SBML file. In order to match all criteria I
had to automatically generate a second SBtab file out of the given values in combination
with new blank values. A detailed documentation for users will be very appropriate, so
the complex steps that lead to a successful data integration can be understood clearly.

5.2.3. The Unit Problem

The entries for enzyme concentrations that I obtained from the MetNetDB are often
inappropriate, since they are differing in their units. Values with different units must
not be mixed together, so I had to sort out the entries with the unit ”molecules per cell”
and only used those in ”mM“ (millimolar).

5.3. A Conclusion: Cooperation of Experimentalists and
Modelers

The problems during the testing of my parameter balancing approach mostly arose from
incomplete or erraneous kinetic data. Although the fact that a close cooperation be-
tween experimentalists and modelers is absolutely crucial not only for my work, but in
general, is not new, I still want to point out its significance. The results have shown
that the success of parameter estimations is very dependent on the input data. Without
reasonable data it is not possible to construct useful results. The exchange of infor-
mation between experimentalists and analysts should have the highest priority and can
be supported by using standard data formats like SBML for models and SBtab for the
provision of measured kinetic data.

5.4. Summary and Future

5.4.1. Summary

The early encounter of problems with missing equilibrium constants and high standard
deviations have made me introduce the use of pseudo equilibrium constans. This so-
lution was very useful in retrospective, since the results for the dependent parameters
included better and more appropriate estimates than before. The use of pseudo equilib-
rium constants is now set as a default in my developed tool.
Furthermore, I have extended the former balancing approach (Liebermeister & Klipp,
2006) by adding a functionable temperature and pH value regression approach. The
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tests of this function showed the formerly estimated results: if the input data is pro-
vided with temperature and pH values highly differing from the desired ones, this fact
is taken into account and reflected in the balancing results. Furthermore, the amount
of parameter types to be estimated has increased by the complementation of reaction
affinities and Gibbs free energies in a dependence to provided concentration values.
The comparison of the balancing results to data taken from the original model publica-
tions revealed the current powers as well as small weaknesses of the parameter balancing
approach. It will be of great importance to improve the tool and dispose the shortcom-
ings.
I have implemented an extension of the graphical user interface of semanticSBML
(Krause, Uhlendorf, Lubitz, Schulz, Klipp & Liebermeister, 2010) that enables the user
to perform the balancing process, including several useful options. Finally, the integra-
tion of the resulting kinetic data into the corresponding SBML file can be performed.

5.4.2. Outlook

Since the whole process of data provision, parameter balancing, and data integration is
not intuitive and I do not want the users of my tool to be completely depending on an
installation of the semanticSBML GUI, I plan to implement a web application. This
allows me to make the tool more user-friendly and easier to understand, which is cru-
cial for the complex process of parameter balancing. An important novelty will be the
specification of organisms as input data. While MetNetDB exports the values as a mix
of different organisms, my web application is going to offer the user a choice of favoured
organisms and either collect only this organisms values, or collect all values and set the
standard deviation of unrelated organisms to a higher default value. An improvement
of the prior distribution concerning the availability of more standard variations is abso-
lutely eligible, and I plan to implement it. With these analysis improvements, an even
more appropriate parameter balancing approach can be achieved.
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A. Appendix

A.1. Example Input File for Small Network

QuantityType Reaction Compound Value pH Temperature

Gibbs free energy of formation Reaction 1 Species 1 -100 4 290

Gibbs free energy of formation Reaction 1 Species 1 -400 5 289

Gibbs free energy of formation - Species 1 -220 4 290

Gibbs free energy of formation Reaction 2 Species 3 -310 5 295

equilibrium constant Reaction 1 - 1.11 3 301

equilibrium constant Reaction 1 - 2.58 3 305

inhibitory constant Reaction 1 Species 3 4.11 4 299

inhibitory constant Reaction 1 Species 3 1.98 5 294

Michaelis constant Reaction 1 Species 1 2.84 6 283

Michaelis constant Reaction 1 Species 1 2.24 5 294

Michaelis constant Reaction 1 Species 2 8.26 6 311

concentration - Species 2 10.22 4 301

turnover rate forward Reaction 2 - 4.76 3 300

Table A.1.: The example SBtab file shows some duplicate parameter values for several
parameter types (e.g. two values for the equilibrium constant of Reaction
1), other kinetic parameters are not provided at all (e.g. Gibbs free energy
of formation for Species 2).
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A.2. Manual for SemanticSBML Parameter Balancing

I have implemented a user-friendly interface for working on parameter estimation and
data integration by extending the existing Systems Biology tool semanticSBML (see
Chapter 2.4). Apart from the available functions of SBMLfill I added the possibility
to access, modify, and integrate kinetic data into an SBML model. The automated
process of parameter balancing is part of this implemenetation as well. The start screen
of semanticSBML now offers a new possibility: Fill - which opens a new tab (see Figure
A.1).

Figure A.1.: The start screen of semanticSBML is extended by a new item: “Fill” opens
a new tab for the task of handling model parameters.

The insertion of model parameters including parameter balancing via the semantic-
SBML user interface can be performed in five steps:

1. Open an SBML model and use the Fill option in semanticSBML (explained in
Chapter A.2.1)

2. Open an SBtab parameter file that corresponds to the model (explained in Chapter
A.2.2)

3. Automatically generate a new SBtab that matches all SBML insertion criteria
(explained in Chapter A.2.3)

4. Start parameter balancing for the parameter set (explained in Chapter A.2.5)

5. Insert the kinetic rate laws and the balanced parameter set into the SBML model
(explained in Chapter A.2.6)

In the following, these steps will be exemplified in detail.
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A.2.1. semanticSBML Fill - Overview and Insertion

By clicking the newly introduced Fill button the user is guided to a new tab that allows
the upload, modification, and integration of model parameters (see Figure A.2).

Figure A.2.: Control menu of model parameter handling: the headbase of the new Fill
tab.

The possibility to insert a kinetic rate law into the currently loaded SBML model is
accompanied by a set of choices the user has to make. The choices are similar to those
of SBMLfill:

Rate Law The user can choose the rate law to be inserted into the SBML model (com-
mon modular rate law, simultaneous binding modular rate law, direct binding
modular rate law, power-law modular rate law, and force-dependent modular rate
law). For further details on the rate laws see Chapter 2.2.

Thermodynamic Parametrisation The user chooses between Gibbs free energies of for-
mation, equilibrium constants, and catalytic rate constants for the inclusion into
the kinetics of the model. For further details see Chapter 2.2.

Default type for enzyme inhibtion Complete, partial, or specific. In the complete and
partial regulation mechanisms, regulators bind independently of the reactant and
influence the conversion step. In specific inhibition, we assume that inhibitor
binding prevents the binding of any other reactants.

Default type for enzyme activation Complete, partial, or specific. Specific activation
works analogously to inhibition: the activator binding is essential for the binding
of any other reactant, so there is just one more non-activated state, which again
contributes a denominator term.

Comprise enzyme concentrations in rate constants Yes or no.
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Overwrite existing kinetic laws Yes or no.

To this point the SBMLfill interface has been taken as role model and been integrated
into the semanticSBML user interface. I added the following options, which are beyond
the possibilities that SBMLfill offers. The user now can to open a kinetic parameter set
file in SBtab format that corresponds to the opened model. If there is no such file at
hand, the user still has the possibility to insert a kinetic rate law into the model with
the given options and all parameter values set to a default value of 1. Otherwise, if the
user opens a parameter set file from the hard drive, a new subtab is opened, showing
the opened SBtab parameter file (see Figure A.3).

A.2.2. semanticSBML Fill - SBtab File Provided by User

Figure A.3.: An opened SBtab file holding a parameter set for the currently loaded
SBML model.

The SBtab file is holding an either complete or incomplete parameter set for the
SBML model. It is crucial that the SBtab is of the type KineticData and by that fulfills
the criteria of this type: the availability of the columns “QuantityType”, “Reaction”,
“Compound”, and “Value”. Alternatively to the “Value” column, the “Mean” column
can hold a value for the parameter. Another import column is “Std”, which holds the
standard deviation to the value. If this column criterion is not matched, the following
editing, balancing, and modeling steps cannot be performed. The incompleteness of
parameter values will not be considered a problem, as we will see soon.
The opened SBtab is shown in a table view that is editable: all values and names can
be altered. This subtab also offers some actions that can be performed on the uploaded
SBtab:
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Validate The content of the uploaded SBtab file will undergo a general validity check.
This check will fail if certain obvious criteria are not matched: the Value column
needs to contain numerical values as well as the Std (standard deviation) and
Mean column.

Export The SBtab file can be exported onto the hard drive in the current state. If any
alterations have been done in the table view, these alterations will be saved.

Generate Generates model parameters. This button will open two new subtabs, one
holding a new SBtab file that is fitted to be inserted into the SBML model. The
necessity of having two SBtab files will be elucidated next.

A.2.3. semanticSBML Fill - New SBtab File With all Required
Model Parameters

If the aim of the user is the insertion of the content of the SBtab file into the SBML
model, one will activate the “Generate” button and open two new subtabs by that:

Figure A.4.: A new SBtab file that is generated from the first one and possibly extended
in order to match the SBML insertion criteria.

A new subtab Model Parameters - holding a newly generated SBtab file - is opened
and offers new options for the user. While the first SBtab file that is opened from the
users hard drive does actually not underlie any format criteria (except for the presence
of the four columns mentioned earlier), the insertion of the parameter file into the SBML
model is restrictive. It demands the following information:
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• 1 substrate catalytic rate constant for every reaction.

• 1 product catalytic rate constant for every reaction.

• 1 Michaelis constant for every species appearing in the reactions (if one species
appears in two reactions, also two Michaelis constants will be needed).

• 1 velocity constant per reaction (geometric mean rate constant).

• 1 equilibrium constant per reaction.

• 1 Gibbs free energy of formation per species.

• 1 activation/inhibition constant per reaction.

If any of these parameters are not provided, the insertion into the SBML model cannot
take place and will result in an error. Since it is quite improbable that the user will be
providing a SBtab file holding all the required information, the program generates this
new SBtab file that consists of the given values from the former SBtab file and moreover
automatically adds all the possibly missing (but required) parameters in form of blank
entries. The appearance of the new SBtab file is fixed (while of course the values and
names can still be edited). Its columns are:

• QuantityType - the parameter type

• Reaction - SBML name of the reaction

• Compound - SBML name of the species

• Value - the value of the parameter

• Std - the standard deviation of the parameter

• Unit - the unit for the value measurement

• Value Generated - declares how the parameter has found its way to the new SBtab
file. The options are:

1. Entry from original SBtab

2. Averaged from several entries - the original SBtab file held more than one
value for this parameter, so the values have been meaned (see Chapter 2.6.3).

3. Entry generated automatically - if the original SBtab did not provide this
parameter although it is obligatory, it was generated automatically

• Reference - if the value is taken from the former SBtab file and has a given refer-
ence, this reference is available in this column
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At this point it is important to note that any parameter taken from the users SBtab
file that is not clearly assignable to an element of the corresponding SBML model will
be ignored by the program. This means, if the user uploads a SBtab file holding a
velocity constant for a specific reaction which is no part of the SBML model, this
velocity constant will not appear in the new SBtab file. This action is necessary since
parameter values for the wrong model might dislocate the whole parameter balancing
step. Now that it is provided that all needed parameters are available (and obsolete ones
are removed), suitable values for the automatically generated ones have to be found. The
user can either set all missing parameter values to default values (see Chapter A.2.4) or
start the parameter balancing (see Chapter A.2.5).

A.2.4. semanticSBML Fill - Setting Default Values

Figure A.5.: The user can set all missing parameter values to default values by hitting
the “Default” button.

The “Default” button automatically inserts default values for every missing parameter
value, which can be edited by the user (see Figure A.5).

The subtab “Default values” (see Figure A.6) holds a table with default values for all
types of required parameters. Here, default values for the mean and for the standard
deviation std(logvalue) of any parameter type are listed. They are referring to litera-
ture and our internal database MetNetDB, which provides a wide variety of parameter
values, including those of KMedDB, Brenda (Barthelmes, Ebeling, Chang, Schomburg
& Schomburg, 2007), and several more. Any of the default values can be edited if the
user wants to do so. The rest of the columns and parameter choices in this subtab are
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Figure A.6.: The subtab “Default values” offers the possibility to edit the default values
and choose the parameters used for parameter balancing (see section 3.1.5).

not important for the setting of default values, but for the parameter balancing (see
Chapter A.2.5).

A.2.5. semanticSBML Fill - Parameter Balancing

The parameter balancing is performed by hitting the “Balance” button in the subtab
holding the new SBtab (see Figure A.7).

Just like the options for the default values, the options for parameter balancing can
be edited in the “Default values” subtab (see Figure A.8).

Parameter entries of the SBtab file can provide a mean value, but in some cases they
might lack a standard deviation. Since the standard deviation is crucial for the param-
eter balancing, it has to be substituted. The value that is set to the parameter with
the missing standard deviation can be found in the table view of the “Default values”
subtab under the column If Std unknown.
Furthermore, the “Default values” subtab offers the possibility to choose the parameter
types used for balancing. As a default, all the types are selected and this scenario cor-
responds to the normal build-up of the vectors and matrices explained in Chapter 2.6.2.
If any of the parameter types is unchosen in this subtab, this leads to a consequent
omitting of this parameter type in all vectors and matrices. The type will not be taken
into account for the parameter balancing.
The user can moreover choose a temperature (in Kelvin) and a pH value that is pre-
ferred for the reactions from the model. This incorporates a temperature and pH value
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Figure A.7.: The Balance button starts the parameter balancing.

Figure A.8.: The subtab “Default values” also holds the options for parameter balancing.
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regression into the parameter balancing: the given values from the SBtab are compared
to the favoured values, resulting in ∆ values that influence the balancing process (see
Chapter 2.6.4). After the balancing of the parameters or setting of default values, the
SBtab file is ready to be inserted into the SBML model.

A.2.6. Integration of Model Parameters Into an SBML Model

After having generated an insertable SBtab parameter file the user is able to integrate
the content of the file into the SBML model. The user has to change back to the overview
subtab of Fill (see Chapter A.2.1 and Figure A.9), where a new button for insertion is
added to this tab as soon as an insertable SBtab parameter file has been generated.

Figure A.9.: A new button has appeared in the Fill overview: insertion of generated
model parameters.
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A.3. Tables and Visualizations of the Parameter
Balancings

A.3.1. Model Data Information

PFK reaction Citric acid cycle Glycolysis model Threonine model

Number of Reactions 1 12 17 7

Number of Species 4 14 26 11

MetNetDB: Gibbs free energies of formation 20 60 92 39

MetNetDB: Michaelis constants 14 1497 305 230

MetNetDB: Inhibitory constants 8 394 23 90

MetNetDB: Species concentrations 19 68 89 40

MetNetDB: Equilibrium constants - 32 193 5

MetNetDB: Turnover rates - 201 23 85

MetNetDB data: Number of Organisms 24 44 51 19

Sabio-RK: Michaelis constants 1

Sabio-RK: Species concentration 1

Teusink data: Equilibrium constants 10

Teusink data: Maximal velocities 16

Teusink data: Michaelis constants 37

Teusink data: Inhibitory constants 4

Chassagnole data: Equilibrium constants 7

Chassagnole data: Maximal velocities 5

Chassagnole data: Michaelis constants 23

Chassagnole data: Inhibitory constants 5

Chassagnole data: Species concentrations 9

Table A.2.: The model data information for the four used models. The table comprises
information on the network (reactions and species), the quantitative infor-
mation of values derived from the prior distribution of MetNetDB, and the
availability of original values for the models, taken from the underlying pub-
lications, and the Sabio-RK.
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A.4. Input Model Data for PFK Reaction

QuantityType Reaction Compound Value Std Unit
Gibbs free energy of formation - F6P -908.76 - kJ/mol
...
Gibbs free energy of formation - F16P -909.60 - kJ/mol
...
Gibbs free energy of formation - ATP -253.55 - kJ/mol
...
Gibbs free energy of formation - ADP -1356.14 - kJ/mol
Michaelis constant pfk-reaction ATP 0.009 0.001 mM
...
Michaelis constant pfk-reaction ADP 0.34 - mM
inhibitory constant pfk-reaction ATP 2.5 - mM
...
concentration - ATP 2.641 - mM
...
concentration pfk-reaction ADP 0.823 - mM
...
concentration of enzyme pfk-reaction - 33477 - m/cell

Table A.3.: The initial kinetic parameter set in form of SBtab KineticData. There are
several circumstances to focus on: not every single parameter is shown due
to lack of space (I am provided with 5 standard chemical potential values for
each species, 6 concentrations of enzyme for ATP, 10 concentration values
for ATP and 9 for ADP, 43 inhibitory constants for ATP, 12 Michaelis con-
stants for ATP and 2 for ADP). Since I have more than one measured value
for many kinetic parameters, these values are averaged by the method intro-
duced in 2.6.3. It is shown that some parameters are providing a standard
deviation and some do not. While standard chemical potentials do not need
to hold a reaction, Michaelis constants need a reference for species and for
the reaction. Due to lack of space the fructose-6-phosphate is abbreviated
by F6P, the fructose-1,6-bisphosphate is abbreviated F16P. The concentra-
tions of enzyme for ATP are holding values of the unit “molecules per cell”,
which cannot be converted to mM by the program so far. These values have
to be ignored.
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A.4.1. List of Required Kinetic Parameters for the PFK Reaction

QuantityType Reaction Compound

Gibbs free energy of formation - fructose-6-phosphate

Gibbs free energy of formation - fructose-1,6-bisphosphate

Gibbs free energy of formation - ATP

Gibbs free energy of formation - ADP

catalytic rate constant geometric mean PFK-reaction -

Michaelis constant PFK-reaction fructose-6-phosphate

Michaelis constant PFK-reaction fructose-1,6-bisphosphate

Michaelis constant PFK-reaction ATP

Michaelis constant PFK-reaction ADP

inhibitory constant PFK-reaction ATP

concentration - fructose-6-phosphate

concentration - fructose-1,6-bisphosphate

concentration - ATP

concentration - ADP

concentration of enzyme PFK-reaction phosphofructokinase

equilibrium constant PFK-reaction -

substrate catalytic rate constant PFK-reaction -

product catalytic rate constant PFK-reaction -

maximal velocity forward PFK-reaction -

maximal velocity backward PFK-reaction -

reaction affinity PFK-reaction -

Table A.4.: The complete kinetic parameter set of the PFK-reaction in SBtab format
“KineticData”: A ’-’ indicates rowfields, where no information is required.
Retrieving numeric values for all of these parameters is the aim of the pa-
rameter balancing.

A.4.2. Check for the Validity of the Thermodynamic Dependencies

The thermodynamic dependencies explained in Chapter 2.6.2 have to be valid by con-
struction of the dependence matrix Rx

θ . Referring to the parameter balancing results of
Table 4.2, the dependencies are tested. The dependence between the equilibrium con-
stants, the turnover rates, and the Michaelis constants are described in the logarithmic
form of the Haldane relationship (for the sakes of clarity, the units of the Gibbs free
energies are omitted in the following equations).

ln keq
l = ln kcat

+l − ln kcat
−l +

∑
i

nil ln k
M
il

4.59 = 4.28− 5.53 + 5.84X

(A.1)
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The Haldane relationship is valid. Another parameter type dependence concerns the
forward and backward turnover rates. It denotes

ln kcat
+l = ln kV

l −
1

2

∑
i

nil((G
(0)
i )/RT + ln kM

li )

ln(2.8e+ 06) = ln(426.76)− 1

2
(−1061.63/RT − 0.625

−1695.03/RT − 0.491 + 1101.83/RT + 0.491 + 1643.38/RT + 3.968)

4.28 = 4.907 + (−0.627)

= 4.28,X

(A.2)

and

ln kcat
−l = ln kV

l +
1

2

∑
i

nil((G
(0)
i )/RT + ln kM

li )

ln(9.8e+ 06) = ln(426.76) +
1

2
(−1061.63/RT − 0.625

−1695.03/RT − 0.491 + 1101.83/RT + 0.491 + 1643.38/RT + 3.968)

5.53 = 4.907− (−0.623).X

(A.3)

The turnover rate dependence is valid as well, at last the maximal velocity dependence
needs to be confirmed.

ln vmax
+l = lnEl + ln kV

l −
1

2

∑
i

nil((G
(0)
i )/RT + ln kM

li )

= lnEl + ln kcat
+l

3.43 = −0.851 + 4.28,X

(A.4)

and

ln vmax
−l = lnEl + ln kV

l +
1

2

∑
i

nil((G
(0)
i )/RT + ln kM

li )

4.68 = −0.851 + 5.53.X

(A.5)

Both of the maximal velocities have been confirmed. Last but not least, the newly
introduced concentration dependent Gibbs energies G and reaction affinities A are tested
for their validity concerning the thermodynamic dependencies.
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Gi = G
(0)
i + ln ci ·RT

G1 = G
(0)
1 + ln c1 ·RT

−1641.68 = −1643.38 + 0.68 ·RTX
G2 = G

(0)
2 + ln c2 ·RT

−1103.96 = −1101.83− 0.85 ·RTX
G3 = G

(0)
3 + ln c3 ·RT

−1061.17 = −1061.63 + 0.19 ·RTX
G4 = G

(0)
4 + ln c4 ·RT

−1697.15 = −1695.03− 0.85 ·RT,X
(A.6)

and

lnAl = −
∑
i

nilG
(0)
i −

∑
i

nil ln ci ·RT

5.09 = −(−1061.63− 1695.03 + 1101.83 + 1643.38)

−(0.19− 0.85− 0.85 + 0.68) ·RT
= 4.59 + 0.498 ·RT.X

(A.7)

All the thermodynamic dependencies are proved to be valid for the parameter bal-
ancing results of the PFK reaction.
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A.4.3. Balancing Results for the PFK Reaction Using a Pseudo
Equilibrium Constant

QuantityType Reaction Compound Value Std Unit

Gibbs free energy of formation - F6P -1103.06 9.17 kJ/mol

Gibbs free energy of formation - ATP -1644.6 9.17 kJ/mol

Gibbs free energy of formation - F16P -1693.81 9.17 kJ/mol

Gibbs free energy of formation - ADP -1060.41 9.17 kJ/mol

equilibrium constant PFK-reaction - 1837.77 24357.97

turnover rate forward PFK-reaction - 4671.12 112811.74 1/s

turnover rate backward PFK-reaction - 2287.27 55239.56 1/s

maximal velocity forward PFK-reaction - 4329.55 227076.64 1/s

maximal velocity backward PFK-reaction - 2120.01 111190.68 1/s

reaction affinity PFK-reaction - 14769.59 9561418.03

Table A.5.: Parameter balancing output for the case of a provided pseudo equilibrium
constant (mean = 2980.96, std = 888610.0). The output values have signif-
icantly improved, the formerly huge values are disposed.

A.4.4. Parameter Balancing With a Provided Equilibrium Constant

If the user is providing an equilibrium constant in the input data, the whole estimation
results become more appropriate than elsewise. This can be seen in Table A.6: the
estimated values in this table show that the results become much better if the user
provides an equilibrium constant.

QuantityType Reaction Compound Value Std Unit

Gibbs free energy of formation - F6P -1105.04 8.97 kJ/mol

Gibbs free energy of formation - ATP -1646.59 8.97 kJ/mol

Gibbs free energy of formation - F16P -1691.82 8.97 kJ/mol

Gibbs free energy of formation - ADP -1058.42 8.97 kJ/mol

equilibrium constant PFK-reaction - 0.93 0.16

turnover rate forward PFK-reaction - 2029.42 22949.98 1/s

turnover rate backward PFK-reaction - 1161.34 13133.14 1/s

maximal velocity forward PFK-reaction - 1881.02 46306.38 1/s

maximal velocity backward PFK-reaction - 1076.42 26498.86 1/s

reaction affinity PFK-reaction - 13.16 302.53

Table A.6.: Parameter balancing output for the case of a provided equilibrium constant
by the user (mean = 0.53, std = 0.17). The output values have significantly
improved in their sensibility, huge values are disposed.
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A.4.5. Input Data for the Balancing With Temperature and pH
Value Regression

QuantityType Reaction Compound Value Std Unit pH temperature

Gibbs free energy of formation - F16P -1947.01 287.56 kJ/mol - -

Gibbs free energy of formation - ATP -1885.03 287.56 kJ/mol - -

Gibbs free energy of formation - F6P -1235.17 287.56 kJ/mol - -

Gibbs free energy of formation - ADP -1286.93 287.56 kJ/mol - -

...

equilibrium constant PFK-reaction - 0.0029 10 - 8 303.15

equilibrium constant PFK-reaction - 0.08 10 - 7 298.15

equilibrium constant PFK-reaction - 0.0048 10 - 8 310.15

...

Table A.7.: Input parameter set taken from Brenda and Nissler et al. The focus is on
the equilibrium constant of the PFK reaction that is provided with different
temperatures and pH values on multiple entries.

A.4.6. Balancing Results for the PFK Reaction With Temperature
and pH Value Regression

QuantityType Reaction Compound Value Std Unit µ(ln) σ(ln)

Gibbs free energy of formation - F16P -1685.9 9.04 kJ/mol - -

Gibbs free energy of formation - ATP -1652.51 9.04 kJ/mol - -

Gibbs free energy of formation - F6P -1110.96 9.04 kJ/mol - -

Gibbs free energy of formation - ADP -1052.5 9.04 kJ/mol - -

...

equilibrium constant PFK-reaction - 0.0002 0.001 - 2.54 3.33

...

Table A.8.: Parameter estimation including pH value and temperature regression. The
desired pH value is 8, the desired temperature is 310 K. The equilibrium
constant is provided in the input data with different circumstances (see
table A.7).
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A.4.7. Balancing Results for the PFK Reaction With Only Gibbs
Energies and Equilibrium Constants as Input Data

QuantityType Reaction Compound Value Std Unit

Gibbs free energy of formation - F16P -1691.82 8.97 kJ/mol

Gibbs free energy of formation - ATP -1646.59 8.97 kJ/mol

Gibbs free energy of formation - F6P -1105.04 8.97 kJ/mol

Gibbs free energy of formation - ADP -1058.42 8.97 kJ/mol

geometric mean rate constant PFK-reaction - -426.76 1277.38 1/s

Michaelis constant PFK-reaction F6P 2.18 7.47 mM

Michaelis constant PFK-reaction F16P 2.18 7.47 mM

Michaelis constant PFK-reaction ATP 2.18 7.47 mM

Michaelis constant PFK-reaction ADP 2.18 7.47 mM

inhibitory constant PFK-reaction ATP 2.6 7.85 mM

concentration of enzyme PFK-reaction PFK 0.93 1.78 mM

concentration PFK-reaction F6P 0.93 1.78 mM

concentration PFK-reaction F16P 0.93 1.78 mM

concentration PFK-reaction ATP 0.93 1.78 mM

concentration PFK-reaction ADP 0.93 1.78 mM

equilibrium constant PFK-reaction - 0.59 0.16

turnover rate forward PFK-reaction - 2029.42 22949.98 1/s

turnover rate backward PFK-reaction - 1161.34 13133.14 1/s

maximal velocity forward PFK-reaction - 1881.02 46306.38 1/s

maximal velocity backward PFK-reaction - 1076.42 26498.96 1/s

Gibbs free energy - F16P -1693.94 9.49 kJ/mol

Gibbs free energy - ATP -1648.71 9.49 kJ/mol

Gibbs free energy - F6P -1107.17 9.49 kJ/mol

Gibbs free energy - ADP -1060.54 9.49 kJ/mol

reaction affinity PFK-reaction - 13.16 302.53 1/s

Table A.9.: Balancing result that is produced from only Gibbs free energies of formation
and equilibrium constants as input.
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A.5. Balancing Results for the Glycolysis Model

Figure A.10.: Teusink: Average Gibbs free energies. Gibbs free energies of formation
before and after the balancing process, Gibbs free energies, before and
after. The black bar marks the median.
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Figure A.11.: Teusink: Average concentrations of species, average Michaelis constants,
average inhibition constants, average enzyme concentrations. The black
bar marks the median.
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Figure A.12.: Teusink: Shown are the means of the logarithmic values of the average
equilibrium constants, average turnover rate forward, average turnover
rate backward, average maximal velocity forward, average maximal veloc-
ity backward, average reaction affinity. The black bar marks the median.
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A.6. Balancing Results for the Threonine Model

Figure A.13.: Chassagnole: Average Gibbs free energies; Gibbs free energies of formation
before and after the balancing process. Concentration dependent Gibbs
free energies, before and after. The black bar marks the median.
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Figure A.14.: Chassagnole: Average concentrations of species, average Michaelis con-
stants, average inhibition constants, average enzyme concentrations. The
black bar marks the median.
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Figure A.15.: Chassagnole: Shown are the means of the logarithmic values of equilibrium
constants, average turnover rate forward, average turnover rate backward,
average maximal velocity forward, average maximal velocity backward,
average reaction affinity. The black bar marks the median.
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A.6.1. Comparing Model Data Information

PFK reaction Glycolysis model Threonine model

Input data: Gibbs free energies average - -780.2 -643.88

Input data: Gibbs free energies median - -679.01 -509.1

Output data: Gibbs free energies average - -723.7 -578.11

Output data: Gibbs free energies median - -803.22 -407.6

Original data: Gibbs free energies average - - -

Original data: Gibbs free energies median - - -

Input data: Species concentrations average - 21.1 49

Input data: Species concentrations median - 3.2 2.1

Output data: Species concentrations average 0.93 8.45 21

Output data: Species concentrations median 0.93 3.9 1.9

Original data: Species concentrations average 0-5 - 2.49

Original data: Species concentrations median 0-5 - 2.22

Input data: Michaelis constants average - 34.11 5

Input data: Michaelis constants median - 2.2 1.5

Output data: Michaelis constants average 2.18 210.98 1

Output data: Michaelis constants median 2.18 0.3 0.9

Original data: Michaelis constants average 19.2 - 0.87

Original data: Michaelis constants median 19.2 - 0.22

Input data: Inhibitory constants average - 8.6 8.2

Input data: Inhibitory constants median - 1.6 0.5

Output data: Inhibitory constants average - 10.1 15.2

Output data: Inhibitory constants median - 1.8 0.3

Original data: Inhibitory constants average - 1 1.92

Original data: Inhibitory constants median - 1 0.39
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PFK reaction Glycolysis model Threonine model

Input data: Equilibrium constants average - 6 7.1

Input data: Equilibrium constants median - 0.2 -0.6

Output data: Equilibrium constants average - 92 15.2

Output data: Equilibrium constants median - -0.5 0.9

Original data: Equilibrium constants average - 7.48 10.62

Original data: Equilibrium constants median - 1.1 0.09

Input data: Turnover rates average - 6.45 3.1

Input data: Turnover rates median - 6.11 2.2

Output data: Turnover rates average - 59.1 8.3

Output data: Turnover rates median - 5.5 3.01

Original data: Turnover rates average - - -

Original data: Turnover rates median - - -

Input data: Maximal velocities average - - -

Input data: Maximal velocities median - - -

Output data: Maximal velocities average - 59.1 11.6

Output data: Maximal velocities median - 5 4.2

Original data: Maximal velocities average - 5.48 -2.21

Original data: Maximal velocities median - 5.48 -2.3

Table A.10.: The comparison of the averages and means of the input data, the balanced
output data and the data from the original publications and Sabio-RK.
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