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Abstract

One of the major goals of synthetic biology is the construction of programmable biocomputing

devices. An example of a successful implementation is a recently published system of synthetic

logic gates employing a library of engineered yeast cells. In this work we present a quantitative

analysis of this system and show how mathematical modeling can support its further develop-

ment. Deterministic and stochastic approaches are applied to model logic gates implementing

the following Boolean functions: IDENTITY, NOT, OR and IMPLIES. A sensitivity analysis

is performed in order to identify the most signi�cant parameters for the system output. Fur-

thermore, we investigate the noise distribution in the system and the ability of our models to

reproduce the experimental data. We also show how the output of the system can be optimized

by e.g. changing the density of the cell culture. Finally, we propose an extended model that

implements a function following the three-value logic .

Zusammenfassung

Eines der Ziele der synthetischen Biologie ist die Konstruktion programmierbarer Elemente, die

aus biologischen Einheiten aufgebaut sind. Ein Beispiel für die erfolgreiche Umsetzung dieses

Konzeptes ist die vor kurzem verö�entlichte Implementierung logischer Funktionen in genetisch

modi�zierten Hefezellen. In der vorliegenden Arbeit präsentieren wir eine quantitative Analyse

dieses Systems und zeigen, wie mathematische Modellierung dessen Weiterentwicklung unter-

stützen kann. Wir stellen deterministische und stochastische Modelle vor, die die Funktionen

IDENTITÄT, NEGATION, DISJUNKTION und IMPLIKATION implementieren. Mit Hilfe

einer Sensitivitätsanalyse werden für das System kritische Parameter identi�ziert. Darüber hin-

aus untersuchen wir die Verteilung des Rauschens im System und überprüfen, ob die Modelle die

experimentellen Daten reproduzieren können. Zudem zeigen wir, wie das System durch die Än-

derung der Zelldichte optimiert werden kann. Letztendlich schlagen wir ein erweitertes Modell

zur Implementierung einer dreiwertigen logischen Funktion in zellulären Systemen vor.
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The design and creation of a computational tool functioning like an electronic device build

from biological units is a joint e�ort of systems and synthetic biology. The work of Regot and

colleagues [1] is an excellent example of how this two distinct �elds meet. Biologically engineered

cells were combined together into complex systems in order to be able to perform simple logic

operations. The aim of this work is to provide mathematical models of these arti�cial constructs,

test their behavior, make predictions and suggest modi�cations.

1.1 Synthetic biology

Description Synthetic biology is a young �eld that combines molecular biology and engineering

in order to design arti�cial biological systems. It provides a great opportunity to test the present

understanding of natural biological mechanisms [2, 3, 4]. The �rst step in the engineering process

is the choice of a biological function of interest and designing a system that is able to perform this

function. As next, the compounds that can be used for the construction have to be found. Then

the system can be established and evaluated in order to prove if the function is executed properly

[5]. The goal of the synthetic biological engineering is to construct customized biological devices

that are able to recognize the input, process the information, perform the desired function and

produce an output [6]. Biological devices that communicate with each other and are placed in

an appropriate cellular context can build biological modules and perform complex tasks. One

of the �rst and best know examples of a synthetic system that performs a particular function

is the repressilator that was built in E. coli from three transcriptional repressors systems [7].

Due to the negative-feedback loop, the network oscillates and activates the synthesis of the GFP

that is the desired system function. The design and the implementation of the repressilator that

performs a designated function is considered to be a milestone of synthetic biology.

Limitations Although one of the goals of synthetic biology is a precise control in biological

systems there are two main di�culties that arise while engineering biological and not electronic

systems. As �rst, the biological mechanisms that perform desirable functions are rarely know in
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details. Secondly, in any biological system the environment has a great impact on its functionality

and changes in the outer world can lead to the loss of the function. Despite these di�culties

many researchers succeeded in manipulation and extension of the existing signaling pathways

in the cells. For instance, it was shown that synthetically constructed feedback loops can be

applied to reprogram the cellular responses [8].

ApplicationsWithout doubt synthetic biology has a great potential as a �eld. New compounds

and networks can be established and used for rewiring and reprogramming of organisms [9]. The

applications range from therapeutics through biosensing to the production of biomaterials and

biofuels. One possible application could be engineered bacteria that are able to recognize tumors

and then invade the cancerous cells [10]. Another example is the fact that synthetic pathways

could potentially be used for microbial production of an antimalarial drug precursor [11].

1.2 Logic gates

Logic gates are devices that implement Boolean functions converting logic inputs into a single

logic output. They employ binary logic where only two values are possible: (i) 0-false (no signal

or low signal) and (ii) 1-true (high signal) [12]. Although the concept mainly refers to digital

systems in electronics it is also possible to build biological logic gates from e.g. gene circuits

[13]. Biological logic gates are far more complicated to construct than the electronic circuits.

The main di�culty arises from the need of wiring the biological units that perform certain tasks.

Constructing of logic gates within a single cell is coupled with diverse limitations, like e.g.: (i)

crosstalk between the pathways as well as (ii) uncontrolled noise propagation. These di�culties

can be evaded by introducing cellular compartmentalization that is shown in Figure 1.1. This

novel strategy was proposed and implemented in engineered Saccharomyces cerevisiae strains

by Regot and colleagues [1].

Figure 1.1: Cellular compartmentalization. In this novel approach each cell type performs exactly one

logic operation. The cells are wired by the di�usible output molecules.

As shown, each cell in the system performs only one function and responds only to a particular

input. This solves the problem of wiring between the cells and the logic gate can perform desired

function with a high �delity of the information �ow.

Tamsir and colleagues [14] also used a multicellular strategy to design their logic gate in E.

coli. They compartmentalized the logic gate into separate E. coli strains and employed quorum

signaling to enable the cell-to-cell communication.
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1.3 Saccharomyces cerevisiae as a model system

The yeast Saccharomyces cerevisiae is one of the best studied eukaryotic model organisms. Many

human proteins were �rst discovered and studied as their homologs in yeast, e.g. diverse signaling

proteins [15]. S. cerevisiae can be cultured at low cost, has a short doubling time and can be

easily manipulated (by adding new genes or creating gene knockouts). These features make S.

cerevisiae attractive for studying of new functions.

In order to sense and to respond to the changes in the environment as well as to integrate

the external and internal signals yeast cells use signal transduction pathways [16]. The precise

functioning of these pathways is crucial for the survival of the cells. S.cerevisiae often employs

mitogen activated protein kinases (MAPKs) to transmit the information about external stimuli

and to cause intracellular responses [17]. To give an example, MAPK cascade can act as a

link between the upstream signaling (e.g. receptor, G-proteins) and downstream e�ectors (e.g.

regulators of gene expression). The MAPKs usually build a three-step-cascade: MAPKKK

receives the signal and can phosphorylate the MAPKK which can in turn phosphorylate the

MAPK. The latter usually acts as a �nal trigger for diverse responses.

In the following subsections two signal transduction systems of yeast that employ MAPKs will

be described: (i) the pheromone pathway, responsible for mating of the yeast cells and (ii)

the high-osmolarity glycerol (HOG) pathway, activated in response to osmotic stress. Both are

crucial for understanding of the model system that will be presented in the latter chapters of

this work.

1.3.1 Pheromone pathway

The pheromone pathway in S. cerevisiae is one of the best studied pathways [18, 19, 20]. The

budding yeast cells may exist in two pheromone producing haploid forms: MATa cells that

produce a-factor and MATα cells that produce α-factor. MATa cells carry Ste2 receptor and

are able to sense the α-factor. Similarly, MATα cells carry Ste3 receptor, to which the a-factor

can bind in order to stimulate the mating process. The active receptor can interact with the Gα

subunit of the the heterotrimeric G-protein (consisting of Gα, Gβ and Gγ subunits) and activate

the G-protein cycle that participates in the transmission of the signal. During this process the

heterodimer Gβγ is released and can bind and activate other components of the pathway e.g the

sca�old protein Ste5 that recruits the elements of the MAPK cascade to the plasma membrane.

The activation of the signaling cascade leads to the phosphorylation of the MAPK Fus3 that

shuttles between the cytoplasm and nucleus. The active Fus3 is responsible for phosphorylation

of diverse proteins that enable mating of the cells e.g. Far1 (responsible for the arrest of the cell

cycle) or Ste12 (participates in the expression of pheromone-induced genes)[21].

1.3.2 HOG pathway

Yeast cells live in a permanently changing environment. In order to survive special adaptation

mechanisms must have evolved. One of them is the ability of the cells to respond to the changes

in the osmotic conditions. This response employs the high-osmolarity glycerol (HOG) pathway

[22, 23]. In presence of osmotic shock, two osmosensors Sln1 and Sho1 become active and

phosphorylate then the MAPKK Pbs2 which in turn phopshoprylates the MAPK Hog1 that
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shuttles between the cytoplasm and nucleus. The nuclear active Hog1 controls the expression of

over 600 genes via phosphorylation of osmoresponsive transcription factors e.g. Hot1 [24]. The

active cytoplasmic Hog1 contributes to the accumulation of internal glycerol that compensates

the external osmolarity, regulates the cell volume and the turgor pressure that prevents the

dehydration of the cell and ensures osmotic stabilization.
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2.1 Modeling of biological processes

Mathematical models gives us the opportunity to understand the intrinsic nature and dynamics

of biological processes. Mathematical modeling enables us also to make predictions as well as

to integrate the experimental knowledge into a common framework [16, 25]. A model should

represent a biological process with appropriate precision in order to explain desired features or

functions. Models can vary in art and complexity depending on the purpose of modeling [26].

In other words, as �rst a hypothesis that we want to test has to be formulated and then, after

choosing an appropriate modeling strategy, the model can be established and validated. In the

following subsections we describe two modeling approaches that we use in our work: kinetic

modeling with ordinary di�erential equations (ODEs) and stochastic modeling.

2.1.1 Deterministic modeling

One of the most common techniques to model the temporal changes in the state variables is to

describe the dynamics of the system with a set of ODEs [25].

The temporal changes in the system of n components with concentrations c and l distinct kinetic

parameters p can be described as follows:

dci
dt = ċi = fi(c1, ..., cn, p1, ..., pl, t) i = 1, ..., n

The concentrations of the species ci are time-dependent functions of concentrations of other

chemical species and model parameters. The initial concentrations of the model compounds and

kinetic parameters rarely can be all obtained from the literature. The missing values have to

be �tted (estimated basing on available experimental data). The aim of parameter estimation

is to �nd such a set of parameters so that the simulations of the model match the experimental

data set with highest possible accuracy. The missing parameter values of the ODE models
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presented in this work were obtained with the tool COPASI [27] and the method Evolutionary

Programming [28].

All details to reactions, parameters and initial concentrations that we use in our work will be

presented in the chapter Model construction.

2.1.2 Stochastic modeling

In the deterministic approach we assume the compound quantities to be continuous values. It

is a good approximation for compounds with high abundances. Nevertheless, some biochemical

species exist in a small copy number. Therefore, there is a need for a di�erent approach that

could model species quantities as discrete values. Due to a small number of molecules signi�cant

stochastic e�ects can occur [29]. One of the best studied and optimized methods for stochastic

modeling is the stochastic simulation algorithm (SSA) employing the direct method [30] that

answers the following questions: (i) which reaction occurs as next and (ii) when does it occur.

The SSA is a numerical method that allows to simulate well-stirred reacting systems in exact

accordance with the chemical master equation (CME) [31].

A chemical reaction is de�ned as a random collision of two molecules in a collision volume.

Having the initial amount of molecules of several biochemical species and reaction probability

constants it is possible to simulate the dynamics of the system, reaction by reaction. The

algorithm includes following steps:

1. Set time=0. Initialize the abundance of the molecules and reaction propensities.

2. Generate random numbers in order to identify the next reaction to �re and the time

interval.

3. Update the time by adding the length of the generated time interval. Update the abun-

dances of molecules.

4. Continue till the simulation time has been exceeded.

Each run of the simulation is di�erent and is not necessarily re�ecting the behavior of the whole

system. In order to answer the question, how the system performs, many simulations have to

be run and averaged. This also gives the possibility to calculate the distribution of the results

in order to quantify the noise in the system that is an important feature of biological systems.

For some biological questions it is of more importance to know how the results are distributed

than to know the average of them. All stochastic simulations in this work were performed with

the tool CAIN [32].

2.1.3 Comparison of the approaches

Both methods described in previous subsections are relatively fast and easy in implementation.

There are many tools available that can be used to implement both deterministic and stochastic

models. The deterministic modeling with ODEs is also very fast in computing and easy to

analyze. It is most suitable for systems with high molecule numbers, where the �uctuations

are insigni�cant. We must remember that the result of an ODE model simulation is always an

average for the whole system.
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The stochastic approach has a lot of advantages but also limitations [30]. The SSA is an

exact method allowing all �uctuations to occur. In contrast to ODE modeling, SSA does not

approximate the time steps and therefore allows sudden and sharp changes of the system. Only

the SSA gives the possibility to simulate the behavior of a single molecule. However, simulating

each molecular reaction is often too time-consuming for simulations of more complex systems.

Summing up, the choice of the method depends on the problem to solve and its complexity.

In the following chapters we employ both methods to test our hypotheses. We construct and

simulate ODE models, a stochastic model and a combined hybrid model.

2.2 Boolean logic

As already mentioned in the Introduction, logic gates perform functions following Boolean

logic that uses only two values: 0 (false) and 1 (true). The number of functions B that can be

de�ned with the Boolean algebra depends on the number of input variables n and is given with

following equation:

B(n) = 22n

For a single input (p) there are four di�erent boolean functions existing. The output values of

the functions with corresponding descriptions are listed in Table 2.1.

Input p 0 1 Description

Output

FALSE 0 0 Output is always false

IDENTITY 0 1 Output is true only when p is true

NOT 1 0 Output is false only when p is true

TRUE 1 1 Output is always true

Table 2.1: Logic operations for a single input(p). Four di�erent functions can be de�ned for a single

input. They are listed with the corresponding output values and descriptions.

If an input consist of two boolean variables (p and q), 16 possible boolean functions exist. Six

of them are listed with descriptions in Table 2.2.

Input
p 0 1 0 1

Description
q 0 0 1 1

Output

AND 0 0 0 1 Output is true only when both p and q are true

NAND 1 1 1 0 Output is false only when both p and q are true

OR 0 1 1 1 Output is true when at least one of p and q is true

NOR 1 0 0 0 Output is true only if both p and q are false

IMPLIES 1 0 1 1 Output is false only if p is true and q false

N-IMPLIES 0 1 0 0 Output is true only if p is true and q false

Table 2.2: Logic operations for an input operating with two values (p and q). Six of 16 di�erent

functions that can be de�ned for an input with two values are listed with the corresponding

output values and descriptions.

We apply Boolean functions to evaluate the performance of the logic gates and to interpret the

results.
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3.1 Deterministic models of single cells

Mathematical models of four di�erent cells have been established and afterwards combined into

four gates able to express following logic functions: IDENTITY, NOT, OR and IMPLIES. The

cells are constructed in a way that each cell can act as either a sender or reporter cells. The

structures of the models of the cells are presented in Figure 3.1.

The sender cells are able to respond to external stimuli (salt, galactose or doxycycline) and to

produce the α-factor. The reporter cell is able to sense the α-factor in the medium and than

produce GFP. As �rst the deterministic models of single cells were created based on the param-

eters found in the literature. The remaining parameters were �tted to diverse literature data.

The following subsections describe in detail how the cells were engineered [1] and how are they

modeled and show also their behavior when stimulated with characteristic input concentration

values. Tables with kinetic equations, parameter values and initial concentration values with all

references are collected in the Appendix. The references to the data sets that were used for

parameter estimation are also collected in the Appendix. All models were implemented and

simulated in COPASI [27].
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Figure 3.1: Schemes of the structures of the sender cells: (A) salt-cell, (B) dox-cell, (C) gal-cell and

the (D) reporter cell.

3.1.1 Salt-cell

The salt-cell is a MATα cell with deleted Ste3 receptor. This deletion prevents mating with

MATa cells and the production of endogenous α-factor. However, the salt-cell can produce

α-factor in the presence of NaCl because the MFα1 gene is under the control of the osmostress-

induced STL1 promoter. Additionally, the cell carries a fps1-∆1 mutation which prevents fast

glycerol accumulation in the cell and causes an oversensitivity to the osmostress [33].

Model The structure of the model is shown in Figure 3.2.

Figure 3.2: Salt-cell: wiring in the system. Each arrow represents a chemical reaction. Lines with dots

at the end are modulation reactions. Lines with perpendicular lines at the end are negative

regulations. Biochemical species with n at the end of the name are nuclear species. All

other components are in the cytoplasm. The system is activated in the presence of salt and

is able of producing α-factor.
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The osmostress is build upon the presence of NaCl in the medium and can be compensated by the

accumulation of internal osmolytes. In the presence of osmostress the MAPKK Pbs2 becomes

phosphorylated (r20). The phosphorylated form Pbs2PP can (i) be dephosphorylated (r21) or

(ii) can activate, via phosphorylation, the cytoplasmic MAPK Hog1 (r22) which can also be

dephosporylated (r23). It is not possible to phosporylate Hog1 in the nucleus thus only the

reversible reaction can occur (r24). All four forms of Hog1 can shuttle between cytoplasm and

nucleus (r25-r28). The presence of active cytoplasmic Hog1 enables the accumulation of internal

osmolytes (r29). The internal osmolytes can also release the cell (r30) if there is no osmostress

present. The nuclear active Hog1 activates the STL1 promoter which induces the production

of MFα1 -mRNA (r31). The MFα1 -mRNA induces the production of the polypeptides needed

for the synthesis of the α-factor - PreproAlpha (r32) which can then be transformed into Alpha

(r33). The MFα1 -mRNA is being constantly degraded (r31deg).

The produced Alpha is being diluted when exported from the cytoplasm to the medium. There-

fore we introduce a parameter dilution. The value for this parameter is calculated from the

values of the volumes of the compartments and the cell culture density. The initial value of the

cell culture density in our models is set to 5 · 106 cells
ml that correspond to a dilution factor of

13800. However, the density of the cell culture changes during the time due to the cell division.

We assume that the cells have a doubling time of four hours. As a consequence, the density of

the culture increases during the simulation that results in a decrease in the value of the dilution

factor. We model the value of the dilution factor with following equation:

dilution = 13800 · e−0.173·T ime[h]

The concentration of the produced α-factor (also called Alpha in culture) is modeled with

following equation:

[α-factor] = [Alpha]
dilution

Deterministic simulationsWe run deterministic simulations of the ODE model of the salt-cell

for four hours. We payed particular attention to following processes: the activation of nuclear

Hog1 and the production of the α-factor under diverse osmotic conditions (0.0, 0.05, 0.1, 0.2,

0.4 and 0.6 M NaCl).

Figure 3.3 presents the activation of the nuclear Hog1 (Hog1PPn) that reaches its maximum

within �rst minutes of stimulation. The value of the reached maximum is concentration de-

pendent and increases with the concentration of salt. The increase in the osmotic pressure

results also in a delay in reaching of the the steady-state because the system needs more time

for adaptation.
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Figure 3.3: Simulation of the deterministic salt-cell model. The concentration of Hog1PPn under

stimulation with di�erent salt concentrations is plotted over four hours. The higher the

osmotic stress the higher peak and plateau are reached.

Figure 3.4 illustrates the di�erences in the production of α-factor by the salt-cell model for

di�erent salt concentrations. The amount of produced α-factor after four hours of simulation

ranges from 0.7 nM (for 0.05 M NaCl) to 2.5 nM (for 0.6 M NaCl).
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Figure 3.4: Simulation of the deterministic salt-cell model. The concentration of α-factor under stimu-

lation with di�erent salt concentrations is plotted over four hours. The higher the osmotic

stress the more α-factor is produced.

3.1.2 Dox-cell

The dox-cell is a MATα cell with deleted Ste3 receptor that prevents mating with MATa cells and

the production of endogenous α-factor. TheMFα1 gene is under the control of two TetOperators

that enable a continuous α-factor expression in the absence of doxycycline. The presence of

appropriate doxycycline concentration represses very quickly the production of α-factor .
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Model The structure of the dox-cell model is shown in Figure 3.5.

Figure 3.5: Dox-cell: wiring in the system. Each arrow represents a chemical reaction. Lines with dots

at the end are modulation reactions. Lines with perpendicular lines at the end are negative

regulations. The system is able of producing α-factor. This process is negatively regulated

by doxycycline.

Doxycycline enters the nucleus and represses the expression of MFα1 gene (r38). The reactions

contributing to the production of Alpha (r31deg, r32, r33) are the same for all sender cells

and were already described in previous subsection about the salt-cell.

Deterministic simulationsWe run deterministic simulation of the ODE model of the dox-cell

and simulated the behavior of the cell upon diverse doxycycline concentrations (0.0, 0.05, 0.1,

0.5, 1.0, 5.0 and 10.0 µg/ml). Figure 3.6 presents the amount of produced α-factor by the

dox-cell stimulated with di�erent doxycycline concentrations.
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Figure 3.6: Simulation of the deterministic dox-cell model. The concentration of α-factor under stimu-

lation with di�erent doxycycline concentrations is plotted over four hours. The higher the

concentration of the doxycycline the less α-factor is produced.

The simulation reveals that already a low concentration of doxycycline (0.05 µg/ml) signi�cantly

decreases the amount of produced α-factor produced by the dox-cell.



16 Chapter 3. Model construction

3.1.3 Gal-cell

The gal-cell is a MATα cell with deleted Ste3 receptor that prevents mating with MATa cells

and the production of endogenous α-factor. The MFα1 gene is placed under the control of

GAL1 promoter and enables the expression of α-factor in the presence of galactose. Addition

of glucose represses the production.

Model The structure of the model is shown in Figure 3.7.

Figure 3.7: Gal-cell: wiring in the system. Each arrow represents a chemical reaction. Lines with

dots at the end are modulation reactions. The system is able of producing α-factor. This

process is stimulated in the presence of galactose

Galactose activates the promoter and enables the production of MFα1 -mRNA (r37). The

reactions contributing to the production of α-factor (r31deg, r32, r33) are the same for all

sender cells and were already described in the subsection about salt-cell.

Deterministic simulationsWe simulated the behavior of the gal-cell performing deterministic

simulations of the production of α-factor for di�erent galactose concentrations (0.0, 0.5, 1.0, 2.0,

4.0 %) and present the result in Figure 3.8
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Figure 3.8: Simulation of the deterministic gal-cell model. The concentration of α-factor under stim-

ulation with di�erent galactose concentrations is plotted over four hours. The higher the

concentration of the doxycycline the more α-factor is produced.

The rate of accumulation of the α-factor increases with increasing galactose concentration.
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3.1.4 Reporter cell

The reporter cell is a MATa cell that carries a bar1∆ mutation. BAR1 is an enzyme responsible

for the cleavage of α-factor in the extracellular space of MATa cells and its deletion leads to an

increased sensitivity to the α-factor [34]. The GFP gene is placed under the control of FUS1

promoter that is induced during the pheromone stimulation. Therefore the reporter cell is able

to produce GFP in the presence of pheromone.

Model The structure of the model is shown in Figure 3.9.

Figure 3.9: Reporter-cell: wiring in the system. Each arrow represents a chemical reaction. Lines with

dots at the end are modulation reactions. Biochemical species with n at the end of the

name are nuclear species. All other components are in the cytoplasm. The system is able

of producing GFP when stimulated with α-factor.

The pathway is activated in the presence of α-factor that binds to the Ste2 receptor (r1). There

is an internal production of the receptor included (r3) as well as degradation of both forms of

Ste2 can occur (r4, r5). The active form of Ste2 can be deactivated (r2) or can switch on

the MAPK cascade. For simpli�cation, the MAPK cascade is modeled as a single step: the

complex can be activated (r6) and deactivated (r7). The active complex can phosphorylate

the cytoplasmic MAPK Fus3. We can distinguish four forms of Fus3 (cytoplasmic active and

inactive as well as nuclear active and inactive) that can shuttle between cytoplasm and nucleus

(r11-r14). Both cytoplasmic and nuclear forms of Fus3 can be dephosphorylated (r9, r10).

The nuclear active Fus3 activates the FUS1 promoter which induces the production of GFP -

mRNA (r34). The GFP -mRNA induces the production of nascent GFP (r35) which can then

be transformed into the mature GFP (r36). The GFP -mRNA is being constantly degraded

(r34deg).
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Deterministic simulations To investigate further the reporter cell model several simula-

tions have been performed. Figure 3.10 shows the dynamics of the activation of nuclear

Fus3 (Fus3PPn) after stimulation with di�erent α-factor (pheromone) concentrations (0.01 nM,

0.1nM, 1 nM, 10 nM and 100 nM).
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Figure 3.10: Simulation of the deterministic reporter cell model. The concentration of Fus3PPn un-

der stimulation with di�erent α-factor concentrations is plotted over four hours. The

system reaches the steady-state within 15 minutes. Its value depends on the α-factor

concentration.

In all cases the model reaches the steady state within the �rst 15 minutes of simulation. The

value of the steady state concentration of activated nuclear Fus3 increases with increasing α-

factor concentration. Finally, Figure 3.11 presents the production of mature GFP for di�erent

pheromone concentrations.
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Figure 3.11: Simulation of the deterministic reporter cell model. The concentration of mature GFP

under stimulation with di�erent α-factor concentrations is plotted over four hours. The

higher the concentration of the α-factor the more GFP is produced.

The amount of accumulated mature GFP increases with the increasing pheromone concentration.
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3.2 Construction of gates

The in previous section described and modeled single cells can be combined to build gates that

perform logic functions. In the following subsections each of the four types of gates that we

investigated will be described in detail.

3.2.1 IDENTITY gate

IDENTITY gate is a 2-cell gate built from the salt-cell and reporter cell. Figure 3.12 presents

the scheme of the gate and the corresponding truth table (a truth table is used for computing of

the values of logical expression for all possible combinations of arguments; it is composed from

one column for each variable and one column for the resulting value).

Figure 3.12: IDENTITY Gate: Structure and truth table. The gate produces GFP only in the presence

of NaCl.

The IDENTITY gate produces output (GFP) only in the presence of input (NaCl). Alternatively,

an IDENTITY gate can be also build from the gal-cell and the reporter cell.

3.2.2 NOT gate

The NOT gate is built from a dox-cell and a reporter cell. The system is presented in Figure

3.13.

Figure 3.13: NOT Gate: Structure and truth table. The gate produces GFP only in the absence of

doxycycline.

The NOT gate is constantly active in the absence of doxycycline. Once there is doxycycline in

the medium, there will be no output produced.

3.2.3 OR gate

The OR gate is a 3-cell gate built from two sender cells: salt-cell and gal-cell and the reporter

cell. The Figure 3.14 illustrates the system.
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Figure 3.14: OR Gate: Structure and truth table. The gate does not produces GFP only in the absence

of both salt and galactose.

If the salt-cell is stimulated with salt, it will produce α-factor that will lead to GFP production

by the reporter cell. Similar holds for the gal-cell: if stimulated with galactose, it will produce

α-factor and, subsequently, induce GFP production in the reporter cell. Only if neither salt-cell

nor gal-cell is stimulated there will be no GFP been produced. Therefore, the system expresses

the OR function.

3.2.4 IMPLIES gate

The IMPLIES gate is built from gal-cell, dox-cell and reporter cell. The gate mechanism is

presented in Figure 3.15 .

Figure 3.15: IMPLIES Gate: Structure and truth table. The gate does not produce output only in the

presence of doxycycline and simultaneous absence of galactose.

In the presence of galactose in the medium, the gal-cell is stimulated and produces α-factor that

leads to GFP production by the reporter cell. In the absence of galactose, there are two possible

scenarios: (i) doxycycline is absent and the dox-cell produces continuously the α-factor and the

reporter cell can produce the GFP or (ii) doxycycline is present in the medium and represses

the α-factor production and prevents the system from producing output. Therefore, the system

follows the IMPLIES logic.
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3.3 Stochastic model of the reporter cell

3.3.1 Full model

The only available experimental data for the synthetically engineered gates are the population

data from �uorescence-activated cell sorting (FACS) analysis counting cells that produce de-

tectable amount of GFP [1]. In order to mimic the behavior of the cell population we decided

to model the reporter cell in a stochastic manner. This approach is justi�ed by the fact that

some of the chemical species in the reporter cell have low abundance and the �uctuations on the

single molecule level cannot be overlooked.

Model The structure of the stochastic reporter cell model is the same as the structure of the

corresponding deterministic model (Figure 3.9). The system was implemented with the help of

the tool CAIN [32] and simulated with the build-in function "direct method". Parameters were

adopted or appropriately recalculated from the deterministic model and are listed inAppendix.

Stochastic simulation In order to investigate the behavior of the constructed model we per-

formed stochastic simulations. Due to the very long computation time we decided to apply

quasi-steady-state assumption (QSSA) [35] for the Ste2 receptor to shorten the execution time.

The QSSA can be applied here because two prerequisites are ful�lled. As �rst, the binding of

the α-factor to the receptor follows a very fast dynamics resulting in a rapid reaching of a steady

state. Secondly, Ste2 is present in a large molecule number in the cell and the �uctuations at

the single cell level can be neglected. After applying the QSSA, we simulated 100 trajectories

for the reporter cell stimulated with constant α-factor concentrations (0.5, 2.5, 5 nM). As an

example, how a result of a stochastic simulation looks like, we present the trajectories for two

species (Fus3PPn and GFPmRNA) of the reporter cell in Figure 3.16.
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Figure 3.16: Stochastic simulation of the full reporter cell model. We stimulated the reporter cell model

with 2.5 nM α-factor. In each case 100 trajectories are plotted over four hours showing

the number of (A) Fus3PPn (B) GFPmRNA molecules produced (per cell). The bold

grey line in each panel depicts the mean number of molecules for respective compound.
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As already mentioned, it was possible to apply QSSA at the receptor level, because the stimu-

lation with constant α-factor resulted in rapid reaching of steady state.

Unfortunately, the sender cells that we model accumulate the α-factor over the simulation time

(e.g. Figure 3.4), so the reporter cell is exposed to an altering α-factor concentration that

prevents the receptor from reaching steady-state. Therefore, the QSSA cannot be applied and

the full model of the stochastic cell becomes too time-expensive to simulate when combined into

models of logic gates. As a solution, we propose a reduced version of the stochastic model.

3.3.2 Reduced model

The most important and also most noise contributing (see Results, Noise quanti�cation)

part of the reporter cell model is the GFP expression module (r34, r34deg, r35, r36) presented

in Figure 3.17. Therefore we decide to reduce the stochastic model of the reporter cell to a

model including only these four reactions. We use the concentration of the Fus3PPn obtained in

deterministic simulations as an input for the model. The with COPASI generated Fus3PPn tra-

jectories were approximated with polynomial functions with the Curve Fitting Tool in MATLAB

(Mathworks, Inc.) and then used as input in the stochastic model.

Figure 3.17: Reduced model of the reporter cell: wiring in the system. Each arrow represents a chemical

reaction. Lines with dots at the end are modulation reactions.
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4.1 Deterministic simulations of the gates

As �rst, we investigate the functioning of the arti�cially constructed logic gates for di�erent

concentrations of input variables employing deterministic simulations. We consider the �nal

amount (at the end of the simulation time) of produced GFP to be the system output for each

gate. To this end, we quantify the �nal concentration of GFP for each model variant. All gates

produce biologically feasible concentrations of GFP. We name the cells that produce enough

GFP to generate �uorescence as GFP-positive. In order to distinguish between GFP-positive

and GFP-negative cells and to evaluate the results we �x a threshold of 4.5 µM of GFP for

considering cells as GFP-positive.

All following deterministic simulations were performed with the tool COPASI [27]. The simula-

tions start when the stimulation with corresponding input begins (tstart = 0) and end after four

hours (tend = 240min). Figure 4.1 shows the result of the simulations of the IDENTITY gate

model for a range of NaCl concentrations.
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Figure 4.1: Final GFP concentration after four hour stimulation of the IDENTITY gate with di�erent

salt concentrations. Increased salt stress results in increased GFP production. The pink

line depicts the threshold (4.5 µM) for considering cells as GFP-positive.

The amount of produced GFP by the IDENTITY gate increases when stimulated with increasing

salt concentrations. The concentration of produced GFP exceeds the above set threshold when

the gate is stimulated with 0.3 M NaCl.

Figure 4.2 presents the result of the deterministic simulations of the NOT gate.
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Figure 4.2: Final GFP concentration after four hour stimulation of the NOT gate with di�erent doxy-

cycline concentrations. Increased doxycycline concentration decreases the amount of pro-

duced GFP. The pink line depicts the threshold (4.5 µM) for considering cells as GFP-

positive.

The NOT gate produces a GFP concentration that exceeds the threshold (i.e. more than 4.5

µM) only for low concentrations of doxycycline (i.e. less than 0.1 µg/ml). Stimulation with

higher doses of doxycycline prevents the reporter cell from producing high levels of �uorescence.

Interestingly, the NOT gate allows for basal production of mature GFP as even very high doses

of doxycycline still allow the reporter cell to produce ca. 2.5 µM GFP. This phenomenon will

be discussed in the last paragraph of this section.

After we have succeeded in constructing gates consisting of one sender and one reporter cell

we decided to model more complex gates with two types of sender cells included. Figure 4.3

presents the result of the deterministic simulations of the 3-cell gates: OR and IMPLIES.
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Figure 4.3: (A) Final GFP concentration after four hour stimulation of the OR gate with di�erent salt

and galactose concentrations. (B) Final GFP concentration after four hour stimulation of

the IMPLIES gate with di�erent doxycycline and galactose concentrations. The pink line

depicts the threshold (4.5 µM) for considering cells as GFP-positive.

The �nal GFP concentration in 3-cell-gates depends on the degree of stimulation of both sender

cells and therefore cannot be presented as a single graph. Thus we use heatmaps to illustrate the

behavior of the gates. The amount of produced GFP by the OR gate (Figure 4.3A) increases

when the system is stimulated with increasing salt or galactose concentrations. Already at low

concentrations of these two inputs, the system is able to produce detectable GFP concentration.

The result for the IMPLIES gate (Figure 4.3B) reveals that the increase in galactose concen-

tration promotes the GFP production. The increase in the concentration of doxycycline in the

medium leads to a decrease in the concentration of produced GFP.

As already mentioned in the evaluation of the results of the NOT gate, a signi�cant amount

of GFP is being produced even in the presence of high doxycycline concentration. A high

doxycycline concentration should in theory fully repress the α-factor production in the dox-

cell and ensure that no GFP is being produced by the system. A similar observation can be

made for both 3-cell gates. The simulations of the OR gate predict that even if the medium

contains neither salt nor galactose, the gate can still produce ca. 1.8 µM GFP. Similarly, the

IMPLIES gate can achieve a GFP concentration of ca. 3.7 µM, that is close to the threshold,

even if stimulated with high dosage of doxycycline and by simultaneous absence of galactose.

These inaccuracies in the functioning of the gates originate from the experimental setup: (i) the

gal-cells were originally precultured in galactose and (ii) the dox-cells were precultured without

doxycycline in a standard rich medium [1]. The consequence of the preculturing is an internal

preaccumulation of the MFα1 -mRNA and of the PreproAlpha in both gal- and dox-cell before

the actual begin of the stimulation. The initial concentrations of these two biochemical species

are therefore not equal to zero and it was taken into consideration in our modeling approach.

The appropriate initial concentration values that we assigned are listed in the Appendix. To

be consistent with the experimental procedure the initial concentration of α-factor remains zero
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in the model. This is due to the fact that the cells have been always transferred to a fresh

medium after the preculturing. As a consequence, the already produced α-factor disappeared.

The signi�cance of the preaccumulation of MFα1 -mRNA and PreproAlpha was investigated

further and the results will be presented in the section Modi�cations of the system.

4.2 Sensitivity analysis of the IDENTITY gate

Parameter sensitivity analysis is a useful tool for investigating, how the system variables (e.g.

non-constant concentrations of biochemical species) depend on model parameters (e.g. kinetic

parameters, initial concentrations of compounds) [36]. To this end, values of parameter sen-

sitivities are calculated. We de�ne sensitivity as the change in the chosen variable upon an

in�nitesimal change in the particular parameter. It is also useful to scale the sensitivities in

order to obtain relative values. These are dimensionless and such sensitivities can be compared

with each other. The mathematical formulation for how the variable Xi changes with the change

in parameter pk is given with following equation [37]:

S(Xi, pk) = ∂Xi
∂pk

· pkXi

A standard sensitivity analysis investigates the changes in the steady-state values of variables

of interest with respect to the in�nitesimal changes in the model parameters. However, not all

systems reach steady-state during the course of observation. Moreover, it is sometimes of more

importance to know if and how the values of the sensitivities evolve with the time. The �nal

output in our framework (concentration of mature GFP) does not reach the steady-state in all

four gates. GFP accumulates in all cases, because there is no degradation included, neither in

the experimental framework nor in the model. Considering this fact, we decided to perform time-

dependent sensitivity analysis and investigate, how the values of sensitivities change throughout

the time evolution of the system.

The time-dependent parameter sensitivity analysis was performed for the IDENTITY gate stim-

ulated with 0.4 M NaCl. The values of sensitivities were calculated for 9 time points (after 15,

30, 60, 90, 120, 150, 180, 210 and 240 minutes of the simulation time) with the tool COPASI [27].

In the following subsection we present the dependence of the output on 33 kinetic parameters,

length of the doubling time and density of the culture. We also show, how the accumulation of

mature GFP depends on the values of the initial concentrations of the compounds.

4.2.1 Kinetic parameters

Figure 4.4 presents the result of the time-dependent sensitivity analysis for the accumulation

of GFP at di�erent time points during stimulation of the IDENTITY gate with 0.4 M NaCl.

The heatmap shows that the parameters governing the reactions in the Hog1 pathway of the

sender cell (w, Ki, k20-k30) have a very little in�uence on the GFP concentration during the

whole simulation time. The parameters responsible for the production of the α-factor in the salt-

cell (k31, k32, k33) have a signi�cant in�uence on the reporter cell's output, especially during the

�rst hour of model simulation. The module responsible for α-factor production has a positive

control over the production of GFP. In other words, if one of the parameters governing the

α-factor production increases, the concentration of GFP also increases.
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Figure 4.4: Time-dependent sensitivity analysis for GFP accumulated by the IDENTITY GATE stim-

ulated with 0.4 M NaCl. Sensitivities for all kinetic parameters, doubling time and dilution

have been calculated for 9 time points during the simulation.

The signi�cance of the length of the doubling time on the GFP production by the reporter cell

is negligible at the beginning but increases slightly during the course of the model simulation.

The changes in the value of the dilution factor in�uence negatively the concentration of GFP

during the whole simulation time. These two phenomena are discussed in more detail in the

section Modi�cations of the system at the end of this chapter.

In the pheromone pathway of the reporter cell, there are three parameters that have a positive

in�uence on the output concentration. These are: the binding of the pheromone to the receptor

(k1), the activation of the Ste5 complex (k6) and phosphorylation of the cytoplasmic MAPK

Fus3 (k8). As a consequence, the parameters of the reversible reactions: pheromone dissociation

from the receptor (k2), inactivation of the Ste5 complex (k7) and dephosphorylation of Fus3

(k9) have a negative in�uence on the reporter cell's output. The reactions that describe the

transport of Fus3 between the cytoplasm and the nucleus have a great impact on the system.

The increase in the rate of the export of the Fus3 from the nucleus will decrease the amount of

accumulated GFP. The increase in the rate of the import of Fus3 to the nucleus will enhance

the GFP production. The parameters of the reactions that are direct precursors of the GFP

production (k34, k35) and the rate of GFP maturation itself (k36) have a great positive in�uence
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on the output concentration.

4.2.2 Initial concentrations

The in�uence of the values of initial concentrations of the compounds (in both salt-cell and

reporter cell) on the concentration of mature GFP is presented in Figure 4.5. All compounds

that occur only during the stimulation are not considered, because their initial concentrations

equal to 0.

Figure 4.5: Time-dependent sensitivity analysis for GFP accumulated by the IDENTITY GATE stim-

ulated with 0.4 M NaCl. Sensitivities for all non-zero initial concentrations have been

calculated for 9 time points during the simulation.

All initial concentration sensitivities values are positive that is a consequence of the cascade-like

structure of the whole model and lack of negative regulators. Almost all sensitivities values

of initial concentrations decrease with time. Only the sensitivities of initial concentrations of

unphosphorylated cytoplasmic and nuclear Fus3 remain the same that is due to the fact, that

they reach steady-state almost immediately. The initial concentration of the unphosphorylated

cytoplasmic Fus3 has the greatest impact on the system output among all other model variables.

It is also interesting that the signi�cance of the initial concentration of nuclear Hog1 is smaller

that its cytoplasmic analog. This is likely due to the fact that the MAP kinases can not be

phopsphorylated in the nucleus. Therefore, the initial concentration of the nuclear unphospho-

rylated Hog1 cannot directly contribute to the amount of nuclear phosphorylated Hog1 that

drives the process of α-factor production. The same holds for unphosphorylated Fus3 in the

reporter cell. Nuclear unphosphorylated form of Fus3 must be �rst exported from the nucleus

to the cytoplasm in order to be phosphorylated. This process is the only way to in�uence the

amount of nuclear phosphorylated Fus3 that directly contributes to the production of GFP.
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4.3 Stochastic simulations

As already mentioned in the chapter Model construction there was a need for constructing

a stochastic model of the reporter cell in order to check how well our models of logic gates

reproduces the published population data [1]. In the �rst of following subsections we quantify

the noise in the full (Figure 3.9) and reduced (Figure 3.17) stochastic model of the reporter cell

and justify the reduction of the model. In the second subsection we compare the modeling results

of the combined logic gates with the experimental data. All stochastic simulations consider a

time scale of four hours.

4.3.1 Noise quanti�cation

Noise in biological systems is a natural consequence of the variation between the cells and

between the organisms. It is de�ned as the variability of the measurements around the mean.

It informs us, how distributed are the results of e.g. performance of a signaling pathway. It is

crucial for the understanding of the nature of biological system, to know if a particular e�ect

is random or is a result of a precise information transduction by the system. Moreover, it is of

high importance to know which components and processes are most noise-contributing to the

system and why. In order to �nd solutions to these questions it is reasonable to quantify the

noise. To this end, we calculated the coe�cients of variation (CV) using the standard deviation

σ and mean µ of the results applying the following equation:

CV = σ
µ · 100%

We calculated the coe�cients of variation at the nuclear phosphorylated Fus3 (Fus3PPn) level

and GFP level in order to be able to distinguish between the noise coming from the pheromone

pathway and from the GFP transcription module. The coe�cients were calculated at three time

points: after 1, 2, and 4 hours in order to follow the time evolution of the noise distribution in

the system. As �rst, we quanti�ed the noise in the full model of the reporter cell stimulated

with three di�erent constant concentrations of α-factor (0.5, 2.5 and 5 nM). The mean and the

standard deviation were derived from 100 runs of the simulation. The results are presented in

Table 4.1.

Coe�cient of variation [%] for

Fus3PPn GFP

Model Variant 1h 2h 4h 1h 2h 4h

Reporter cell

α-factor = 0.5 nM 7.64 7.72 7.65 22.88 16.32 10.33

α-factor = 2.5 nM 4.25 4.37 3.58 14.71 10.99 7.87

α-factor = 5.0 nM 3.35 3.73 3.68 15.99 11.62 7.17

Table 4.1: Quanti�cation of the noise in the accumulation of nuclear phosphorylated Fus3 and accumu-

lation of mature GFP in the full model of the reporter cell when stimulated with di�erent

α-factor concentrations at three time points (after 1, 2 and 4 hours).

We observe that an increase in the α-factor concentration results in a decrease of noise in the

system on both Fus3PPn and GFP levels for most of the time points. At a low concentration

of α-factor only a small part of the Ste2 receptor molecules can be occupied that results in
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an increase of �uctuation level in the system. The values of CVs for Fus3PPn remain nearly

constant during the time. It is due to the fact that Fus3PPn reaches the steady state within

the �rst 15 minutes of the simulation. The values of CVs for GFP decrease with the simulation

time. We can think of two explanations for this phenomenon: (i) GFP does not reach steady-

state within the time scale investigated and (ii) the continuous increase in the number of GFP

molecules reduces the stochastic e�ects. When the reporter cell is stimulated with low (but

constant) concentration of α-factor the main noise in the system originates from the pheromone

pathway. However, the contribution to the noise of the GFP production level increases when

the cell is stimulated with higher α-factor concentrations.

As next we tried to use the full reporter cell model for the simulations in combination with the

sender cells. Our idea was to perform deterministic simulations of the sender cells in order to

obtain the time courses of α-factor and then to use them as an input for the full stochastic

reporter cell model. Unfortunately, the concentration of α-factor produced by the sender cells

alters during the simulation time (Figure 3.4, Figure 3.6, Figure 3.8). As a consequence,

it came out that the full model is too time-consuming to simulate when exposed to altering α-

factor concentration. Thus, we decided to change our approach and to use the reduced reporter

cell model (Figure 3.17). In the changed approach, the deterministically obtained time courses

for Fus3PPn act as inputs for the reduced model. In other words, not only the sender cell but

also the pheromone pathway of the reporter cell is modeled deterministically in the combined

models of logic gates.

Before we continue with the noise quanti�cation in the reduced reporter cell model, we present

100 runs of the hybrid model that uses as an input the deterministic time course of Fus3PPn and

simulate the next steps stochastically. To show an example, we �rst simulated the deterministic

model of the IDENTITY gate with 0.4 NaCl and obtained the time course for Fus3PPn. Then

the time course was approximated with a polynomial function and its derivative was used as the

propensity for the production of Fus3PP in the reduced stochastic model. The next steps were

simulated in a stochastic manner and Figure 4.6 presents the results. For simpli�cation, we

call the following simulations of the logic gates as 'stochastic', but they are, as explained above,

only partially stochastic. This holds also for the next sections and chapters.
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Figure 4.6: Stochastic simulation of the IDENTITY gate stimulated with 0.4 M NaCl with the reduced

reporter cell model. For each compound 100 trajectories are plotted showing the number

of (A) Fus3PPn (B) GFPmRNA (C) nascent GFP and (D) mature GFP molecules

produced (per cell). The bold grey line in each panel depicts the mean number of molecules

for respective compound.

As next, we quantify the noise in the reduced stochastic model. The deterministic concentration

of Fus3PPn acts as the input for the stochastic model. Therefore, as already mentioned above,

we �rst obtained the deterministic time courses of Fus3PPn from COPASI . We simulated all

four gates for a range of values of corresponding inputs. The coe�cients of variation at the

Fus3PPn level and GFP level at three time points (after 1h, 2h and 4h) have been calculated.

Always 1000 trajectories were used to calculate the mean and the standard deviation. The

results are collected in Table 4.2.
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Coe�cient of variation [%] for

Fus3PPn GFP

Model Variant 1h 2h 4h 1h 2h 4h

IDENTITY gate

NaCl = 0.0 M 0.0 0.0 0.0 0.0 0.0 0.0

NaCl = 0.1 M 6.34 4.62 3.55 47.50 24.00 12.56

NaCl = 0.2 M 5.36 4.13 3.27 41.16 20.08 11.59

NaCl = 0.3 M 4.90 3.79 3.14 38.90 19.47 10.64

NaCl = 0.4 M 4.82 3.79 3.10 37.66 19.06 10.62

NaCl = 0.5 M 4.52 3.60 3.15 34.68 17.92 10.27

NaCl = 0.6 M 4.38 3.56 3.09 34.35 18.15 9.93

NOT gate

DOX = 0.0 µg/ml 3.63 3.20 2.86 26.39 14.59 8.51

DOX = 0.05 µg/ml 4.29 3.52 3.05 28.91 16.51 9.78

DOX = 0.1 µg/ml 4.58 3.84 3.19 28.86 16.85 10.27

DOX = 0.5 µg/ml 5.49 4.79 3.94 32.89 20.72 12.89

DOX = 1.0 µg/ml 5.93 5.23 4.24 34.34 21.65 13.30

DOX = 5.0 µg/ml 5.81 5.37 4.85 34.05 22.45 14.35

DOX = 10.0 µg/ml 6.05 5.61 4.89 35.20 22.52 14.83

OR gate

NaCl = 0.0M Gal=0% 7.16 6.69 5.92 41.45 26.83 17.78

NaCl = 0.4M Gal=0% 4.15 3.41 2.99 30.01 16.37 9.58

NaCl = 0.0M Gal=2% 4.20 3.40 2.99 30.12 16.09 9.54

NaCl = 0.4M Gal=2% 3.68 3.10 2.83 25.15 14.16 8.56

IMPLIES gate

DOX = 0.0 µg/ml Gal=0% 3.54 3.18 2.87 23.20 14.55 9.21

DOX = 0.0 µg/ml Gal=2% 3.29 2.98 2.77 21.64 13.37 8.76

DOX = 10.0 µg/ml Gal=0% 4.74 4.56 3.94 27.60 18.51 12.45

DOX = 10.0 µg/ml Gal=2% 3.88 3.36 2.94 23.87 14.05 8.91

Table 4.2: Quanti�cation of the noise in the accumulation of nuclear phosphorylated Fus3 and accumu-

lation of mature GFP in the reduced model of the reporter cell in combination with sender

cells. The CVs are calculated for all four logic gates stimulated with corresponding inputs

at three time points (after 1, 2 and 4 hours).

For all model variants the coe�cients of variation, for both Fus3PPn and GFP level, decrease

with the time. It is clearly due to the accumulation of these compounds. In the IDENTITY

gate, the increase of the salt concentration promotes the production of α-factor that in turn

enhances the activation of Fus3 and, subsequently, GFP production. If many GFP molecules

are produced, stochastic e�ects become less important and the noise level decreases. In the

NOT gate, the increase in doxycycline concentration inhibits the α-factor production and thus

inhibits the Fus3 activation and GFP production that leads to higher noise levels.

If the OR gate is stimulated with neither salt or galactose, the noise reaches high values for both

investigated levels. This is due to a low α-factor and, subsequently, low GFP production. In the

IMPLIES gate we observe high noise at both levels only in the absence of galactose and during

simultaneous stimulation with doxycycline. In all gate variants, the GFP module contributes

much more to the noise than the Fus3PPn production. The noise at the Fus3PPn level ranges

from 3 to 5 % that is in agreement with the amount of noise originating from the pheromone

pathway in the full stochastic model (Table 4.1) and therefore we justify the use the of reduced

model for the stochastic simulations which is much less time-consuming. We use the reduced

model in order to obtain the population result.



4.3. Stochastic simulations 33

4.3.2 Population result

The available experimental data provide us with information, how many of the reporter cells

responded to the stimuli. These were counted as GFP-positive among the cells that were able

to respond when stimulated with synthetic α-factor. Our goal was to investigate, if our models

of logic gates can reproduce these results. To this end, we simulated 1000 trajectories of mature

GFP for each variant of the gate models employing the hybrid models that use the reduced

reporter cell model (as input the deterministically obtained time courses for Fus3PPn were used).

We counted how many of the trajectories exceed the threshold (4.5 µM = 78561molecules) before

the end of the four hour simulation. The simulations were performed using the tool CAIN [32].

The results for the IDENTITY and NOT gates are presented in Figure 4.7.

ì

ì

ì

ì

ì

0 0.1 0.2 0.3 0.4 0.5 0.6
0

10

20

30

40

50

60

70

80

90

100

NaCl HML

%
of

G
F

P
ce

lls

ì

ì

ì

ì ì
ì ì

0 1.0 5.0 10.0
0

10

20

30

40

50

60

70

80

90

100

Doxycycline H Μg�mlL

%
of

G
F

P
ce

lls

A B

Figure 4.7: Population result for the (A) IDENTITY gate and (B) NOT gate. The percentage of

GFP-positive cells is plotted (green lines) for di�erent input concentrations and compared

with the experimental data [1] (black diamonds). As GFP-positive cells we count cells,

that exceed the threshold (4.5 µM) before the end of four hour simulation. Statistics is

made based on the data set of 1000 stochastic simulations.

The model predictions are in a good agreement with the experimental result for both the IDEN-

TITY and NOT gate. .

We also investigated the functioning of the 3-cell gates models and present the result in Figure

4.8.



34 Chapter 4. Results

NaCl= 0.0 M Gal= 0%
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Figure 4.8: Population result for the (A) OR gate and (B) IMPLIES gate. The percentage of GFP-

positive cells is plotted (green bars) for four di�erent input combinations and compared

with the experimental data [1] (black bars). As GFP-positive cells we count cells, that

exceed the threshold (4.5 µM) before the end of four hour simulation. Statistics is made

based on the data set of 1000 stochastic simulations.

The models of OR and IMPLIES gates predict the behavior of the system slightly more digital

than the experimental setup. The main divergence is the fact that the model of the IMPLIES

gate predicts ca. 15% of GFP-positive cells for the stimulation with doxycycline and in the

absence of galactose while the experiment reports no GFP-positive cells. This is due to the

preacculumation of MFα1 -mRNA and PreproAlpha that leads to low production of GFP even

if the cells are not stimulated. Despite this minor discrepancies, we assume our models to be

good predictors of the experimental behavior of the logic gates.

4.4 Modi�cations of the system

4.4.1 Gates without preaccumulation of MFα1 -mRNA and PreproAlpha

As already revealed in the section Deterministic simulations the gal-cell can produce small

amounts of α-factor even in the absence of galactose as well as the dox-cell can still produce α-

factor when stimulated with high doxycycline concentration. These e�ects are the consequence

of the preaccumulation of MFα1 -mRNA and of the PreproAlpha due to the preculturing. At

that point we assumed in our models that the sender and reporter cells are mixed immediately

after the end of the preculturing and that the preaccumulated MFα1 -mRNA and PreproAlpha

molecules could not degrade. However, it cannot be ruled out, that there is a delay between the

preculturing and start of the stimulation. The half-lives of MFα1 -mRNA and PreproAlpha are

not long (3 min 40 sec and 5 minutes respectively). It is enough to consider a 15-30 minutes

long delay due to e.g. the duration of the transfer to a fresh medium, to be able to assume

that the compounds can degrade during this time-window. If this is the case, we do not need to

consider the preaccumulation ofMFα1 -mRNA and of the PreproAlpha any longer and the initial

concentrations can be set to 0. We decided to test this hypothesis and perform the deterministic

simulations again.
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Figure 4.9 presents the GFP production in the NOT-gate with dox-cells without preaccumu-

lated MFα1 -mRNA and PreproAlpha.
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Figure 4.9: Final GFP concentration after four hour stimulation of the NOT gate for di�erent doxy-

cycline concentrations without preaccumulation of MFα1-mRNA and PreproAlpha. The

initial concentrations of MFα1-mRNA and PreproAlpha in the sender cell have been set

to 0. The pink line depicts the threshold (4.5 µM) for considering cells as GFP-positive.

In the NOT gate, the amount of GFP exceeds the threshold only in absolute absence or under

a very low concentration of doxycycline (less than 0.05 µg/ml). The increase in the doxycycline

concentration leads to a very fast decrease of GFP levels. There is no GFP being produced for

high doxycycline concentrations (more than 1.0 µg/ml ).

We also investigated the consequence of the assumption, that MFα1 -mRNA and PreproAlpha

have both initial concentrations equal to 0 in the OR and IMPLIES gate. In Figure 4.10 we

illustrate the GFP concentration accumulated in the reporter cell when stimulated with di�erent

concentrations of salt and galactose (OR gate) or galactose and doxycycline (IMPLIES gate).

Figure 4.10: Final GFP concentration after four hour stimulation of the (A) OR gate for di�erent salt

and galactose concentrations and (B) IMPLIES gate for di�erent galactose and doxy-

cycline concentrations without preaccumulation of MFα1 -mRNA and PreproAlpha. The

initial concentrations ofMFα1 -mRNA1 and PreproAlpha have been set to 0 in both sender

cells. The pink line depicts the threshold (4.5 µM) for considering cells as GFP-positive.
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The functioning of the OR gate visibly improved in comparison to previous result (Figure

4.3): in the absence of both salt and galactose, no GFP will be produced (Figure 4.10A).

The ranges of conditions to reach the threshold have also moved to higher input concentrations.

Similarly, the behavior of the IMPLIES gate has changed. When the gate is stimulated with

doxycycline and in absence of galactose no GFP will be produced (Figure 4.10B). The ranges

of the conditions for exceeding the threshold are also shifted.

Summing up, the time lap between the preculturing and the start of the stimulation in�uences

the functioning of the gates. The preaccumulation of MFα1 -mRNA and PreproAlpha prevent

the cells from complete termination of the production of the output when not stimulated with

galactose or salt (OR gate) or when stimulated with doxycycline and not stimulated with galac-

tose (IMPLIES gate) that anticipates proper performing of the gates.

4.4.2 Density of the culture and doubling time

As we have seen already in the subsection Sensitivity analysis of the IDENTITY gate the

density of the culture is an important factor for the GFP production. It was also revealed that

the doubling time of the culture is a less important parameter. In this subsection we present how

the outcome of the system will change if we vary the mentioned parameters using the example

of IDENTITY gate stimulated with 0.4 M NaCl. As �rst we investigate the signi�cance of

the density of the culture that was originally set to 5 · 106 cells
ml . In Figure 4.11 we present

deterministic simulations for cultures with two times higher density (107 cells
ml ) and 5 times lower

density (106 cells
ml ).
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Figure 4.11: Impact of the cell culture density on the concentration of (A) α-factor and (B) ma-

ture GFP. The deterministic simulations illustrate the changes in the concentrations of

produced α-factor and GFP for the IDENTITY gate stimulated with 0.4M NaCl for the

primary culture density (black lines), for two times higher (blue lines) and �ve times lower

(red lines) density. The pink line depicts the threshold (4.5 µM) for considering cells as

GFP-positive.

The result of the simulations at the level of α-factor concentration is obvious. A population

consisting of two times more sender cells will produce two times more α-factor because the

amount of the produced α-factor is directly proportional to the number of producing cells. Less

intuitive is the result at the level of GFP concentration: the population with higher density will
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produce less than two times more GFP, but the di�erence is still signi�cant. The population

with lower density produces visibly less GFP (but more than 5 times less) and does not reach

the threshold. The reason for the partial loss of information about the α-factor concentration is

the switch-like mechanism governing the pheromone pathway (Figure 3.10, Figure 3.11).

As second, we investigated the e�ect of changing the duration of the doubling time of the cell

culture. We originally used the doubling time of four hours. In other words, in course of our four

hours lasting simulations the number of cells in the culture manages to double. In Figure 4.12

we present deterministic simulations for cultures with a shorter (2h) and longer (6h) doubling

time.
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Figure 4.12: Impact of the length of doubling time on the concentration of (A) α-factor and (B)

mature GFP. The deterministic simulations illustrate the changes in the concentrations

of produced α-factor and GFP by the IDENTITY gate when stimulated with 0.4 M NaCl

for the original doubling time (black lines), for 2 hours shorter doubling time (blue lines)

and 2 hours longer doubling time (red lines). The pink line depicts the threshold (4.5

µM) for considering cells as GFP-positive

For the case that the cells double 2 times faster, there is a signi�cant di�erence in the α-factor

concentration in the later part of the simulation. During the �rst hour the concentration remains

almost the same. A similar e�ect can be observed for the culture with longer doubling time:

during the �rst two hours of simulation there is no di�erence in the produced amount of α-factor.

The di�erences between the cultures with di�erent doubling times became even smaller at the

level of GFP concentration: the culture with shorter doubling time produces not more than

ca. 10% more of GFP while the di�erence for the culture with longer doubling time is almost

negligible. Therefore, the threshold can also be reached by a culture with longer doubling time.

It should be mentioned, that the e�ect of altered doubling time will become more signi�cant for

simulations that last more than four hours.

Summing up, the analysis of the model revealed that the changes in the density culture have a

signi�cant in�uence on the system performance. It is relatively easy experimentally to alter the

density of the culture. Thus, we predict from the model behavior that the levels of produced

α-factor and GFP can be easily tuned in an experiment if the culture has an appropriate density.
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4.4.3 Less sensitive Ste2 receptor

Until now we have considered the functioning of the gates in terms of boolean logic. Binary

systems are most spread and are used most frequently. However, we could here propose an

alternative view: a possible design of a device following a three-value logic. The three-value

logic operates with three values: 0 (false), 1
2 (unde�ned, unknown etc.) and 1 (true)i. As

presented in the previous sections, salt cell and reporter cell can build an IDENTITY gate. We

can extend this gate by adding a second type of reporter cell, that is less sensitive to the α

-factor, e.g. reporter cell with a mutated Ste2 receptor.

An Alanine substitution of the 262th residue of the Ste2 receptor increases the value of the

dissociation constant (Kd) ca. 2 times so the cell becomes two times less sensitive to the α-

factor concentration [38] and will be responding slower to the emerging α-factor gradient. We

modeled this mutation by decreasing the parameter value for pheromone binding to the Ste2

receptor: from k1 = 8 · 1011 ml
mmol∗s to k1 = 4 · 1011 ml

mmol∗s . The structure of both models of

reporter cells is the same and can be found in Figure 3.9. The structure of the extended gate

is shown in the Figure 4.13.

Figure 4.13: EXTENDED IDENTITY Gate: Structure and truth table

After adding the third kind of cell to our model we can test the behavior of the system upon

following salt concentration: 0 M, 0.1 M and 0.4 M. We have chosen a simulation time of �ve

hours. Figure 4.14 presents the deterministic simulations of the GFP accumulation in the

original and mutated reporter cell.

When stimulated with no salt, no GFP will be produced for both kind of reporter cells. If

stimulated with 0.1 M NaCl, only the original reporter cells produce enough GFP to reach the

threshold. However, for higher salt concentration (0.4 M), both populations of reporter cells

reach the threshold and produce �uorescence.

iThe choice is arbitrary. The numerical representation can di�er e.g. -1,0,1 or 0,1,2 sets can be employed.
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Figure 4.14: Deterministic simulations of the EXTENDED IDENTITY gate. The GFP concentration

produced by the wildtype reporter cell (black lines) and by mutated reporter cell (green

lines) for three di�erent NaCl concentrations (0.0, 0.1 and 0.4 M) is plotted. The pink

line depicts the threshold (4.5 µM) for considering cells as GFP-positive

To strengthen this point, stochastic simulations have been performed and the results are pre-

sented in Figure 4.15.
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Figure 4.15: Percentage of GFP-positive cells in the EXTENDED IDENTITY gate. The percentage

of GFP-positive cells from the wildtype reporter cell population (black bars) and from

the mutated reporter cell population (green bars) for three di�erent NaCl concentrations

(0.0, 0.1 and 0.4 M) is plotted. 1000 stochastic simulations were run and GFP trajectories

were collected. Each trajectory that exceeded the threshold (4.5 µM) before the end of

the �ve hour simulation was considered to represent a GFP-positive cell.

As expected, there are no (0) GFP-positive cells when stimulated with no salt (0). For a low salt

concentration (12), almost all cells from the population with wildtype receptor can be counted

as GFP-positive, while only a few from the population with mutated receptor can produce

enough GFP to exceed the threshold (12). For a high salt concentration (1), both reporter cells

population types are GFP-positive (1). This founding proves that the modi�ed system can act

as a three-valued IDENTITY gate.
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Mathematical modeling provides an insight into our understanding of the functionality of bio-

logical systems. We employed mathematical modeling to learn more about the performance of

synthetically engineered cells and the logic gates constructed of them. As �rst, we designed and

implemented deterministic models of the sender and reporter cells using the published data to

obtain the model parameters. We then combined the models of individual cells into logic gates

and investigated their performance by running deterministic simulations. Next, we analyzed

which of the model parameters have the major in�uence on the output. These were further

investigated. In order to validate the model, we created a stochastic model of the reporter cell

and used it in combinations with deterministic models of the sender cells. These hybrid models

were used to simulate the population results. Despite minor discrepancies between the model

predictions and population data we regard the models as well-optimized and correctly function-

ing. Finally, we proposed additional modi�cations of the models and investigated their impact

on the performance of the logic gates.

Although the models of the logic gates satisfactory reproduce the experimental data, we have

to bear in mind that they were constructed with many simpli�cations. Below, we discuss these

restrictions in detail.

5.1 Evaluation of the model construction

We reduced the complexity of the constructed gates to minimum. Simple structures make the

models easier to handle and faster to simulate. Such models are most appropriate for modeling

of systems, where the �nal output of the system is of most interest. A small number of reactions,

and hence a small number of parameters prevents also the over�tting of the models. On the

other hand, applied simpli�cations hinder a detailed analysis of the dynamics of some parts of

the models. To give an example, the MAPK cascades of the HOG and pheromone pathways are

modeled as single steps. This makes the analysis of the dynamics of the individual steps of the

cascades impossible.

Beside of simpli�ed structures of deterministic models we applied a broad range of other reduc-

tions. We assumed that there is no di�erence in the doubling rates of the cultures of di�erent
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types (all four types of investigated cells: salt-cell, gal-cell, dox-cell and reporter cell have dif-

ferent growth conditions). We also used the same value of translation rate for the α-factor in all

sender cell models and for the GFP in the reporter cell model. For the �tting of the models to

experimental data, we assumed in the model that maximal phosphorylation levels of Hog1 and

Fus3 correspond to a situation where half of the molecules is phosphorylated. Furthermore, we

neglected potential changes in the volume of the compartments and model the the volume of

the cytoplasm and of the nucleus as constant. We also assumed, that the biochemical species

are uniformly distributed inside the compartments. As next, the values of initial concentrations

of the compounds were obtained from one source [39] for coherency. Moreover, in the gal-cell

we modeled the in�uence of the presence of galactose in the medium on the functioning of the

GAL1 promoter as a single reaction, neglecting transport and signal transduction processes.

The same holds for the modeling of the dox-cell, where the inhibition of the Tet-O� promoter

is modeled with only one reaction.

We did not consider any stochastic modeling of the sender cells. We justify this with the fact

that the α-factor produced by the sender cells is secreted into the medium of well mixed cultures

and only its concentration is important. Therefore, we only considered the stochastic modeling

of the reporter cell. The major simpli�cation that we made, while constructing stochastic

models is the reduction of the full reporter cell model. We neglected the stochastic e�ects

on the sequential steps of the pheromone pathway and approximated the produced noise with

one reaction governing the activation of nuclear Fus3. To this end, we �tted the simulated

deterministic curves of active nuclear Fus3 with polynomial functions. The derivatives of the

resulting equations were used as the propensities for the stochastic activation of nuclear Fus3 in

the reduced stochastic model. This simpli�cation reduced the computation time from days to

minutes. On the other hand, it can be the major source of errors in the functioning of the gates

mainly due to the approximation of the curves that is weighted with an uncertainty.

In summary, we are able to justify all simpli�cations that we applied during the construction of

the models. Despite all of them, we believe that our models are able to be faithful predictors of

the behavior of the gates.

5.2 Evaluation of the results

Deterministic simulations The results of the deterministic simulations correspond to our

expectations in most cases. The only discrepancy was in the functioning of the OR gate and

IMPLIES gate, when stimulated with marginal values of wiring substances. We identi�ed the

preaccumulation of PreproAlpha and MFα1 -mRNA in the gal- and dox-cell to be the reason

for this phenomenon. Thus, we proposed in the section Modi�cations of the system altered

models of the gal- and dox-cell cells that assume a 30 minute time delay between the preculturing

of these sender cells and the mixing with reporter cells. We claim that a time delay between

these two events is realistic experimentally and that the experiments that were performed by

Regot and colleagues also could have a time delay.

Population result The published population data were used only for the validation of the

models of logic gates. The results of the simulations of the models of the gates are in a good
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agreement with the experimental data. However, there are some discrepancies, possibly due to

following facts: (i) arbitrary set threshold in the model for considering cells as GFP positive (ii)

performing simulations with the reduced stochastic reporter cell model and (iii) preaccumulation

of PreproAlpha and MFα1 -mRNA in the sender cells.

Parameter sensitivity analysis The parameter sensitivity analysis is applied to identify the

parameters or compounds that in�uence most signi�cantly the accumulation of the output of

the system. We presented the results of parameter sensitivity analysis for the IDENTITY gate

stimulated with 0.4 M and found out, that changing the values of parameters governing the

synthesis of α-factor in the salt cell and the synthesis of GFP in the reporter cell will result in

signi�cant changes in GFP concentration. Parameters responsible for both α-factor and GFP

synthesis have positive control above GFP accumulation. In other words, if there is a need for

producing more GFP, the translation rates of α-factor or GFP should be increased. It can be

performed experimentally by e.g. using a di�erent promoter. However, this procedure requires

time to: (i) test the the functioning of the modi�ed construct, (ii) tune it and (iii) run the

required controls. Fortunately, we identi�ed also the density of the cultures to have a great

impact on the �nal GFP concentration. Thus, it is simpler to tune the system output via

changes in the cell culture density than via genetic re-engineering of the cells.

Three-value logic In the last subsection of Results we show how the IDENTITY gate can be

extended to a framework functioning as a three-value device. This modi�cation is also easy to

achieve experimentally. Although the three-value logic is not often applied in electric circuits it

might have an application in biology because of the existence of third possible logic value.

5.3 Outlook

A fast and precise design of biological circuits exhibiting newly programmed behavior is one of the

directions in the development of synthetic biology [40]. To this end, modeling and experimental

techniques have to be applied in order to design and characterize biological building blocks.

These will become parts of a library of modules that can be used to create synthetic circuits.

Mathematical modeling not only allows for a detailed characterization of the biological parts but

also allows to test modi�cations and make predictions that decreases the number of experiments

to be performed. In this work we investigated in detail the functioning of the models of single

cells and gates as well as proposed some modi�cations. These models can be further elaborated

to address many other biological questions related to the models of gates. For instance, it could

be investigated, how a potential GFP bleaching or application of diverse �uorescent proteins

in�uences the results. Furthermore, it could be analyzed if there is a possibility to shorten the

time needed for producing system output (from few hours in current setup to e.g. one hour).

This is tightly connected with the fact that a �uorescent protein is used as a reporter in the

cells and its translation and maturation time contribute to response time. Thus, it could be

interesting to search for other methods that could be used for fast reporting.

To sum up, we would like to say that synthetic biology can bene�t from the computational

methods and that the iterative process of designing models, validating them with experiments

and �nally updating models aids the development of this �eld.
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A.1 Rate equations in the deterministic models

Reporter cell

r1 k1 · [Ste2] · [AlphaInCulture] binding of pheromone to the receptor

r2 k2 · [Ste2Ph] deactivation of the receptor

r3 v synthesis of the receptor

r4 k4 · [Ste2] degradation of inactive receptor

r5 k5 · [Ste2Ph] degradation of active receptor

r6 k6 · [Ste2Ph] · [InactiveComplex] activation of the complex

r7 k7 · [ActiveComplex] deactivation of the complex

r8 k8 · [ActiveComplex] · [Fus3c] phosphorylation of cytoplasmic Fus3

r9 k9 · [Fus3PPc] dephosphorylation of Fus3PPc

r10 k10 · [Fus3PPn] dephosphorylation of Fus3PPn

r11 knucexp · ksmall · [Fus3PPn] · Vnuc export of Fus3PPn

r12 knucimp · [Fus3PPc] · Vcyt import of Fus3PPc

r13 knucimp · [Fus3c] · Vcyt import of Fus3c

r14 knucexp · [Fus3n] · Vnuc export of Fus3n

r34 k34 · [Fus3PPn] synthesis of GFPmRNA

r34deg k34deg · [GFPmRNA] degradation of GFPmRNA

r35 k35 · [GFPmRNA] synthesis of nascentGFP

r36 k36 · [nascentGFP ] synthesis of matureGFP

Salt-cell

r20 k20 · [Pbs2] · osmostressi phosphorylation of Pbs2

r21 k21 · [Pbs2PP ] dephosphorylation of Pbs2

r22 k22 · [Pbs2PP ] · [Hog1c] phosphorylation of cytoplasmic Hog1

r23 k23 · [Hog1PPc] dephosphorylation of Hog1PPc

r24 k24 · [Hog1PPn] dephosphorylation of Hog1PPn

r25 k25 · [Hog1PPn] · Vnuc export of Hog1PPn

r26 k26 · [Hog1PPc] · Vcyt import of Hog1PPc

r27 k27 · [Hog1c] · Vcyt import of Hog1c

r28 k28 · [Hog1n] · Vnuc export of Hog1n

r29 k29 · [Hog1PPc] production of internal osmolytes

r30
k30·[IntOsmo]

1+KI∗osmostress
loss of internal osmolytes

r31 k31 · [Hog1PPn] synthesis of MFα1 -mRNA (STL1 promoter)

Gal-cell

r37 k37 · [Gal] synthesis of MFα1 -mRNA (GAL promoter)

Dox-cell

r38 k38
1+Ki·[DOX]

synthesis of MFα1 -mRNA (TetO� promoter)

All sender cells

r31deg k31deg · [MFalpha1 −mRNA] degradation of MFα1 -mRNA

r32 k32 · [MFalpha1 −mRNA] synthesis of PreproAlpha

r33 k33 · [PreproAlpha] synthesis of Alpha

iosmostress=max [w · [NaCl]− [IntOsmo], 0]



46 Appendix A.

A.2 Parameter values in the deterministic models

Parameter Value Unit Reference

k1 8 · 1011 ml
mmol∗s

The parameters were obtained via �tting to following experimental

data sets: 1. Dose-response-curve for receptor occupancy and Fus3

phosphorylation after 15 minutes of exposure to pheromone [41] and

2. Partitioning of Fus3 between nucleus and cytoplasm after

pheromone stimulation [42].

k2 3250 1
s

vii 6.96 · 10−12 mmol
ml∗s

k4 1.84 · 10−5 1
s

k5 2.1 · 10−5 1
s

k6 18000 ml
mmol∗s

k7 0.0042 1
s

k8 3.2 · 1010 ml
mmol∗s

k9 680 1
s

k10 0.28 1
s

knucexp 85.7 1
s

ksmall 0.5

knucimp 16.8 1
s

Vcyt 29 fl We assume the cytoplasm to occupy 50% and the nucleus to occupy

7% [43] of the volume [44].Vnuc 4.06 fl

k34 4 · 10−6 1
s

Fitted to FUS1 -mRNA data [41].

k34deg 0.0214 1
s

Recalculated from the half-life time [45].

k35 2 1
s

Recalculated from the mean translation rate [46].

k36 9.625 · 10−5 1
s

Recalculated from the GFP maturation half-time [47].

w 2.39

Fitted to the data for Hog1 phosphorylation [48] and internal

glycerol concentration [49].

k20 758 ml
mmol∗s

k21 235 1
s

k22 113543 ml
mmol∗s

k23 8.84 · 10−5 1
s

k24 0.0148 1
s

k25 34.52 1
s

k26 87.84 1
s

k27 5.76 1
s

k28 45.18 1
s

k29 8168.75 1
s

k30 45.18 1
s Fitted to the Hog1 phosphorylation data for fps1-∆1 cells (personal

communication with Sergi Regot) .kKI 8168.75 1
s

k31 1.5 · 10−6 1
s Fitted to the STL1 -mRNA data (Elzbieta Petelenz-Kurdziel,

manuscript in preparation).

k37 1.2 · 10−11 1
s

Fitted to GAL1 -mRNA data [50].

k38 2 · 10−12 mmol
ml∗s Fitted to the Tet-O� promoter data [51].

kKi 1 · 107 ml
mmol

Fitted to the CLN1 -mRNA data [51].

k31deg 0.0231 1
s

Recalculated from MFα1 half-time [52].

k32 3 1
s

Recalculated from the mean translation rate [46].

k33 0.00315 1
s

Recalculated from α-factor processing data [53].

iiParameter value ensures that in the absence of pheromone the receptor stays in steady-state.
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A.3 Initial concentrations and abundance of species

Species Initial concentrationiii [µM ] Molecules per cell

Pbs2 0.1237 2160

Hog1c 0.3405 5948

Hog1n 0.3405 832

Ste2 0.378iv 6600

InactiveComplex 0.0385v 672

Fus3c 0.406 7090

Fus3n 0.5684 1390

A.4 Initial concentrations of MFα1 -mRNA and PreproAlpha in

gal-cell and dox-cell

Cell Species Initial concentration [nM]

Gal-cell precultured in a medium with

galactose

MFα1 -mRNA 0.571

PreproAlpha 544

Dox-cell precultured in a medium

without doxycycline

MFα1 -mRNA 0.866

PreproAlpha 825

A.5 Stochastic parameters of the reporter cell models

Parameter Value [ 1
s
]

k1 45.82

k2 3250

k3 0.12144

k4 0.0000184

k5 0.000021

k6 0.000001031

k7 0.0042

k8 1.833

k9 680

k10 0.28

knucimp 21.423

knucexp 8.4

k34 0.00000286

k34deg 0.00214

k35 2

k36 0.00009625

iiiOnly non-zero initial concentrations listed. Concentrations recalculated from [39]
iv[54]
vSte7 concentration is limiting for the complex concentration
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