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FOREWORD 
Systems biology brought –among others- two major advances to modeling and 

theoretical sciences. One it became a standard that the model itself has to be published 

along with the paper, and second is that models are highly standardized, easing 

assessment, exchange and reuse. In my opinion, there is still one major step that needs 

to be made to maximize the acceptance and therefore influence of scientific modeling. 

That is providing full datasets used for model construction and model fitting. 

Reproducibility and reliability suffers from this practice, therefore I would like to foster 

publishing data along models. Therefore datasets are also provided along this work. 

Even more, context of data generation or metadata is provided, acknowledging its 

importance. [1] 

This thesis contains references to non-peer reviewed sources, for example to Wikipedia 

and to the Qiagen GeneGlobe pathway repository. I think there is an important place for 

non-scientific references in scientific works in certain cases. These sources have the 

advantage over often very technical and narrowly focused papers, in that they are 

written in an educative manner, and they are much easier to understand at first 

glimpse. Nonetheless one should stick to peer-reviewed references if the cited 

information is not widely established or crucial regarding the conclusion.    
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BIOLOGY 
Pombe and the pheromone response system 

EVOLUTION AND HOMOLOGY  
Schizosaccharomyces pombe, or fission yeast is an Ascomycota fungi and is about 300 – 

400 million years ago separated from cerevisiae. [2] Nevertheless the remoteness in 

evolution they live in very similar ecological niches (habitat) Both obtained their names 

from beer; cerevisiae from Latin word, pombe from the East African word for millet 

beer. The similarity in habitat though the different evolution yielded many analogies 

between them: similar attributes with different origin. This makes comparisons with 

cerevisiae limitedly useful. Naming of proteins is sometimes even misleading. (See: 

Homology with cerevisiae and general names) Nevertheless the, both pathways show 

similarities: [3]. 

DIFFERENCES TO CEREVISIAE, APPLICATION 
Pombe is a genetically stable organism, one of the most common organisms of 

molecular biology. Its genome was sequenced as early as 2002. [4] While pombe is a bit 

more difficult to grow than cerevisiae, is in some feature more similar to mammals. An 

early review on differences: [5] also see: an info graphic from ‘The Scientist’1

1. Pombe and metazoan divide by fission, not by budding. 

. In short: 

2. Pombe has larger chromosomes than cerevisiae, also they condensate 
more during cell division: can be stained and visualized. 

3. Pombe has around more than 5000 introns in 40% of the genes, whereas 
cerevisiae has approximately 250 introns in 5% of its genes.. 

4. Pombe has more complex centromeres than pombe. 

Pombe is the most commonly used for research of cell cycle, DNA damage, RNA 

processing.  

CELL CYCLE 
Cell cycle of Pombe is dominated by a long G2-phase and a major G2 -> M main 

transition checkpoint, contrasting cerevisiae which mainly resides G1, and where the 

most important control is G1 -> S transition. Interestingly this difference in cell phase 

evens out the gene copy number: the diploid living cerevisiae resides in the phase 

                                                        
1 http://images.the-
scientist.com/content/figures/images/yr2003/pdfs/yeast_supp_0306xx.pdf 

http://images.the-scientist.com/content/figures/images/yr2003/pdfs/yeast_supp_0306xx.pdf�
http://images.the-scientist.com/content/figures/images/yr2003/pdfs/yeast_supp_0306xx.pdf�
http://images.the-scientist.com/content/figures/images/yr2003/pdfs/yeast_supp_0306xx.pdf�
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before synthesis, whereas the haploid stable pombe exists in for most of its time in the 

phase after the S-phase. This is also a nice example of analogy: same attribute emerges 

from different evolutionary origins. 

 

FIGURE 1: POMBE CELL CYCLE SHOWING THE RELATIVE LENGTH OF PHASES. DAUGHTER CELLS OFTEN STAY TOGETHER 
AFTER DIVISION.  CELLS COMMIT FOR CONJUGATION UPON STARVATION BY ARRESTING CELL CYCLE AT G1 BY 
STARVATION. SOURCE: K. TANAKA, MODIFIED.  

CELL TYPE AND MATING 
Fission yeast has two mating types, plus and minus; cells correspondingly secrete P- 

and M-factor. [6–8] Aside from a few interesting differences they are very similar both 

in behavior and pathway components. One of the main differences regards the 

degradation of pheromone. Sxa1 of P-cells is induced by starvation, whereas Sxa2 of M-

cells require pheromone stimulation. [9] Sxa1 is possibly more than a pheromone 

protease, since it localizes to the ER so differently to Sxa2 ([10] and Subcellular 

localization of PPW-proteins). It was also reported that sxa1Δ strains have a general 

defect in proteolytic capacity. [11], and chapter 26, p. 400 in [12] Sxa1 is expressed in 

both cells [9], but it is involved in the degradation of M-factor only. [11] Opposing to 

cerevisiae, pombe mating is only a response to nitrogen starvation.  In the model I 

describe M-cells (responding to P-factor), therefore the naming follows M-cells in the 

sex-specific genes and proteins. The full list of sex specific proteins is provided in the 

appendix: Sex-specific genes. 
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Starvation 

Fission yeast predominantly grows in haploid state; diploid state is a transient state in 

response to starvation. Cells conjugate and form diploid zygote. After a single meiotic 

division, they form four haploid spores, which develop to haploid cells if condition 

improves. See: [13], chapter 19-20 of [12] and Wikipedia. The sensing of starvation is 

not clear, but it certainly results in a decrease of cyclic-AMP levels, which indirectly 

activate Ste11, the master transcription factor of pheromone response and mating. [14],  

chapter 18.5 of [12] Possible pathway elements are the Stn1 7TM2

Starvation induces the transcription of pheromone and a multitude of pathway 

components (see: 

 receptor sensing the 

presence of nitrogen, Gpa2 alpha component of a trimeric G-protein and Cyr1, a cAMP 

synthase. [15,16] nitrogen starvation is also known to activate the Sty1-Atf1-Pcr1 Stress 

MAPK pathway, again resulting in the activation of Ste11. [17], [12] Glucose starvation 

is not necessary, but it facilitates efficient mating. chapter 18.5 of [12] Nitrogen 

starvation also activates mTOR kinase, which accelerates the the G2 -> M transitions, 

cells finally arrest at G1. [18] Cell cycle can be arrested by N-starvation [18] or by 

pheromone sensing.  [19–21] 

Pheromone sensing, mating, meiosis and sporulation 

Transcriptional regulation appendix), thereby prepares the cell for 

pheromone signaling. [22,23] and [12] Upon pheromone sensing, the genetic program 

[24] and cell morphology is changed. If pair of opposite sex cells are close enough, they 

recognize to each other and grow shmoos. Subsequently cells fuse and finally form a 

diploid zygote. This zygote has now both sex-specific mat1 loci, therefore can express 

both mat1-Pc and mat1-Mc. [25,26] 

These form a heterodimer transcription factor, and induce the downstream Mat1-Pi and 

Mat1-Mi loci, again forming heterodimeric transcription factors. This induces Mei3, 

which inhibits Pat1 kinase that ends Mei2 inhibition. [27] Mei2 is the conductor of the 

meiotic transcriptional program. [22,23] Cells then commit to meiosis and subsequent 

sporulation, and 4 haploid spores are formed within the cell. 

  

                                                        
2 7TM: Seven transmembrane receptor. 

http://en.wikipedia.org/wiki/Schizosaccharomyces_pombe�
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UNIQUE FEATURES OF THE POMBE PHEROMONE RESPONSE 
The cerevisiae pheromone pathway is a much better described and already 

mathematically modeled system.[28]. Both pathways prepare the cell for mating, both 

sense by G-protein coupled receptors (GPCR), utilize trimeric G-proteins, and contain a 

MAP-kinase cascade. Despite these shared properties, there are many discrepancies 

among the pathways. [29,30] The pombe PPW does not contain any scaffold proteins, 

opposed to cerevisiae to our current knowledge. Even if scaffolds exist, it is probably 

not essential, as no sterility phenotype is identified in knockout screens. It is 

theoretically possible that some of the enzymes act as scaffold; however it is unlikely 

because their relatively small molecular weight. Cerevisiae pheromone response does 

not require a previous induction of the starvation-pathway. The pathways follow a 

completely different time scale: 6-12 hours vs. 10-20 minutes in budding yeast. Often, 

proteins of similar role have rather different amino acid sequences.  

TWO FACES OF THE RESPONSE 
 A global genetic change and a local alternation of morphology 

What is commonly understood under the ‘pheromone pathway’ is typically the 

transcriptional response. It neither covers the full pheromone response, nor a 

functionally stand-alone pathway.  It is widely known that there are two main reactions 

to pheromone treatment. First, they upregulate several genes whereas possibly 

downregulate a few others through the activation of Ste11 transcription factor. [14,31] 

Second, cells grow a shmoo by reorganizing their actin cytoskeleton and the cell wall. It 

is also established that these responses utilize common pathway elements; nevertheless 

surprisingly these two responses were never treated in a common framework. In this 

work ‘pheromone pathway’ always refer to signaling in both responses. Nevertheless, I 

am aware that the pheromone pathway is tightly linked to other pathways. Many other 

pathways converge on Ste11, some activate the Cdc42-Scd1-2-Shk1 complex. 

[18,32,33];  

TERMINOLOGY 
A common trunk activates both genetic- and morphology-branches.  

The full pheromone response (Pheromone PathWay, PPW) is a bifurcating pathway. 

Although many, here ignored crosstalks connect this pathway to others, the pathway 
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can be split up into three distinct parts, according to their function and the type of 

information transmitted. A new terminology was necessary to refer to these 

characteristic different parts explicitly.  

Common trunk (COT) 
The most upstream components of the pheromone response are completely shared 

between the morphological- and the transcriptional response, therefore these must 

transmit the rough temporal signal of changes in expression, and a more precise spatio-

temporal signal. This pathway consists only of membrane associated components: the 

pheromone receptor, Mam2 [34], G-protein alpha subunit,Gpa1 [35] and Ras1 [36]. 

Activators of the common trunk are the cytosolic Ras-GDP->GTP exchange factors Ste6 

[37,38] and Efc25 [39]; but they may be recruited to the membrane by Gpa1. Efc25 is 

not regulated transcriptionally by pheromone response 3

The reason why it is stated that the transcriptional branch

, therefore it is not 

incorporated in the model as variable; it is represented in a parameter. Known negative 

regulators of COT are Rgs1 and Gap1. [40,41]  Gap1 is constantly expressed too 

therefore it is part of corresponding deactivation parameter. 

4

Byr1.DD strain

 needs a less precise signal 

than morphology branch is highlighted by the Byr1.DD strain (see: ). 

Here the genetic program is solely induced by starvation; therefore it is without respect 

to the individual cells state. Still these cells find their partner correctly. On the other 

hand, strains which lack any negative regulator in the common trunk (gap1Δ, Ras.Val, 

sxa2Δ) grow shmoos not reaching any partner, although genetic activity in these is 

relatively similar to WT (way more similar than Byr1.DD). See further details in: The 

distance measurement hypothesis. 

Transcriptional branch (TRAB) 
The common trunk feeds in is the transcriptional branch. This MAPK-cascade based 

pathway is responsible to expresses pathway components and regulators required for 

conjugation and mating. In literature the common trunk and the transcriptional branch 

together is often regarded as the ‘pheromone pathway’. This subjective selection of 

components, especially under this name is very misleading. 

                                                        
3 See in: http://www.bahlerlab.info/cgi-bin/SPGE/geexview 
4 See next sections 

http://www.bahlerlab.info/cgi-bin/SPGE/geexview�
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This part contains the MAPK kinase cascade, where Byr2 phosphorylates Byr1 twice, 

which in turn double phosphorylates Spk1, which then phosphorylates the high 

mobility group (HMG) transcription factor Ste11 on two threonine residues. [42,43] 

The regulation of Ste11 is much more complex though, barely understood and debate is 

not yet settled. [44–49] It is also known that both Spk1 and Ste11 shuttle between 

cytoplasm and nucleus [50], but again the conditions and concrete molecular 

mechanism remained unclear so far. Pat1, a Ser/Thr protein kinase seems also 

important in deactivating Ste11. [27,46] One of the major steps towards the full 

understanding of the pheromone response should be the clarification of Ste11 and Spk1 

regulation and localization. In this project only the activation by Spk1 is considered. 

Other players are also suggested to participate in the transcriptional response. Ste4, a 

leucine zipper protein was shown to bind Byr2 and Ste4Δ mutants suggested it as a 

pathway activator. [51] By the same group Shk1 kinase was suggested as a activator of 

Byr2. [52] During this project, we have proven in vivo that the complex containing Shk1 

is necessary for pathway activity. (See: scd1Δ in Unquantified western blots)  This was 

a huge leap forward: it allowed incorporating additional data, interpreting unexplained 

behavior, predicting and proving links.   

Morphology branch (MOB) 
There is a second sub-pathway downstream of the common trunk is the morphology 

branch. This part is responsible for signaling the correct direction and distance of the 

partner chosen for mating. In this project only the first step of this pathway is 

considered, that is the local recruitment and possible activation of the Scd1-Scd2-

Cdc42-Shk1 protein complex. This complex is responsible to recruit further proteins 

involved in the reconstruction of the actin-cytoskeleton. It seems that Scd2 acts as a 

scaffold [53,54], where Scd1 activates Cdc42 [55,56], which in turn activates Shk1[57]. 

Since only Shk1 has at least five known effectors5

Cell polarization in pheromone signaling

, further description of this pathway 

would be a project on its own, so it is not discussed here. How much the considered 

components only transmit the signal, or how much they possibly process it, is 

discussed in the   section.  

                                                        
5 Qiagen GeneGlobe: PAK Signaling in Fission Yeast 

https://www.qiagen.com/geneglobe/pathwayview.aspx?pathwayID=343�
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INTRODUCTION TO THE PROBLEM 

THE QUESTION 
The original objective in this project was to build a quantitative model on the pathway 

focusing on the effect of Ras.Val hypersensitive mutation. Quantitative modeling was 

intended to help experimental work, and to give a mechanistic insight into pathway 

dynamics.  

The organism 

Schizosaccharomyces pombe is one a common object of molecular biology. It is 

relatively simple compared to mammalian cells, but still eukaryotic. In addition to this, 

its genetic stability makes it a suitable research organism; it is also a generally well 

described system, making it suitable for modeling.  The pombe pheromone response 

shows remarkable similarities to mammalian growth factor responses. Both pathways 

trigger functions of reproduction and are built up from a G-protein coupled receptor 

(GPCR), Ras1-homologues and a MAPK-cascade that regulates transcription.  

Cancer and diseases 

The importance of GPCR-Ras pathway family is enormous. Around every fourth 

marketed drug targets GPCR [58]; and the human Ras1 homologue contains 

hypersensitive mutation [59] in approximately in one third of all human cancers. 

[60,61]  

Design principles 

Beside the concrete relation to human disease, the pombe pheromone pathway is 

interesting in itself. As pombe is a well described and simple eukaryote, it is an ideal 

tool to identify design principles and conserved molecular schemes. Understanding 

concept of the pombe pheromone pathway could help understanding other GPCR-MAPK 

systems.  
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THE CHALLENGE 
No canonical pathway on hand. 

Shortly after the start of the project it became clear that no canonical pathway scheme 

exists. The diagram presented was clearly insufficient to describe the data and a set of 

interactions were unclear. (See: Figure 2) Construction of a consistent and fully 

explanatory pathway diagram turned out to be the most challenging task during the 

project. It included limited mathematical modeling, but thorough literature research 

and logical argumentation. This is detailed in the Pathway reconstruction results 

section. In a sense it was a hypothesis generating job, which suggestions we then tried 

to underpin as much as possible. My part in that was designing decisive experiments. 

The literature sources are fragmented, sometimes even self contradicting. Resolving the 

contradictions and the maintaining consistency with all demonstrated facts was a hard 

task, which required a series of intense discussion with the experimental collaborators. 

Unknown regulators 

The known regulators were clearly insufficient to describe the data. Considered 

negative regulators were either shown not to affect the downregulation of the signal, or 

stands under no transcriptional or post-transcriptional control.  Consequently they 

could not produce the delayed downregulation required to allow for an overshoot. 

Therefore the extension of the pathway was necessary. 

 

FIGURE 2: FIGURE REPRESENTING THE INITIAL NOTION OF THE PATHWAY. THIS VERY SIMPLE SCHEME SHOWED THE 
SYSTEM AS AN IDEAL CANDIDATE FOR MODELING. 
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No clear input signal 

The ‘least artificial’ approach of the collaborators posed quite a big challenge. Instead of 

using known amount of pheromone for pathway stimulation, the wash-away of nitrogen 

is the only “quantified” input to the system. Upon starvation cells start to secrete 

pheromone that stimulates opposite sex cells. See: Biology section. Nitrogen-starvation 

has a separate pathway that converges either on Ste11 and/or on some other 

components of the transcriptional branch. How much pheromone is induced with what 

dynamics, remains unknown: we do not treat cells, rather we let them treat themselves 

with pheromone in an unknown way. This of course makes clear why do we have big 

variance among biological replicates. 

Scarce data 

To reconstruct a pathway and build quantitative model, time course data on a single 

protein (Spk1) was clearly insufficient. New type of information had to be incorporated 

and more data had to be generated. Online databases were searched to acquire further 

data for the system, and a high-throughput study delivered steady state protein data. 

[62] in press The extension of pathway towards the morphological response allowed 

making use of cell morphology images. Since there was a working pipeline for 

measuring Spk1 activity in genetic mutants, this was the main information source. 

Importantly, data generation was divided for different purposes. Qualitative, roughly 

sampled westerns on possibly many mutants were done for pathway reconstruction 

and a few westerns with higher temporal resolution in multiple biological replicates 

were performed for modeling.  

THE APPROACH 
To face the mentioned problems, different answers were developed. Firstly, the profile 

of the project was changed from a clear modeling project to network reconstruction. 

Secondly, various and heterogeneous data sources were integrated in order to 

consolidate the knowledge about the pathway. In early stages, a series of small models 

were developed on well defined sub-questions, instead of aiming to model the full 

pathway. These included the pathway induction (Models for subsequent activation 

peaks), the role of localization in signaling (The Ras1 colocalization model) and the 

Gpa1-Rgs1 interactions (Gpa1-Rgs1 model).  
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METHODS 

METHODS FOR PATHWAY RECONSTRUCTION 
After identifying the problems stated in ’The challenge‘ section, I started to fill the gaps 

in the knowledge about the pathway. Construction of a consistent and fully explanatory 

pathway structure turned out to be the biggest task of the project. It included very 

limited mathematical modeling, but thorough literature research and logical 

argumentation. It is detailed in section: Pathway reconstruction results. In a sense it 

was a hypothesis generation job, which we then tried to underpin or falsify as far as 

possible. Since the literature source is fragmented and sometimes self contradicting, the 

resolution of contradictions, and the consistency with all proven facts was a very hard 

task that required periods of intense discussions with the experimental collaborators. 

LOOKING FOR A FORMAL FRAMEWORK FOR NETWORK RECONSTRUCTION 
The question was how to reconstruct a signaling network in a systematic way. I was 

looking for a formal framework for network inference (or reverse engineering) instead 

of the manual reconstruction. Network inference is partially a data fusion problem; I 

tried to find a formal way to incorporate many different sources of information to find 

out relations among components. On the other hand it was also a modeling framework 

problem, since modeling can decide among alternative hypotheses. Simulation can 

therefore be a useful tool for network reconstruction. Therefore I was looking for both 

different modeling frameworks to choose the right level of preciseness for the available 

data.  

Bayesian methods 
Bayesian algorithms are popular for network reconstruction. New developments in the 

field allow overcoming the limitation that classical Bayesian networks cannot handle 

loops, which are the most ubiquitous control motifs in biology. [76], [77] However, 

applications for real biological problems were disappointing. In one successful example, 

in an extremely data-rich setup, Bayesian network reconstruction yielded only partial 

reconstruction of an already known pathway. [78] Similar results turned out from our 

own experiences. We participated in the DREAM 7 network reconstruction challenge, 

and were serially faced by false predictions made by the GRENITS dynamic Bayesian 

network reconstruction algorithm, whereas we found most of the links by manual 

inspection of the data. 

http://www.the-dream-project.org/�
http://www.bioconductor.org/packages/2.11/bioc/html/GRENITS.html�
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Boolean networks 
A very simplistic model definition is to encode the state space of variables binary and 

describe their relation with Boolean operators. This framework is generally well suited 

for qualitative description of dynamics in large networks. The problem here was the 

compatibility with our data. The main information sources are semi-quantitative time 

resolved protein-activity and -concentration measurements. The Boolean framework 

however loses the amount of input information, by setting measurements either to one 

or zero. This means, we actually decrease the amount of information that can be used to 

reconstruct the network. 

Rule based model generation 
One very appealing, and more flexible framework though would be to use rule- and 

based model definition (generation). The concept behind rule based model generation is 

to define a model by stating elementary bits of information either as rules or 

contingencies (constraints). [79] By splitting up the information into these two 

categories, many assumptions become clearly stated. This is not the case for model 

definition in general, when one comes up with a subjectively achieved model structure, 

and focuses on parameters.   

In signaling complex formation and multi-site post transcriptional modifications are 

possible. These give rise to combinatorial complexity: a protein complex of four 

members may assemble 4! = 24 ways, or a protein with 4 distinct phosphorylation sites 

can be phosphorylated in 24 sequences.  To describe all ODE’s in this example is very 

laborious. Instead the definition of possible state transitions is much simpler: 

phosphorylation of 4 sites that cover 24 concrete possible reactions. ODE’s (or an SBML 

model) can be automatically generated, which is very handy if the model is complex. Not 

only model definition, but also ODE-simulations may become unfeasible in highly 

complex models. This happens if the number of states is in similar magnitude as the 

number of variables. For this case, agent based modeling is the method of choice. The 

rule-based model definition software RXNcon (See in section Software) is also capable 

to export the model for the agent-based simulator NFSime through BioNetGen format. 

In the following some basic concepts are given about rule-based modeling. 
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Rules for state transitions 

Rules describe so called “elementary reactions“, also termed “decontextualized 

reactions” or “state transitions”. Formatting state transition rules is compact way to 

define the full set of combinatorially possible reactions. A state transition rule can be 

formalized if the two molecular state of an e.g. protein is known. (ERK and phospho-

ERK). An example for a state transition rule: A must can form a complex with B and C 

(but we do not state in which order). 

Contingencies on state transitions 

Constraints or contingencies are restrictions on the reaction space. As these are stated 

separately, one must list all constraints that one knows or one assumes. In this way the 

modeler explicitly states all assumptions and bits of knowledge regarding what order 

can (or cannot) a state transitions happen. An example for a contingency: A must 

interact with C, before interacting with B. 

Software 

The ReactionCon project (RXNcon) offered a server based application for rule-based 

model generation with a wealth of formal visualization methods. [80] Although formal 

graphical representations are very explicit therefore a good practice to use them to 

exchange ideas among modelers, they are often overly complex, distracting the 

attention from the main structure. They are also very limited and strictly regulated in 

the use of colors.  See: in Figure 14 also in [80] and [81].  For first-glimpse 

understanding, manually created graphs can be more useful. Since the project was 

based on the interaction with an experimental group, custom visualization was chosen. 

http://rxncon.org/�
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FIGURE 3: FORMAL VISUALIZATION OF A TWO COMPONENT SYSTEM (EGFR, GRB2). FORMAL DEPICTIONS AIM TO BE 
EXPLICIT IN EVERY DETAIL; HOWERVER IT IS OFTEN VERY HARD TO UNDERSTAND THE MAIN STRUCTURE OF THE 
PATHWAY.  REPRINTED FROM HLAVACEK ET AL.; 2006 SCIENCE. 

Conclusion 
Network reconstruction tasks in general need a formal framework that clearly handles 

the: bits of proven knowledge (a), each assumption (b) and generates all possible 

hypotheses (c). With such a framework the whole development process could be stored 

in a standardized way, making the important information of negative results (e.g. 

refused hypotheses) accessible for others. 

Rule based modeling could only offer a half-solution compared to manual network 

generation, when it comes to be systematic about assumptions and possible hypotheses. 

Although it is explicit regarding possible concrete reactions (by stating state transitions 

and all constrains), it still not clearly dissect assumptions and information about the 

state transitions itself. The most common problem I faced is that functional interaction 

is known from genetic experiments, but the direct physical interactions or the concrete 

molecular mechanism is unknown. Consequently state transitions are also unknown. 

For network reconstruction I would have needed a framework that steps further back 

than rule-based model definition, and generates possible state transitions upon 

explicitly stated functional (and physical) interactions and assumptions. These state 

transitions denote the distinct hypotheses about the pathway. Since the visualization 

part would not be used anyway, the half-explicit rule-based definition was not applied 

either.  

The pathway was reconstructed in a manual manner. I tried to enhance reproducibility 

and reliability by systematically annotating possibly most bits of information (see 

model file and annotation in supplement); and possible alternatives hypotheses are 
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discussed in text and figures. The manual way turned out to be successful in proposing a 

limited set of hypotheses testing experiments that were carried out.  The trade off was 

that not all possible hypotheses are considered. Nevertheless, the approach can be 

considered systems biology since what was finally done is data fusion of various omics 

sources: localization, viability, gene expression, steady state protein counts, interactions 

from various databases. Merely the way of data fusion was not done in a formal way. 

Finally, I was successful in that many experiments validated the predictions, whereas 

some others falsified them, thereby limiting the set of possible hypotheses. 

Another conclusion was that strict formal methods can only use formalized input. Most 

of the knowledge lies in papers. It is often unquantified and unformatted. There are only 

very limited and complicated methods to quantify literature data, e.g. co-occurrence of 

terms by text mining. [82] Therefore if one uses a strict formal framework, one probably 

has to put away most of the available knowledge, unless she/he finds a way to turn it 

into numeric information. 

MODELING BY ORDINARY DIFFERENTIAL EQUATIONS 

ORDINARY DIFFERENTIAL EQUATIONS 
Since it there are plenty of good introductions for differential equations and nonlinear 

dynamics, I would avoid creating yet another one. I read and can recommend the 

concerning chapters in the following books: Alexander Panfilow’s Reader on differential 

equation, [83] and [84]. For an extremely summarized introduction please read on. 

 A differential equation for an unknown function relates the values of the function itself 

to its derivative 6

                                                        
6  From 

. The derivative of a function describes the rate of change of that 

function with respect to the change of an independent variable, most typically time. Most 

often in reality things depend on each other, meaning the change of one entity affects 

the others. This means, the dependent variables in the differential equations describing 

these things also depend on each other: that yields a set of coupled equations. When to 

equations are coupled, i.e., the solution of one depends on the solution of the other, we 

call them a system of differential equations. Since only the simplest differential equations 

or systems (of differential equations) can be solved analytically, in a more difficult case 

one could either restrain to qualitative analysis by concepts of dynamical systems theory 

Wikipedia: Differential Equations; modified. 

http://www-binf.bio.uu.nl/panfilov/wiskunde.html�
http://www-binf.bio.uu.nl/panfilov/wiskunde.html�
http://www-binf.bio.uu.nl/panfilov/wiskunde.html�
http://en.wikipedia.org/wiki/Differential_equations�
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or use numerical methods to approximate the solution by extensive computation. 

Numerical methods are widely applied in many fields, where quantitative description 

and prediction is needed. This work also bases on numerical methods to solve the 

system of ordinary differential equations that describe the pombe pheromone response. 

An ordinary differential equation describes temporal change of a variable, whereas 

partial differential equations describe spatio-temporal behavior. The spatial side of the 

dynamics is not treated in this case, the modeled system is assumed to be well mixed, 

meaning that diffusion speed is not limiting the reaction rates. Rough spatial 

representation though is introduced in form of compartments. (See: Compartment 

modeling).  An ordinary differential equation is a deterministic representation of the 

object, meaning from a given initial state always the same final state is achieved, and the 

variable follow the same trajectory. One could treat the effect of extrinsic and intrinsic 

noise with methods like stochastic differential equations or stochastic interpretation of 

the ODE’s. As a first description of the pheromone response based on population 

average data, it is appropriate to use ODE’s as they are simpler than the other methods. 

Other modeling approaches are also mentioned in the Pathway reconstruction results 

section, as modeling is also applied for pathway reconstruction. 

PARAMETER ESTIMATION 
Firstly one creates a system of ordinary differential equations (in further the model) 

that describes the target of observation (in further the system), and incorporates data 

about the initial state of variables. After the model is simulated, it typically does not 

describe the observations. The solution however also depends on  unknown 

parameters. One could than ask the question: how should I change the parameters, to 

describe the observations? This problem is often termed an optimization problem, as the 

difference between simulation and observation is to be minimized. Beside random 

trials, intelligent optimization algorithms exist to find the optimal parameter set.  

Derivative based methods make use of the local shape of the objective function that 

describes the difference between the simulation and the data. In high dimensional (i.e. 

high number of variables) systems, the objective function often has multiple local 

minima. To find the global minimum, one could use global optimization algorithms.  

Particle swarm is one of such, and it was most widely used throughout this project. [85] 

Tasks were often performed in a multiplex setup, where 10-50 global optimizations 

were started in parallel from random starting points. In this way both the random 
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starting point and the global algorithm facilitate to scan the whole range of parameter 

space, however it is still not guaranteed that the optimal solution is finally found. 

Another term used in the text for parameter estimation is model fitting, grasping the 

other face of this process. I used Copasi v35 and v39 [86] for modeling, Microsoft Excel 

2007 and R v2.14 for data analysis and Inkscape 0.48 and MATLAB for visualization.  

APPLICATIONS OF MODELING IN BIOLOGY 
Although pombe is a top conducted organism, no dynamic (nor spatial) model publicly 

available describes the pheromone response. Therefore the results of the thesis can 

serve as prior for starting systems biology research of S. pombe.  

Mechanistic insight 
One typical task of modeling is to highlight the governing laws of the usually obscure 

and complex biological system. Simple models with variables and links not 

corresponding one-to-one to biological entities like proteins are common in classical 

mathematical biology. Such models are useful to highlight the simplest underlying laws. 

In a sense, such a top-down model in this project is The Ras1 colocalization model that 

describes Spk1 activity by minimal number of variables. Variables in the model stand 

for “pathway-chunks” and each are representing a set of subsequent proteins in an 

activator cascade.  

Pathway reconstruction 
Modeling was also applied for pathway reconstruction. In this, alternative simple 

hypotheses were distilled in to equations, and simulations and parameter estimation 

were used to prove whether the hypothetic model structure can describe the data. Such 

an approach was the ‘Models for subsequent activation peaks’, when modeling helped 

to decide between two possible pathway hypotheses.  

Testing of complex hypotheses and quantitative description 
The pathway reconstruction yielded a pathway structure, which was qualitatively 

consistent with genetic experiments. Although numerous experiments were performed, 

not all of the 54 reactions were confirmed by us or by others. Some links however still 

to be assumed in order to achieve a connected graph, or to account for a described 

knockout phenotype. One may have a guess about how this pathway could behave, but 

no one is really capable to predict how 53 interacting proteins would behave together.  
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A way to test such a complex hypothesis for consistency (i.e. that it can behave as it is 

observed), is to translate it to the explicit language of mathematics. Once these 

biochemical reactions are written together in a model, it can be tested, whether they can 

describe the data at all. This is not an easy step, since a hypothesis formulated in text or 

thought often has hidden assumptions that come up only if one writes them down 

explicitly. Even if these are clarified, the system may not work as expected before.  

The last part of my work was to create a model of differential equations that 

quantitatively describes the transcriptional pheromone response of fission yeast. This 

means to find a model structure that can produce a behavior similar to observed, than 

find a parameter set by parameter estimation, with that the model precisely describes 

the data. Since each measurement is a composite of the true value and a noise 

component, precise does not mean exact description. Finding a parameter set, where 

the model precisely describes the data in a 40 dimensional space is a difficult and time 

consuming task. Also one could never be entirely sure, if the model is indeed incapable 

of describing the data. It is well possible that simply the corresponding parameter set is 

not found. 

Predicting system behavior 
After one arrived at a model that well describes the data, principally there are still 

infinitely many possible models that can describe the observations just as good. So the 

modeler is not sure, whether he has the right model. The knowledge about molecular 

interaction networks constrains the possible alternatives, and also give some guarantee 

in a sense, that the model is not completely wrong. However one would like to have 

some support that a good model is finally found. What good means is a difficult 

question. A model cannot be the one right model for the system, since every model is a 

simplified description of reality, so for every model exists a limit, thereafter these 

simplifications become important, so the basic assumptions are not fulfilled. Still, within 

some limits, using wisely chosen assumptions, a model can be good if it is predictive. A 

predictive model means that given the model fitted to some dataset; it can guess what 

will happen in subsequent dataset. This could simply be a longer time course, or 

measurement of other proteins, etc. In the case of this project the final model predicted 

genetic variants.  
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COMPARTMENT MODELING 
Rough spatial representation in ODE-based models is possible by introducing 

compartments. With compartments one does not assume one well mixed “reactor” for 

the whole system, rather a set of coupled, well mixed reactors. Typically cellular 

organelles or membrane vs. cytosol are represented by compartments. In the Ras1 

colocalization model I show that the localization of proteins can be as important as a 

biochemical activation. In this simple model the stimulus mediates translocation and 

concentration of two species; this catalyzes the reaction between them. With splitting 

up e.g. the membrane into a series of compartments one can approach spatial 

resolution; this is a strongly discretized approach points in the direction of PDE`s.  Such 

an approach is proposed in the Cell polarization in pheromone signaling section; 

however it was never implemented in a model.  
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RESULTS AND DISCUSSION 

DATA AND DATA GENERATION 
Although I was only minimally involved in experiments, there are two reasons to 

describe how they were conducted. Firstly I was working on experimental design, and 

secondly I share the view that metadata on experiments is very important. [1] 

DATA GENERATION 
A main concept of the experimental group was to elucidate the actual in vivo situation 

and restrain using artificial factors in the setup as much as possible. This approach rises 

problems (see: no clear input), but gives some certainty, that observed response is 

biologically relevant (e.g pheromone is in a biologically relevant range) and minimizes 

the sources of possible artifacts. There is a good reason for such an approach. Vastly 

modified yeast species are widely used in the field, but their misbehavior is often only 

later observed.  

1. Ras1 overexpression studies yielded an artifact of dual localization, giving rise to 
interesting, but questionable hypotheses of compartmentalized Ras1 signaling. [63] 

2. Pombe mating studies often used an engineered strain, where cells constantly sense 
nitrogen starvation after heat-shock, therefore synchronicity in these cultures was 
great. However later was observed that mating is not correctly executed in this 
strain [64–66] 

3. Many assays initiate mating by addition of synthetic pheromone. However 
pheromone is a very local story. It is secreted in small quantities and probably builds 
up a gradient around the cell, which gradient can affect behavior. A review: [67] 

4. Also, pheromone is degraded by a secreted protease Sxa2. [68] Since synthetic 
pheromone is given in big quantities to reach a sufficient global concentration, the 
effect of Sxa2 is unknown. 

Genetic engineering 
A simple way to perturb the system is to create knockout mutant strains or to replace 

proteins with modified ones. All strains, inclusive the ‘wild type’ strain contain a GFP-

tag on the C-terminal of Spk1. It proved not to have observable effects on pheromone 

signaling, conjugation, mating or meiosis. This GFP-tag is used to monitor sub-cellular 

localization and as protein tag to establish absolute protein concentrations by 

comparing signal to a GFP-calibration curve. See the list of planned and tested mutant 

strains in: Designed experiments. 
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Protocol in the original experimental setup 
The basic information source in this project was time series measurement of relative or 

absolute Spk1 level and relative Spk1 activity in different mutant strains. In the 

experiments, the assayed pombe strain is liquid cultured in full media on room 

temperature under gentle shaking for aeration. The culture is shifted to nitrogen-

depleted media, which stops mitotic growth and prepares them for conjugation. Upon 

starvation cells arrest cell cycle and start to secrete pheromone, what induces 

pheromone response in partner cells. For detailed cellular behavior see the Biology 

chapter. In liquid culture, cells often form big aggregates, by secreting agglutinin and 

sticking to each other. Efficient mating happens within these aggregates.  

Cells are sampled from the starvation induced culture at scheduled time points. 

Sampled cells are fixed; extracts are pre-purified, loaded on acrylamide gel, separated 

by mobility, blotted to membrane. Membranes are developed by the following 

fluorescent antibodies: Primary for phospho-Spk1 : anti phospho ERK antibody : Cell 

signalling Phospho-p44/42 MAPK XP Rabbit monoclonal Antibody (4370S); Primary for 

the fission yeast alpha-tubulin: mouse monoclonal TAT1 generated by Prof Keith Gull's lab; 

2ndary antibody for ppSpk1: Li-Cor IRDye 800CW Goat anti-Rabbit IgG (926-32211); 

2ndary antibody for TAT1 : Li-Cor IRDye 680LT Goat anti-Mouse IgG (926-68020). Using 

fluorescent antibodies has a big advantage over horseradish-peroxidase-based 

techniques: the signal intensity is linear with the protein amount in a range of six 

magnitudes. On the other hand the tradeoff is that signal-to-noise ratio much lower. 

According to the requirements of pathway reconstruction and modeling, two kind of 

western blots were performed, these are described below. Western blot experiments 

and quantitation was done by our collaborators in Leicester. 

(Semi-)quantitative western blots 
For quantitative modeling, measurements were performed in multiple replicates and 

with high temporal resolution. Early westerns explored the approximate dynamics. 

Based on this, an irregular sampling was designed. The aim was to have high resolution 

on the dynamically rich and low resolution on dull sections. The highest resolution was 

60 min, and the duration was 12 or 24 hours. Quantitation was done by the Odyssey 

fluorescence scanner. ppSpk- and tubulin-signal of different wawelength were 

background subtracted, then ppSpk1 was normalized by tubulin. Method is referred as 
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semi-quantitative as it showed delicate dynamical features, like the pre-activation peak, 

however it provided average values over a non-homogenous population. 

Western blots for qualitative predictions 
Since the project turned into a pathway reconstruction problem, the structural model of 

the pathway was used for qualitative predictions. Testing mutations did not need 

elaborate quantitation nor dense sampling. These westerns showed Spk1 activity of 

different mutant strains with 6 time points (at 0, 4, 8, 12, 24 & 36h) and were not 

subjected to proper quantitation. Results are provided in section: Time course data 

and cell morphology. 

Absolute protein quantification 
To deliver absolute protein concentration for the model, we applied the method used 

for cerevisiae before. [69] The GFP intensity of tagged proteins was measured and 

compared to a series of GFP standards. Thereby absolute protein count was gained for 

the sample. The number of cells was counted by CASY cell counter or by cell counter 

chamber under microscope. An estimate on average volume of different subcellular 

compartments of pombe was found in BIONUMBERS (ID: 102278). The estimates were 

controlled against known values for other signaling proteins and found to fall within 

this range. See in data supplement and [70] 

  

http://bionumbers.hms.harvard.edu/bionumber.aspx?&id=102278&ver=2&trm=pombe%20cell%20volume�
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Problems with the setup 
The liquid culture setup was a robust protocol; however it yielded rather low quality 

data. The following problems were characterized. 

1. Low mating efficiency:  
Cells need a pheromone gradient (and a partner in range) for successful conjugation. 
The constantly shaken liquid washes away cells and gradients. Cells which cannot 
attach to a ball of cells, cannot mate. 

2. Cell synchronicity: 
Although starvation and pheromone distribution during shaking should synchronize 
cells to some extent, the starting culture is completely asynchronous. 

3. Culture heterogeneity:  
There are two kinds of cells in the population. The cells in one of the ‘balls’ execute 
mating, whereas the majority is floating around alone and cannot mate. Cell extracts 
however cannot distinguish these cells; the westerns therefore reflect an average of 
two separate behaviors. 

4. No measurement of system input:   
Pheromone is not added externally at a single time point, the protocol let the cells 
stimulate themselves – of course this is also a source of variation.  

Selection of synchronous cells by elutriation and plate based assay 
To acquire more quantitative data, we tried to elutriate the culture. The elutriator is a 

special centrifuge where the cells flow in a tube from the periphery of a rotating plate 

towards the centre. Along the way cells separate by density, therefore it is possible to 

select freshly divided cells from the rest of the population. It selects a synchronous 

(sub) culture without externally treating the cells except the centrifugation.  However, 

this method yet did not work out for technical reasons. My collaborators successfully 

developed a plate-culture based assay that allowed a high mating efficiency without the 

formation of aggregates, thereby heterogeneity was much smaller. 

TIME COURSE DATA AND CELL MORPHOLOGY 
The Western Blot experiments shown here are yet unpublished work of Emma 

Kelsall and Dr. Kayoko Tanaka at the University of Leicester, any further use or 

publication of the data is the exclusive right of the mentioned authors. 

The Spk1 activity is the measured output of the transcriptional response. Spk1 (MAPK) 

is the key regulator of Ste11 transcription factor in pheromone response. Relative Spk1 

activity plots and images of cell morphology of mating are presented in this section. All 
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Spk1 activity values are normalized by tubulin alpha intensity. The presented light 

microscopy pictures only show representative phenotype of the cells.  

Besides measuring Spk1 levels and activity, pictures of cells were taken under light 

microscope. These pictures illustrated typical morphological features of mating in 

different mutant strains. As the model was extended to incorporate the morphology 

pathway, imaging validated predicted morphologies, along with westerns that tested 

predicted Spk1 activity. Three, focal strains represent the most important 

morphological and genetic behavior types. These are the wild type, the hypersensitive 

Ras.Val and the downregulation deficient Byr1.DD. These three strains were 

quantitatively modeled. Data on other mutants was used for pathway reconstruction.  

For experimental details, see: Data generation. Quantified original data, comparisons 

and western blot quality control stands in the supplementary excel file. 

Wild type strain 
Wild type behavior is written in detail in the Biology section.  The wild type Spk1 

activity shows the following features. It climbs to reach a transient peak, then it falls 

back to a non-zero level, from there it gradually decreases slowly. With the current 

protocol it is very hard to estimate how long this gradual decrease takes since the 

culture is a mix of mating and not-mating cells. See: Problems with the setup. 
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FIGURE 4: SPK1 ACTIVATION PROFILE OF WILD TYPE CELLS IN TWO BIOLOGICAL REPLICATES. THE AVERAGE PEAKING 
TIME IS AROUND 7 HOURS. © EMMA KELLSALL & DR. KAYOKO TANAKA 

After comparing many independent experiments it became clear that the early 

‘shoulder’ of the main activation peak around 2-3 hours is not an artifact. It also 

appeared in the Ras.Val and the Byr1.DD strains. The hypothesis, the competing models 

and designed experiments are to be seen in: Models for subsequent activation peaks. 

 

FIGURE 5: VEGETATIVE AND MATING WT CELLS. MEIOSPORES ARE ALREADY FORMED IN THE CELLS AS A RESULT OF 
SUCCESSFUL MATING. WILD TYPE CELLS NEVER FORM LONG SHMOOS AS RAS.VAL CELLS DO. © EMMA KELLSALL & DR. 
KAYOKO TANAKA 

Wild type cells in vegetative cell cycle show an elongated tubular form. Newly divided 

cells often remain together. 
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Ras1.G17V strain 
The Ras1.G17V strain contains a mutation in the regulatory domain of Ras1 that inhibits 

the binding of Gap17

The strain is called ‘pheromone hypersensitive’: the cells grow thicker and longer 

shmoos after stimulus. This strain also shows a higher and earlier phospho-Spk1 peak. 

The strain is sterile; shmoos do not reach partner cells. Whether they are incapable of 

fusion, or they cannot find the direction of the partner, or just mistake in estimating the 

partners’ direction is to be enlighten by further experiments. After looking at 

microscopy images, I set up a hypothesis that claims that cells can sense the direction, 

but start shmooing towards any distant partner.  This concept is elaborated in 

, a GTP->GDP exchange factor. In further the strain is referred as 

‘Ras.Val’. Mechanically, once Ras1 is activated (GTP binding) it is only deactivated by its 

own, comparably slow GTPase activity. The mutation is confirmed by the fact that cells 

lacking Gap1 behave the same way. 

The 

distance measurement hypothesis section. 

One can observe 3 features of Spk1 activity comparing to wild type response: 1.These 

cells fires stronger. 2. These cells fires earlier. 3. The signal is downregulated earlier. 

The first feature can be plausibly explained by the molecular mechanism; why the 

pathway fires earlier is not so plausible.  Ras.Val strain has higher background activity 

compared to WT (see:  Unquantified western blots). It is possible, that the main peak is 

a result of autocatalytic self activation, since at least six positive feedbacks (Mam2-, 

Gpa1-, Ste6-, Ste4-, Spk1- and Ste11-transcription) exist in the pathway. Systems with 

coupled positive and negative feedback loops can be bistable, and the pombe 

pheromone response is such a system. Once they cross a critical activation threshold, 

the autocatalytic effect grows stronger and stronger and the system falls into the active 

state. Now since Ras.Val cells have higher Ras1 basal activity, they are closer to this 

threshold. This hypothesis is also supported by the final full scale model. 

The picture in the downregulation is somewhat clearer. The hypersensitive Ras 

molecule itself is slower downregulated than WT, since it lacks interaction with Gap1. 

Strikingly, the strains activity falls earlier. This contradiction could be resolved by the 

Spk1 triggered negative feedback. Since it is earlier and stronger upregulated, it earlier 

                                                        
7 Gap abbreviation stands for G-protein Activating Protein. 
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and stronger activates the downregulating mechanism. The faster Spk1 downregulation 

with a slow deactivated Ras1 molecule may also suggest that the main downregulation 

is downstream of Ras1. This conclusion makes less likely, that the typical regulation by 

receptor internalization and/or desensitization is the key regulator here. [71] Since this 

strain is sterile and still cuts the signaling off, the downregulation cannot depend on 

successful conjugation, it must be activated by the pheromone pathway, regardless of 

the outcome of mating. 

 

FIGURE 6: THREE BIOLOGICAL REPLICATES OF THE RAS.VAL STRAINS SPK1 ACTIVITY. THE AVERAGE PEAKING TIME IS 
AROUND 4.67 HOURS; THIS FASTER RESPONSE IS CALLED THE EARLY SHIFT. THIS IS PARTLY SEPARATE FROM THE OTHER 
EFFECT, THE HIGHER INTENSITY OF THE RESPONSE. WHEREAS THE FIRST IS THOUGHT TO BE THE DIRECT RESULT OF THE 
HIGHER BASAL ACTIVITY, THE SECOND IS THE RESULT OF THE HIGHER SATURATING ACTIVITY OF RAS1 IN THE RAS.VAL 
STRAIN. © EMMA KELLSALL & DR. KAYOKO TANAKA 

 

FIGURE 7: VEGETATIVE RAS.VAL CELLS LOOK AS THE SAME AS WILD TYPE CELLS, SUGGESTING THAT RAS1 
HYPERSENSITIVITY DOES NOT AFFECT VEGETATIVE GROWTH SERIOUSLY. RAS.VAL CELLS RESPONDING TO PHEROMONE 
LOOK DIFFERENT THAN WT CELLS, THEY GROW ELONGATED AND THICKER SHMOOS; HOWEVER THEY ARE INCAPABLE OF 
SUCCESSFUL MATING. © EMMA KELLSALL & DR. KAYOKO TANAKA 
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Byr1.DD strain 
Byr1.DD is a phosphomimetic protein mutant, which constitutively active, and cannot eb 

further activated by phosphorylation. Byr1 has two sites phosphorylated by Byr2, which 

are both replaced by Aspartic acid [D] in the mutant protein. The negative charge 

mimics the effect of the similarly negative phosphate-group. The major feature of 

pheromone response in Byr1.DD cells is that the signal is never switched off. This means 

that the downregulation must happen upstream of Spk1, but where exactly is unknown. 

Morphologically, cells grow slightly bigger shmoos than wild type; they localize and 

attach to their partners correctly, but subsequent fusion is missing. Comparing this with 

the apparent loss of downregulation we hypothesized that shutting down the 

transcriptional response is probably necessary for the expression or de-regulation of a 

protein involved in fusion. To support this idea, collaborators are generating a strain 

containing both Byr1.DD mutation and analogue-sensitive Spk1. In this way, Spk1 can be 

regulated externally. The experiment is still to be done. Our expectation is that the 

artificial downregulation of the signal restores the WT phenotype. 

 

FIGURE 8: SPK1 ACTIVITY OF BYR1.DD STRAIN IN TWO BIOLOGICAL REPLICATES. THE SATURATION TIME IS DEFINITELY 
NOT BEFORE 12 HOURS, AND IT REACHES CONSIDERABLY SMALLER VALUES THAN WT DOES. THE EARLY SHOULDER OF 
THE ACTIVATION PEAK APPEARS AS IN MOST OTHER MUTANTS. © EMMA KELLSALL & DR. KAYOKO TANAKA 

Once Byr1.DD protein is expressed, it activates the pathway: since there is no signaling 

before starvation, either Byr1, Spk1 or both are not expressed upon nitrogen depletion. 

The regulation of Byr1 is unknown, possibly due to its very low molecule count. 
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Therefore we cannot exclude any of the possibilities. Spk1 is actively induced by 

starvation. [31] Our experiments showed that it is below measurement accuracy before 

starvation-induced stimulation.  

Since Byr1 cannot be phosphorylated by Byr2, it also means, that the downstream 

pathway does not sense any input, so this strain is insensitive to upstream 

perturbations.  Input-insensitivity was also confirmed by Byr1.DD ‘starvation-only’ 

experiments, which showed the same phospho-Spk1 profile as cells induced by 

starvation and pheromone. The cells nevertheless did not grow shmoos, since the 

morphology pathway was not stimulated. 

 Byr1.DD mutation also proved to be a powerful tool for highlighting the function of 

pathway components: combinational mutants containing a knockout in upstream 

components still had a functional (up to before fusion) MAPK-cascade. In this way we 

could show if a component is important for the morphology pathway. If the knockout in 

wild type showed a reduced Spk1 activity, the examined protein is also an effector the 

transcriptional response. 

 

FIGURE 9: MATING BYR1.DD CELLS ARE SIMILAR TO WILD TYPE: THEY FORM SMALL SHMOOS, AND CORRECTLY ATTACH 
TO A PARTNER; HOWEVER THEY CANNOT FUSE WITH THE PARTNER. © EMMA KELLSALL & DR. KAYOKO TANAKA 
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sxa2Δ strain 

 

FIGURE 10: SPK1 ACTIVITY IN THE SXA2Δ CELLS (TWO BIOLOGICAL REPLICATES). THE PEAK TIME IS AROUND 12 HOURS. 
ALTHOUGH THE SIGNAL IS DOWNREGULATED (OPPOSED TO BYR1.DD), IT HAPPENS MUCH LATER THAN IN OTHER 
STRAINS. © EMMA KELLSALL & DR. KAYOKO TANAKA 

gap1Δ strain 

 

FIGURE 11: SPK1 ACTIVITY IN THE GAP1Δ STRAINS. THE PEAK TIME IS AROUND 4 HOURS. THE GAP1Δ STRAIN IS THOUGHT 
TO HAVE THE SAME FUNCTIONAL LOSS AS RAS.VAL MUTANTS: THE INTERACTION OF RAS1 AND GAP1 IS MISSING. © EMMA 
KELLSALL & DR. KAYOKO TANAKA 
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FIGURE 12: MATING PHENOTYPE OF GAP1Δ CELLS. THE CELLS GROW LONG LINEAR SHMOOS AS RAS.VAL CELLS DO, AND 
THEY ARE INCAPABLE OF MATING TOO. THE CELLS THOUGH LOOK A BIT MORE 'DOTTY'. © EMMA KELLSALL & DR. 
KAYOKO TANAKA 

Remarks 
Error bars are not reported for the following reasons: in many cases there are just two 

biological replicates done, while these are normally done in three technical replicates, 

we are interested in biological variance, which is not represented in technical replicates, 

therefore it could be misleading. Addressing biological variance is not trivial, since 

variance in peaking time and amplitude could be caused by different reasons. Treating 

the two variances together is misleading.  

For example the two Ras.Val cultures below show little variance at 5 hours in Figure 5, 

however it does not mean that they have little variance in peak amplitude. One should 

consider treating the time- and amplitude- variance of the data separately. One way 

would be to establish the variance in peaking time, than shift the datasets so that they 

have the same imaginary peaking time. Finally one could establish the variance in peak 

amplitude, which is now not biased by variance in by the response offset of different 

cultures. 
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Unquantified western blots 
Unquantified or -quick and dirty- western blots provided qualitative information for the 

reconstruction of the signaling pathway. 

Experiments from July 2012 

 

FIGURE 13: ORIGINAL IMAGES OF WESTERN BLOTS. THESE UNQUANTIFIED WESTERNS WERE USEDTO TEST QUALITATIVE 
PREDICTIONS. GREEN INDICATES THE FLUORESCENCE OF ANTI-PHOSPHO-SPK1 ANTIBODY, RED THE ANTI-TUBULIN 
ANTIBODY. NUMBERS OVER COLUMNS DENOTE THE HOURS AFTER STARVTION. 1ST PANEL: OVERLAY IMAGE OF BOTTOM 
PANELS. 2ND PANEL: THE UPPER BARS SHOW PPSPK1 (ANTI-PPERK), THE LOWER IS AN UNSPECIFIC OFF-TARGET SIGNAL 
OF THE ANTIBODY. THE TWO ADJACENT ROWS OF TUBULIN (ANTI-TAT1) REPRESENT TWO ISOFORMS. 3RD PANEL: THE 
UPMOST BAR MARKS THE TOTAL SPK1 (ANTI GFP), WHEREAS THE LOWER ADJACENT ROWS MARK TUBULIN (ANTI-TAT1).  
© EMMA KELLSALL & DR. KAYOKO TANAKA 
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Experiments from September and October 2012 

 

FIGURE 14: ORIGINAL IMAGES OF WESTERN BLOTS DONE IN SEPTEMBER. THESE UNQUANTIFIED WESTERNS WERE 
USEDTO TEST QUALITATIVE PREDICTIONS. GREEN INDICATES THE FLUORESCENCE OF ANTI-PHOSPHO-SPK1 ANTIBODY, 
RED THE ANTI-TUBULIN ANTIBODY. NUMBERS OVER COLUMNS DENOTE THE HOURS AFTER STARVTION. TOP PANEL: THE 
UPPER GREEN BARS SHOW PPSPK1 (ANTI-PPERK), THE LOWER IS AN UNSPECIFIC OFF-TARGET SIGNAL OF THE ANTIBODY. 
THE TWO ADJACENT ROWS OF TUBULIN (ANTI-TAT1) REPRESENT TWO ISOFORMS. BOTTOM PANEL: THE UPMOST RED 
BAR MARKS THE TOTAL SPK1 (ANTI GFP), WHEREAS THE LOWER ADJACENT ROWS MARK TUBULIN (ANTI-TAT1). © EMMA 
KELLSALL & DR. KAYOKO TANAKA:  
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The absence of signal in gpa1Δ strain is striking. (Only the lower green bar is apparent, 

that is possibly a ppSAPK, an off-target antibody signal) The signal is much lower than 

in case of any other knockouts. I could conclude two possibilities from that, which are 

not mutually exclusive. Either Gpa1 activation is required very downstream; therefore 

its loss filters out basal pathway activation. Alternatively it is possible that Gpa1 is 

obligatory for starvation induction. The first idea is implemented in the final model. Our 

concepts about Gpa1 are yet to be clarified. A Byr1.DD & gpa1Δ strains ‘starvation only’ 

experiment could provide further insight, but may not be decisive. A few years ago, it 

was proposed that Ste6 and Efc25 act strictly complementary to each other. [72] We 

could not reproduce these findings. Our result shows that the loss of Ste6 does not 

abolish signaling in the transcriptional branch; therefore it cannot be the only activator 

of that pathway. For this reason, Efc25 and Ste6 may act in o the same way: charge Ras1 

with GTP. 

GENOME WIDE PROTEIN EXPRESSION DATA  
Dataset 
We were kindly provided with a genome-wide dataset by Jürg Bähler of protein and 

mRNA concentrations on 2 conditions. [62] -in press- Cells from nitrogen-rich media 

(vegetative cell cycle, abbreviated MM) and quiescent cells from 24h N-starved culture 

were measured (abbreviated MN).  The quiescent dataset was measured in cells 24 

hours after N-starvation, when cells go to a dormant state, instead of mating followed 

meiospore formation in our experimental setup. Our experiments and the model start 

from vegetative stage, so the first condition provides usable data. The dataset contained 

information for special, non-coding or unknown DNA sequences, which were removed: 

antisense RNA, “dubious” sequences, 5s rRNA, tRNA, small nucleolar RNA, sequence 

orphan, pseudogene, non-coding RNA (predicted), 18S ribosomal RNA, intergenic rna, 5.8S 

ribosomal RNA, 28S ribosomal RNA, 8S rRNA (predicted), 7SL signal recognition particle 

component, LTR - assumed long terminal repeats, SPBC1348.05, SPBC28E12.02, ght7, 

SPBPB8B6.02c, mug27, mde7, SPBPB2B2.07c, pma2, mug28, mug62, , RNase P K-RNA, 

telomerase RNA, translationally silent transcript from tco1 locus, RNAse MRP, 21S rRNA, 

C/D containing snoRNA Z30, 12 small nucleolar RNA/small nucleolar RNA snR99, 20 small 

nucleolar RNA, SnoRNA (predicted), Tf2-7, Tf2-fragment5. After filtering, 4747 

measurements remained. 
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Estimator  
The model could make use of 10 protein’s levels (cpc, average count per cell) from the 

dataset: byr1, rgs1, sxa2, ste4, ras1, spk1, mam2, byr2, gpa1, ste6. Some of them were 

directly measured, others protein counts were estimated from other provided data: 

mRNA level, Protein isoelectric point [pH], Protein mass [kDa], Ribosome occupancy, 

Ribosome number, Ribosome density, Relative poly(A) length, Relative PolII occupancy, 

mRNA half-life. All of these quantified properties and the single products with mRNA 

counts were tested for correlation with protein levels. All showed a worse correlation 

than mRNA level itself. Strikingly, mRNA half-life showed no correlation with protein 

levels. The same result was found in: [73] Satisfyingly, mRNA counts showed an 

acceptable linear correlation and yielded the following equations:  

 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚_𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 (𝑀𝑀𝑀𝑀) ∗  1449 =  𝑝𝑝𝑝𝑝𝑐𝑐𝑐𝑐𝑝𝑝𝑝𝑝𝑐𝑐_𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑉𝑉𝑝𝑝𝑉𝑉𝑝𝑝𝑐𝑐𝑉𝑉𝑐𝑐𝑝𝑝𝑉𝑉𝑝𝑝) (1.1.)  
The linear equation had a coefficient of determination (R2) of 0.619. 

 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚_𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 (𝑀𝑀𝑚𝑚) ∗  3696 =  𝑝𝑝𝑝𝑝𝑐𝑐𝑐𝑐𝑝𝑝𝑝𝑝𝑐𝑐_𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑄𝑄𝑐𝑐𝑝𝑝𝑝𝑝𝑄𝑄𝑐𝑐𝑝𝑝𝑐𝑐𝑐𝑐) (1.2.)  
The linear equation had a coefficient of determination (R2) of 0.49. This dataset was not 

used in the model. 

The correlation was tested for linearity, and generally worse higher-order or sub-linear 

correlation were found. Although a slightly better linear fit (R^2 = 0.623) was achieved 

with the correlation between mRNA-count^1.1and protein count; however the difference 

was too slight to change the simple linear correlation model. 

Quality of estimate 
After establishing a linear correlation, it was tested for quality in predicting protein 

concentrations in both conditions (vegetative growth, quiescent).  Correspondingly 

2443 and 2646 protein measurements were available in the dataset, where the 

prediction could be compared. In 98% and 96% of the cases the estimate was within 

one magnitude, and in 37.0% and 37.3% of the cases, the estimate was better than +/- 

50%. This was very satisfying result, knowing that often mRNA and protein levels often 

do not correlate at all. Nevertheless it was apparent that Ste11 dependent proteins are 

very different to other proteins. Most of them are transcribed in very small quantities 

and no translated protein was found (NA). 
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Common.n
ame 

MM.mRNA
.cpc 

MN.mRNA
.cpc 

MM.protein
.cpc 

MN.protein
.cpc 

Estimated 
mM protein 
cpc 

sxa1 12.00 4.00 3673 9031 17388 
cdc42 10.00 2.60 29312 21374 14490 
shk1 4.00 1.10 4164.45 1627.98 5796 
scd2 3.20 1.30 901 2081 4637 
efc25 3.20 1.10 99 NA 4637 
byr1 2.70 0.84 3354 NA 3912 
ras1 2.20 0.44 9899 7003 3188 
scd1 2.10 0.81 593 454 3043 
ste11 1.80 1.70 NA NA 2608 
gpa2 1.60 0.39 1995 2086 2318 
byr2 0.88 0.30 NA NA 1275 
gpa1 0.72 0.67 1981 2381 1043 
sxa2 0.66 0.19 NA NA 956 
spk1 0.59 0.89 NA NA 855 
ste4 0.57 0.26 343 NA 826 
rgs1 0.38 0.14 NA NA 551 
ste6 0.25 0.21 NA NA 362 
map2 0.16 0.02 NA NA 232 
mam2 0.06 0.16 NA NA 84 
TABLE 1: A SUBSET OF GENES FROM THE GENOME-WIDE DATASET [62]. MM DENOTES VEGETATIVE GROWTH, MN 
QUIESCENT STATE (24H AFTER N-STARVATION). THE 1ST AND 2ND COLUMN SHOWS AVERAGE MRNA COUNTS PER CELL 
(CPC), 3RD AND 4TH COLUMN PRESENTS THE MEASURED PROTEIN COUNT PER CELL. THE 5TH COLUMN CONTAINS THE 
ESTIMATED PROTEIN COUNT CALCULATED AS DESCRIBED ABOVE. CLUSTERING OF PROTEINS RELATED TO PHEROMONE 
RESPONSE IS DENOTED BY BACKGROUND COLOR. PROTEINS COLORED IN GREY ARE CURRENTLY NOT, OR NOT 
SEPARATELY PART OF THE MODEL, GREEN MARKS THE STE11 DEPENDENT (TRANSCRIPTIONALLY REGULATED) GENES, 
WHEREAS WHITE COLORED LINES CONTAIN GENES THAT ARE TRANSCRIPTIONALLY NOT REGULATED. IT IS APPARENT 
THAT MOST STE11 DEPENDENT PROTEINS HAVE VERY LOW MRNA COUNTS, WITH NO PROTEIN SIGNAL EXCEPT GPA1 AND 
STE4. NOTE THAT SXA1 AND SXA2 HAVE VERY DIFFERENT FUNCTIONS DESPITE THEIR SIMILAR NAMING8

Application of data 

. 

Measured protein counts were used for the model as pre-stimulation steady state data 

in 4 cases (ras1, byr1, ste4, gpa1), and estimates were utilized in two cases (byr2, 

ste11). Total Spk1 counts were estimated from this dataset but also measured by our 

collaborators. This gave a chance of validation. The estimate was reasonably close to the 

measured value. 855 counts per cell (cpc) were estimated, while 600 and 400 cpc was 

measured by the collaborators. The average of the measured values was used for the 

model (500 cpc).  

The absolute protein counts were transformed into concentrations (uMol/liter) with a 

short R-script, which makes use of a microscopy based cytoplasm- and nucleus- volume 

estimates. [70] Proteins were distinguished by their localization for the calculation of 
                                                        
8 [11] 
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concentration: cytoplasmic, or cytoplasmic and nuclear. (No proteins resided in the 

nucleus only). Concentration for extracellular protein Sxa2 was not used. Localization 

was established by the online ‘S. pombe Postgenome Database’ database [10] and 

confirmed by literature. For the current state of the model no separate compartment is 

treated for proteins localized at the shmooing location or at the membrane in general. 

The calculated protein concentrations were in the range of other measured signaling 

proteins in pombe (the cytokinesis proteins: 0.09-4.75u Mol/l). [70] The only exception 

is the pheromone receptor, which is estimated (and assumed in literature) to be almost 

absent in vegetative state. 

Improvements of estimate 
Manual curation of the dataset 
The estimate of protein counts could be improved in two ways. The more trivial way is 

to filter the dataset further. Signaling proteins appeared to have characteristically 

different translational behavior than other proteins. It was also found that mRNAs and 

proteins involved in fast responses have lower stability (half-lives) in mammals. [73] 

Initial filtering of the dataset increased the quality of the linear regression particularly; 

therefore further filtering may also be useful. 

Probability distribution based models for gene expression  
A second way to increase prediction quality for protein levels is to make use of the 

originally measured distribution of protein and mRNA counts, instead of using mean 

values. Based on these data, a probability function can provide mapping between the 

distribution of mRNA counts and the distribution of protein counts. [74,75] These are 

on the other hand quite complicated methods using way more sophisticated models for 

translation than linear. Due to the limited time, these improvements were not applied. 

Cross validation 
A further notice is that the quality control of estimates is not statistically correct. A 

correct way would be to apply cross validation by splitting up the data into training and 

validation subsets. One suitable method, termed 10-fold cross validation could be 

applied for the problem. In this, the dataset is split up into ten subsets. In an iterative 

manner, each time different 9 subsets are selected for training and the remaining one 

for validation. The average performance of predictive power is reported.   

http://www.riken.jp/SPD/�


Ábel Vértesy  30/10/2012 
 

45 / 120 

PATHWAY RECONSTRUCTION RESULTS 

STARTING POINT 
The project started with a rather simple pathway scheme shown in Figure 2. This 

scheme represents the initial notion of the pathway.  The depicted interactions are 

unspecific: arrows and associations mean various functions. It was not considered to 

view the system as a genetic regulatory network. The considered network is very 

simplistic, but from a dynamical systems view, the considered species are not always the 

most important ones: pmp1, pyp1, gap1. [41,87] A number of components were ignored 

(Ste4, Ste6, Shk1 and the Cdc42 complex), some of them turned out to be important. The 

role of nitrogen starvation was unclear. Similarly, some other basic concepts were not 

explicitly formed. My contribution was partly the explicit (often mathematical) 

formulation of the design motifs, or hypotheses about them. 

GENETIC REGULATION 
The original figure (Figure 2) depicts the pathway as a usual post transcriptionally 

regulated signaling network. In such a pathway the dynamics can be explained by 

subsequent post-transcriptional activation and deactivation steps. Although PTM’s are 

ubiquitous in the pathway, the timescale of the response (6-12h) suggested that the 

regulation happens on the level of gene expression. It indeed turned out to be the case. 

Nine genes are significantly induced (map2, mam2, sxa2, gpa1, rgs1, ste4, ste6, spk1, 

ste11) whereas six remain transcriptionally unregulated (ras1, byr2, gap1, pmp1, pyp19

Transcriptional regulation

 

and possibly byr1,). See in ; inferred from the Bähler 

Expression viewer. 

STARVATIONAL INDUCTION 
It was known that starvation prepares the cell for pheromone signaling by transcription 

of some of the components. [12] It is also known that this is mediated by Ste11. 

However it was not known whether starvation signal actually converges to the 

pheromone pathway and if it causes Spk1 activation.  

Looking more carefully at the activation profile (Time course data and cell 

morphology, data supplement) it is apparent that activation happens in two rounds in 

the majority of the measurements. In most of the data, a small initial and a big 
                                                        
9 Pyp2 is a known phosphatase regulated by Ste11 activity, also a homolog of pyp1; but 
it was shown not to be important to the pheromone pathway. [87] 

http://www.bahlerlab.info/cgi-bin/SPGE/geexview�
http://www.bahlerlab.info/cgi-bin/SPGE/geexview�
http://www.bahlerlab.info/cgi-bin/SPGE/geexview�
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subsequent peak are visible. See Figure 15 as example in case of the Byr1.DD strain. Two 

alternative hypotheses about the pre-activation are detailed in section: Models for 

subsequent activation peaks. From network reconstruction perspective it is important 

where the input reaches the pheromone pathway. 

 

FIGURE 15: ZOOM-IN TO THE INITIAL STEPS OF BYR1.DD STRAINS SPK1 ACTIVATION PROFILE. ON HIGHER TEMPORAL 
RESOLUTION WE MAY FIND OUT MORE ABOUT THE EARLY SIDE PEAK. 

I proposed an experiment where WT cells sense starvation only. The measurements 

have shown a minor early activation, supporting the hypothesis that starvation causes 

Spk1 activation, not only Ste11 mediated transcription. (Figure 12, panel A) This means 

that the starvation signal utilizes at least partially the pheromone pathway. I proposed 

another experiment, Byr1.DD - starvation only. Spk1 behaved as in Byr.DD cells with 

pheromone (Figure 12, panel C). The experiment supported the idea that starvation 

activates Spk1, although we did not know how exactly. Since Byr1.DD mutation cuts off 

the signal pathway so that everything upstream of Byr1.DD is indifferent. It means that 

the starvation-mediated activation is localized downstream of Byr1, namely it acts at 

least either on Spk1 or Ste11 or both. The Byr1.DD starvation only experiment had not 

enough temporal resolution to show whether Spk1 shows a dual activation peak upon a 

single starvational stimulus10

                                                        
10 Nevertheless Byr1.DD cells always sense pheromone by the constitutively active 
Byr1. 

. If this is the case, it suggests that both self sensitization 
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and dual activation can play a role in the observed dual peaking.  A decisive experiment 

could be done by using a non-functional Spk1 protein. 

Later questions rose whether the experimental setup guaranteed that cells do not sense 

pheromone, therefore the experiments are to be modified and repeated. (By receptor 

deleted strains). For this reason these results are not incorporated in the final model. 

FULL PICTURE AND RE-SIMPLIFICATION WITH A DIFFERENT FOCUS 
Instead of modeling with the initial scheme, I aimed to give a full description, that was 

later re-simplified (as much as possible) with a different focus at the end. First, I started 

to assemble the full interaction network from interaction databases (Smart, BioGRID), 

literature and the experiments. 

It became clear that some of the considered proteins are not important regarding the 

qualitative shape of the dynamics. These were: Gap1, Pmp1, Pyp1, and maybe Ste6. 

Whereas the initially neglected Scd1 activated complex turned out to be necessary for 

signaling.  Finally we achieved a picture that contained all components that qualitatively 

shape the dynamics, but disregard those do not. (Faded in Figure 16)  

The available knowledge was however not enough to come up with a definite picture. 

All the functionally important proteins are likely to be known, since these would have 

appeared in mutagenic screens. However the relation among them is much less clear. 

This is also mirrored in the scheme proposed in this work. There are three cores of 

vagueness. One is Gpa1, whose effectors are completely unknown, and the possible 

other roles of Gpa1’s GEF, Rgs1. The other unclear spot is Ste4, its activation and effect 

on Byr2. [88] Gpa1 and Ste4 are connected in the presented scheme; however this is 

only a hypothesis. The third unclear point is the complex regulation of the transcription 

factor Ste11. Luckily, most of Ste11 regulation seems not necessary for explaining our 

data, so this issue seems to have the smallest impact on the models prediction.  
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FIGURE 16: FINAL NETWORK STRUCTURE CONSISTENT WITH THE LATEST DATA (OCTOBER). THE GPA1-STE4 
INTERACTION WAS NOT PROVEN, IT IS JUST ONE POSSIBLE HYPOTHESIS FOR THE OBSERVATION THAT GPA1 
FUNCTIONALLY ACTIVATES SPK1 INDEPENDENTLY OF RAS1. THE LITERALLY ZERO SPK1-ACTIVITY IN GPA1Δ STRAINS 
SUGGESTS THAT IT ACTS CLOSE UPSTREAM OF SPK1; IN ITS ABSENCE FURTHER UPSTREAM NOISE DOES NOT REACH SPK1. 
FOR A HORIZONTAL, BUT SMALLER PRESENTATION OF THI FIGURE SEE: FIGURE 20. 
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EXPLAINING SPK1 ACTIVITY AND MORPHOLOGY IN THE SAME MODEL 
Another main advance of my work is to treat morphological and transcriptional 

response in the same model. I looked at cell morphology as a source of useful 

information that is never exploited before to understand the transcriptional response. It 

was proposed that Shk1, a member of the morphology pathway is an activator of the 

transcriptional branch. [52,89] This however was never proven in vivo, nor is it 

discussed intense in literature. Charting the regulatory loops also pointed out that the 

transcriptional branch indirectly regulates the morphology branch, therefore it is a vice 

versa relation: Figure 17. 

I proposed and experiment to show that an intact morphology pathway is necessary for 

the activity of the transcriptional branch. However it is not straight forward as Shk1 as 

well and its probable activator, Cdc42 are essential genes, therefore cannot be knocked 

out. [90], reprinted also in “01_Data_supplement/03_viability” It is known that Shk1-

Scd1-Scd2-Cdc42 is a functional complex, therefore my collaborators suggested that 

disruption of any components may disrupt the activity of this complex. This idea 

worked out nicely, and they have shown that Scd1Δ strain showed a strongly diminished 

Spk1 activity and no shmoo was grown.  

 

 

FIGURE 17: ROUGH SCHEME OF THE PHEROMONE RESPONSE DEPICTING THE BRANCHING STRUCTURE OF THE PATHWAY, 
THE CROSSTALKS AND MAIN FUNCTIONS. 
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FIGURE 18: SCD1Δ WESTERN BLOT COMPARED TO WT RESULTS (FROM DATA SECTION). ALTHOUGH THE EARLY PEAK 
AROUND 4 HOURS IS PRESENT IN BOTH STRAINS, NO MAIN ACTIVATION PEAK IS APPARENT. NUMBERS OVER COLUMNS 
DENOTE THE HOURS AFTER STARVTION.  1ST PANEL: OVERLAY IMAGE OF BOTTOM PANELS. 2ND PANEL: THE UPPER BARS 
SHOW PPSPK1 (ANTI-PPERK), THE LOWER IS AN UNSPECIFIC OFF-TARGET SIGNAL OF THE ANTIBODY. THE TWO 
ADJACENT ROWS OF TUBULIN (ANTI-TAT1) REPRESENT TWO ISOFORMS. 3RD PANEL: THE UPMOST BAR MARKS THE 
TOTAL SPK1 (ANTI GFP), WHEREAS THE LOWER ADJACENT ROWS MARK TUBULIN (ANTI-TAT1).  © EMMA KELLSALL & DR. 
KAYOKO TANAKA 

We have not proven the physical interaction as before in vitro11

AN EXPLANATION FOR RAS1 

 (Shk1 -> Byr2 

activation), instead the Shk1-Scd1-Scd2-Cdc42-> Spk1 functional activation. Still after 

this relation was shown, we could use simple morphology to speculate about activity in 

transcriptional branch and vice versa.  

The initial focus of the experimental group was Ras1, its function and its effect of its 

mutation on transcription. Although my collaborators showed that Ras1 is necessary for 

mating (See: Figure 13), and it is a central node in the network, it is surprisingly found 

not to activate any of its substrates. [52] It is unclear what the concrete molecular 

function of Ras1-GTP is. It is known to bind soluble proteins Cdc42 and Byr2 at the 

membrane. One of its effectors is Byr2. It has a regulatory domain that binds the kinase 

domain, thereby inactivating it until an the kinase domain is released. One study 

showed that Ras1-GTP itself cannot open up Byr2, which means that the Byr2 kinase 

needs to be activated additionally. [52] Shk1 was shown as a potent Byr2 activator by 

the same study. 

The only proven role of Ras1 seems to be localizing Byr2 to membrane regions where 

Ras1 is activated. Why the localization of Byr2 is important is not explained yet. I came 

up with the hypothesis that Ras1-GTP neither activates Byr2, nor simply localizes it; 
                                                        
11 Two hybrid assay in cerevisiae. 
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rather the colocalization of Byr2 and the Cdc42-Scd1&2-Shk1 complex is the crucial 

step. By their colocalization their interactions can be enhanced. In this hypothesis Ras1 

basically concentrates the two components on a small area of the membrane, thus 

increasing their interaction by magnitudes. It still does not exclude the possibility that 

Ras-GTP binding of Byr2 leads to a conformation where Byr2 is more active or easier to 

activate, it only suggests, that a key contribution to the pathway activation can be the 

colocalization of these two components.  

This hypothesis seems compatible with other available data, and it explains it without 

assigning any unknown functions to Ras1 or other proteins. A simplistic, non-

parameterized model showed that it can be sufficient to explain a pheromone triggered 

activation of Spk1.  See in: The Ras1 colocalization model. Although Ras1 is essential 

for functional Spk1 activity, the newest experiments showed that Gpa1 has a Ras1 

independent way to activate Spk1. (1st row in: Figure 13) The newest results shown 

literally zero Spk1 activity in gpa1Δ strains, which suggests that Ras1 mediated 

colocalization of Shk1 and Byr2 is insufficient for pathway activation. Nevertheless Ras1 

was also shown to be necessary for above-basal activation of Spk1. It is known that Byr2 

has more than one steps of activation: conformational change and phosphorylation; 

both seems necessary. [52] Ste4 mediated dimerization has an unknown role. A 

reasonable hypothesis incorporates the new data is that Ras1 activates Byr2 by 

colocalization with Shk1, but Gpa1 mediated downstream activation of Byr2 is also 

necessary. (Figure 20) 

DESIGNED EXPERIMENTS 
As the part of the pathway reconstruction, I designed more than 17 experiments of 

which 11 have been carried out so far. The brief summary of proposed experiments, 

including prediction and validation (in blue) and falsification (in red) is presented in 

Table 2 and Table 3. A detailed list of experiments can be found in the supplementary 

part.  
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TABLE 2: DESIGNED EXPERIMENTS 1. FULL TABLE IS AVAILABLE IN THE SUPPLEMENT. 
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TABLE 3: DESIGNED EXPERIMENTS 2. FULL TABLE IS AVAILABLE IN THE SUPPLEMENT. 
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APPROACHING THE FUNCTION OF GPA1 
If one intends to draw finer conclusions about biological function, the experiments has 

to be possibly closest to in vivo situation and resolution has to be high. My collaborators 

conduct experiments in an almost unperturbed system opposed to most of the works 

done in the field (See: Data generation).  

We were also able to clarify the role of Gpa1 to some extent, which is very valuable, as 

Gpa1 is the most obscure component of the pathway. Clarifying the role of Gpa1 is a 

complex as well important issue; therefore a whole chapter is devoted for it. See: 

Possible Gpa1 effectors. In summary, it seems most likely that Gpa1 has multiple 

effectors. It is very likely to activate both Byr2 and Ras1, either directly or indirectly. 

‘CONSERVATION OF SPATIAL INFORMATION’ CONCEPT HELPS TO CONSTRAIN THE 

POSSIBLE SET OF GPA1 EFFECTORS 

POSSIBLE GPA1 EFFECTORS 
The role of Gpa1 is unclear in the literature. It is known that Gpa1 acts upstream of Byr2 

[91], and it semms very likely to be upstream of Cdc42-Scd1-Scd2-Shk1 complex. We 

are planning to prove that with a “Byr1.DD & gpa1Δ” strain. This strain has a Gpa1 

independent, constitutively active transcriptional branch, so if shmooing is deficient, 

Gpa1 is an effector of the morphology branch. 

Some authors believe that Gpa1 signals to Byr2 independently of Ras1 [18], [12]; 

whereas some sources and clues suggest a Ras1 mediated Byr2 activation is how Gpa1 

acts. (See: in the Quiagen pathway repository and the next chapter) Our result strongly 

suggests that both activation ways exist. Firstly we demonstrated that there is a weak 

signaling even in the absence of Ras1 that tells that Ras1 can be detached, although it is 

still necessary for strong and functional signaling. Secondly Ras1 must receive a 

spatially correct signal to localize Cdc42 correctly. Ras1 is the only known component 

capable of localizing Cdc42 to the locus of shmoo growth; therefore it must receive a 

spatially correct activation signal. Gpa1 is expected to transfer this activity, although we 

could not prove this interaction directly. I developed a concept to support it by indirect 

evidences: The 'Conservation of Spatial Information' concept (CSI).  

Additionally to our current knowledge, a planned gpa1Δ&Byr1.DD strain could support 

that Ras1 activation is Gpa1 mediated. Byr1.DD strains have pheromone independent 

https://www.qiagen.com/geneglobe/pathwayview.aspx?pathwayID=280&�
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Spk1 activation (see: Byr1.DD strain), although they grow shmoos only if pheromone is 

around. If the morphology branch is activated independently of Gpa1, this strain should 

grow shmoos as Byr1.DD cells do: it would have an intact morphology branch and a 

functional transcriptional branch. If, however they do not grow shmoos, it would mean 

that Gpa1 is necessary for the morphological response and probably for the activation of 

Ras1.  

THE 'CONSERVATION OF SPATIAL INFORMATION' CONCEPT (CSI) 
There are two answers given to pheromone stimulus: expressional change that requires 

temporal stimulus, and morphological change (shmooing) that requires a spatio-

temporal stimulus.  

Primarily, this concept states that components transmitting signal to the 

morphology pathway should conserve the local aspect of the information. The 

pheromone gradient encodes both kind of information. Since there is only one 

pheromone receptor known, the two responses utilize mutual initial steps (Figure 20). 

Similarly, Gpa1 seems to be the only activated substrate of the receptor, and it is a 

membrane- and receptor- associated protein. Effectors of Gpa1 are unknown.  

On the other hand, it is known that cytoplasmic proteins diffuse generally ~100x faster 

than membrane associated proteins. [92] Internal work at the Klipp group showed a 

1000x difference in diffusion rate between cytosolic and integral membrane proteins. 

(C. Diener and E.Klipp, unpublished) In this work, diffusion rates for 18 cerevisiae 

proteins were estimated by the Einstein-Stokes-relation and cytosol and membrane 

viscosity data. It is assumed in all projects of spatial modeling known to me that 

cytoplasmic proteins lose the spatial character of the signal because of the fast diffusion. 

A review: [93]. Therefore, the second statement of the concept is that all pathway 

components transmitting spatial signal to the morphology branch should 

exclusively be membrane bound or membrane recruited. 

CONSEQUENCES OF CSI ON POSSIBLE EFFECTORS 
If one aims to restrain the set of possible Gpa1 and Ras1 interactions on a sound basis, 

one could utilize the 'Conservation of Spatial Information' concept. The only assumption 

to be made is that no other unknown indispensable proteins are involved in pheromone 

response. Again, essential mating genes were established by mutagenic screens. These 

http://www2.hu-berlin.de/biologie/theorybp/wiki/pmwiki.php?n=Main.DiffusionRates�
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methods are robust in identifying essential genes. (Alejandro Colman-Lerner, personal 

communication) Even if unlikely that unknown essential genes are hiding, we cannot 

exclude it, and therefore it still remains an assumption. 

Consequences on Gpa1 
Gpa1 is directly activated by the pheromone receptor, the only protein directly 

activated by pheromone. The spatial signal has to reach Ras1, the only protein localizing 

Cdc42. There are no proteins known that can activate Ras1 without Gpa1. Also, our 

experiments showed that Gpa1-knockdown completely abolishes pheromone signaling. 

Consequently Gpa1 is very likely tp signal to Ras1 (directly or indirectly) besides 

signaling to Byr2. This limits the possible interaction partners. Our latest measurements 

showed that Gpa1 must functionally activate Byr2 in a Ras1 independent fashion. Gpa1 

can functionally activate Byr2 by direct activation, or indirectly, e.g. by binding and 

activating Ste4 or by colocalizing Byr2 and Shk1, as Ras1 does. If the CSI holds, Gpa1 

cannot use cytoplasmic ways to activate Ras1 with a spatially correct signal. 

Consequence on Ras1 and Gpa1 
As stated above, Ras1 is the only component that can localize the Cdc42-complex, which 

is responsible to reorganize the actin cytoskeleton, thereby initiate shmoo growth. 

Theoretically there are two ways possible for the spatially focused activation of Cdc42.  

First, it can be globally recruited from the cytosol to the membrane, and locally 

activated at the site of highest pheromone stimulus. The second way would be that 

Cdc42 is locally recruited, and either globally or locally activated after pheromone 

stimulation. We could refuse the 1st hypothesis, as it was found that Cdc42 is recruited 

locally in another Ras1 mediated process. [94] The association of Ras1 and the Cdc42-

complex happens only when Ras1 is activated by GTP. [91] To localize Cdc42 correctly, 

Ras1 also has to be activated in a spatially focused way.  

According to the concept of 'Conservation of Spatial Information' there must exist an 

exclusively membrane-bound or membrane-associated chain of activation between 

Gap1 and Ras1. Gpa1 can functionally activate Ras1 locally by direct activation, or by 

binding (localizing) any GEF for Ras1: Efc25 or Ste6. The ste6Δ experiment has 

highlighted that Ste6 is not the exclusive transmitter of the signal [72], as the knockout 

of Ste6 causes much less severe phenotype, than the knockout of its substrate, Ras1. 

See: Figure 13. Gpa1 possibly uses Ste6 and Efc25 both.  

http://www.ifibyne.fcen.uba.ar/new/en/temas-de-investigacion/laboratorio-de-fisiologia-y-biologia-molecular-lfbm/biologia-de-sistemas/dr-alejandro-colman-lerner/�
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INTEGRATION OF A FULL-SCALE MODEL  

Finally I constructed a model that describes the pathway with all known 

transcriptionally regulated components. Other proteins, which do not change in 

quantity or in activity, are only implicitly present. Since their activity is constant during 

the pheromone response, they are not variables rather parameters. Pyp1 and Pmp1 are 

part of the Spk1 deactivation parameter; similarly Gap1 is represented in the Ras1 GTP 

hydrolysis parameter, whereas Efc25 is present in the activation parameter of Ras1.  

Although the model describes all major players in the pathway, it still simplifies in many 

aspects. Most importantly it is not a spatial model; it does not address the four sub-

cellular locations of the pheromone response (extracellular space, cell membrane, 

cytosol and nucleus) by assigning proteins to separate compartments. In further, the 

activation by Ste4 and the regulation of Ste11 are simplified. The concrete regulation of 

Ste11 is very complex, see: [12]; the model reflects only its activation by Spk1. Ste4 is 

speculated to dimerize Byr2, but this is not directly proven, and the effect of 

dimerization is completely unknown. Nevertheless Ste4 is shown to be necessary for 

pheromone signaling [88,95]; only this proven information is incorporated in the 

model: Ste4 activates its substrate, standing for activation in general. 

 

FIGURE 19 THE HYPOTHESIZED WIRING BEFORE THE LAST ROUND OF EXPERIMENTS. WE HAD NO EVIDENCE FOR A RAS1-
INDEPENDENT ROLE OF GPA1. 
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In summary, the full pathway model incorporates most validated direct interactions 

among the pathway components. Simplification was applied in cases where too much is 

unknown about the interactions. Even though, assumptions were necessary regarding 

Gpa1, Ste4 and Ras1, since available knowledge is insufficient to create a functional 

model. Therefore, the model bases on a hypothetical network structure, depicted in 

Figure 20. The model was modified to be consistent with the newest set of data, which 

has shown that Gpa1 has at least one Ras1-dependent and one Ras1-independent 

effector. These measurements became available only at the beginning of October; such 

late incorporation of data posed quite a challenge.  

The final model consists of 29 proteins connected by 52 reactions. All reactions are 

depicted as simple mass action kinetics, but for most of the proteins a general 

degradation rate was assumed, therefore there are only 45 reaction parameters.  The 

WT, Ras.Val and Byr1.DD are the focal strains of this study, since they represent the 3 

known distinct classes in behavior. See Biology section.  

 

FIGURE 20 A POSSIBLE HYPOTHESIS FOR THE PHEROMONE RESPONSE. THIS STRUCTURAL MODEL IS CONSISTENT WITH 
THE LATEST RESULTS. THE MODEL CONTAINS A SIMPLIFIED VERSION OF THIS SCHEME. 
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The model was used to reproduce the behavior of these three strains. In the 

experiments, the removal of nitrogen from the media marks the beginning of the Ste11 

dependent transcription. Our findings about starvation effects are ignored, as long as 

they are not confirmed. In the model, receptor transcription and Ste11 activation are 

explicitly dependent on nitrogen-starvation signal. In the latest model this is also 

relaxed to sole Ste11 activation; see section: Further development and modeling 

supplement. 

The simulation starts from a vegetative steady state that corresponds to protein values 

measured by my collaborators and by [62]. The data is in all cases population average 

data, therefore the model is no single cell model. There were 3 time course (TC) 

datasets for Ras.Val and 2-2 datasets for WT and Byr1.DD strains, each around 10 time 

points (see in data supplement). Since the most data was available for Ras.Val strain the 

model was fitted to this dataset. (Copasi can fit one mutant at a time) The Ras.Val 

dataset also seemed the most informative about system behavior as ground using it. The 

other two datasets were used for validation. 
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MODEL - MARK I 
After a series of model development phases, I arrived at a stat e where the model could 

reasonably describe the datasets, as shown in Figure 21. The summed squared error 

(SSE, also: objective value) was 1.044. 

 

FIGURE 21: MODEL MARK I IS CAPABLE TO DESCRIBE RAS.VAL DATA NICELY AFTER PARAMETER ESTIMATION. 
REMARKABLE IS THE EARLY SIDE PEAK REPRODUCED BY THE MODEL. 

The model reaches steady state after stimulation and remains within general 

physiological concentrations (below 100 uM). It is acceptable for signaling proteins, but 

many pombe proteins are expected to be lower, therefore the model was further 

developed.  

Although the presented model achieves steady state, it would not be necessary. 

Consider that this is a model of a sub process in mating, an encapsulating process that 

changes the transcriptional profile completely. The biological process of pheromone 

response neither necessarily goes into steady state, since the outcome of mating anyway 

completely switches the whole genetic program. The tight regulation of proteins in later 

times would anyway make no sense. In this respect, the system is very different from 

typical metabolic systems. 
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Side peak 
Most surprising was the fact that the model reproduced the early side peak of 

activation. It appeared in almost all of the datasets, however this data feature is very 

subtle, therefore much unexpected to be captured by numerical optimization. (See: 

description of problem at Figure 29) Indeed, multiplex model fitting returns many 

parameter sets that describe the data almost equally well, however the side peak 

appears rarely among them. 

 

FIGURE 22: SIMULATED SPK1 ACTIVITY IN MODEL MARK I. STARVATION WAS INITIATED AT 100 HOURS. 

Looking at the data I speculated that the early activation can be either due to the 

subsequent stimulation by starvation and pheromone, or by an initial stimulation by 

pheromone, and by subsequent self sensitization. (see: Models for subsequent 

activation peaks) Since the decisive experiments performed have to be redesigned and 

repeated, both options are open. In the model, the early stimulation peak is due to 

pheromone stimulation, and the second peak appears by the self stimulation of the 

pathway. This is illustrated with a time course of corresponding normalized variables. 
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FIGURE 23: THE NORMALIZED CONCENTRATION TIME COURSE OF DIFFERENT PROTEINS SHOWS THE REASON FOR THE 
DOUBLE PEAK. THE FIRST PEAK IS CAUSED BY PHEROMONE INDUCED BYR1 ACTIVATION, WHEREAS THE 2ND PHOSPHO-
SPK1 PEAK IS CAUSED BY SURPLUS TRANSCRIPTION OF SPK. THIS IS A SURPRISING REALIZATION OF THE “SELF-
SENSITIZATION MODEL” ELABORATED IN THE CORRESPONDING CHAPTER: MODELS FOR SUBSEQUENT ACTIVATION 
PEAKS. 

In the 1st stage of activation, the Spk1 activity (red) is driven by transient Byr1 

activation (blue), and then although phospho-Byr1 levels fall back, a second activation 

happens in Spk1. This is caused by increased transcription of Spk1 (green). Finally the 

signal is downregulated by the delayed transcription of “Downregulator” (purple). This 

model suggests that the main peak in pheromone response is the result of a 

commitment step: the main peak is more a ‘response’ to the first small peak, than to 

pheromone.  

Parameter identifyability 
Multiplex parameter estimations generally over ~5 magnitudes with random staring 

points were conducted to elucidate whether parameters, which describe the data 

equally well are unique for all models. The model is very complex; therefore non-

identifyability is expected for most parameters. [96,97] Again, the aim of the full 

complexity pathway was not to generate a completely identified therefore predictive 

model. The idea was to check the consistency of the intuitive pathway hypothesis 

depicted in Figure 20 by dynamical modeling. 

Most of the parameters indeed show a strong dispersion within physical constraint 

values. The dispersion of the parameters is visualized below. A limit in interpreting 

these results is the fact that manual inspection of the results often filters out 70% of the 

fitted models for violating some biological constraints. The explanation behind this high 

failure rate is that in parameter estimation not all of these behavior-expectations can be 
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applied as model boundaries. Nevertheless the few rules that are true for this complete 

set, also apply the subset of correct models. 
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                                           FIGURE 24: HEAT MAP OF LOG TRANSFORMED PARAMETER ESTIMATES SHOW THAT MANY PARAMETERS (COLUMNS) ARE 
NOT EVEN CONSTRAINED TO VALUES ON THE MAGNITUDE SCALE. 

The few constraints can be established about parameters is that Gpa1, Ste4 and Shk1 

are very strong activators, and that Ras1-Byr and Ras1-(Scd1&2-Cdc42-Shk1) form very 

stabile complexes in almost all optimal fits. (See model supplement) This is consistent 

with our general biological notion about the interactions, however they were never 

shown. 

A simple way to deal with parameter uncertainly is to reduce their numbers. One can 

e.g. assume that regulation does not happen on the level of protein degradation, and set 

all degradation rate to the same value. This was implemented indeed; however 

multiplex parameter fits could find no optimal fit if Gpa1, Sxa2, Mam2 and Pheromone 

degradation rates were also fixed to the same value. After a more elaborate analysis of 

parameter distribution one can identify core predictions, i.e. parameter values that 

always appear in optimal models. 

Regarding the dynamics behind the double activation peaks, the model predicts, that the 

side peak is external stimulation driven, whereas the second is transcription driven. The 

whole pathways second activation is driven by self-sensitization not by separate 

starvation and pheromone stimuli. The pathway reaches full Ras1 activation transiently, 

and this fast switch like activation is the main driver of the delayed expression wave 

behind the big 2nd peak. 
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Ras1 basal activity 
It was speculated that the Ras.Val mutation causes earlier peaking since it causes a 

higher basal activity and therefore the system easier crosses the critical activation 

threshold. Once the system reaches an activation higher than the critical value, the 

autocatalytic system falls into active state “unstoppably”, e.g. even if the stimulus is 

removed. The model reproduced a higher Ras1 basal activity. It was separately tested, if 

higher pre-stimulation Ras1GTP levels indeed cause earlier peaking. (See: 

02_Modeling_Supplement\ Full_model\Earlier_results) 

 

FIGURE 25: DECREASED GAP1 ACTIVITY (RAS.VAL OR GAP1Δ MUTATION) LEADS TO INCREASED STEADY STATE LEVELS OF 
RAS1GTP BEFORE STARVATIONAL INDUCTION. THIS TRANSIENT IS NOT PART OF THE PHEROMONE RESPONSE, IT ONLY 
SHOWS, HOW THE MODEL ARRIVES TO DIFFERENT VEGETATIVE STEADY STATES. THE HIGHER BASAL RAS1GTP LEVEL IS 
SPECULATED TO BE THE MAIN CAUSE FOR THE EARLY SHIFT OF THE TRANSIENT SPK1 ACTIVATION PEAK IN RAS.VAL AND 
GAP1Δ MUTANTS. (FIGURE 5) 

After the behavior of the model was analyzed, its predictive capacity was tested. 

Surprisingly, after appropriate changes, the model semi-quantitatively predicted the 

WT behavior and qualitatively predicted the Byr1.DD behavior. Fitting to one mutant 

dataset, than subsequently predicting the other two is a very satisfying result, given that 

most of the parameters remain unidentified. 
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The Ras.Val mutation in the model 
The Ras.Val -> WT back-mutation corresponds the restore of Rgs1-Gpa1 interaction, this 

means in the model that the Ras1’s GTP hydrolysis rate increases with max. 1-2 

magnitudes. The effect of increasing hydrolysis rate  on the pheromone response is 

depicted in Figure 26. The simulated change very closely overlaps with the observed 

WT dataset. I found that a ~50x increase of the hydrolysis rate (to 4.298) gives the best 

overlap with the measured experimental data. This increase in hydrolytic capacity is 

realistic for the effect of Gap1. The sum of all squared errors for the WT model and data 

is 0.51. 

 

FIGURE 26: PARAMETER SCAN OVER RAS GTP-HYDROLYSIS RATES, STARTING FROM 0.1 (RAS.VAL STRAIN) TO 10 IN 
MODEL MARK I. THE MODEL IS NOT ACCURATELY PARAMETERIZED AS A RESULT OF SCARCE DATA. BESIDE THE 
REMARKABLY HIGHER ACTIVITY AT LOW HYDROLYSIS RATE, ONE COULD OBSERVE THAT THE PEAK IS SATURATING IN 
THE BACKWARD (Y) DIRECTION, SO IT IS PREDICTED THAT FURTHER DECREASE OF RAS1 GTP HYDROLYSIS RATE WOULD 
NOT INCREASE THE INTENSITY OF SPK1 RESPONSE. BESIDE INTENSITY, THE PEAKING TIME IS ALSO AFFECTED BY THE 
HYDROLYSIS RATE.  

Byr1.DD 
The Byr1.DD mutation is implemented in the model as the knockout of ppByr1 

dephosphorylation. This is a very rough approximation (as it still receives input from 

Byr2), that is to be elaborated in further models. Simulating the model with this change 

produces simulation that is qualitatively, but not quantitatively reproduces the Byr1.DD 

dataset. The WT model was “knocked out” for the mentioned reaction and simulated; 

this is presented in Figure 27. 
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FIGURE 27: THE BYR1.DD MODEL-VARIANT QUALITATIVELY REPRODUCED THE SPK1 ACTIVITY IN BYR1.DD CELLS. THE 
PREDICTION IS CORRECT IN THAT PPSPK1 SATURATES (AND NOT ACCUMULTES) AND IT REACHES ITS MAXIMUM 
ACTIVITY SLOWER THAN WILD TYPE. 

The saturating Spk1 value is magnitude bigger than observed, but is still similar to our 

observation in the following respects. 1. The Spk1 activity follows a saturating kinetics 

instead of an overshooting (or exploding) behavior. 2. Spk1 achieves its final activity 

slower than wild type. Further development focused on the Byr1.DD behavior, and 

reached a 100 smaller prediction. (See: Model - Mark II) 

The model still had a number of drawbacks. First, though proteins remained within 

physiological limits, they are higher than expected by comparing them to known or 

estimated steady state concentrations (see: Genome wide protein expression data). 

Secondly, the vegetative steady state protein concentrations are used only as initial 

values but not in parameter estimation. Third, Byr1.DD prediction is inaccurate. These 

problems are corrected in the following model. 

MODEL - MARK II 
The further developed model corrected for the mentioned problems. The measured, but 

not the estimated vegetative protein concentrations were used for pre-starvation fitting 

of three transcriptionally regulated proteins. Measurements and estimates for 

transcriptionally not regulated proteins were used as initial concentration as in the 

previous model. Constraint on protein levels was tightened to 50 uM for secreted-, or 

unspecific-proteins and to 25 uM for signaling-proteins.  Absolute Spk1 measurements 

showed that Spk1 concentration remains around 1 uM, this threshold was incorporated 

as well. 
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Around 3*20 parameter fits were conducted. Particle Swarm global optimization 

algorithm was used with 3000 generations. Only 3 out of the last 20 fits returned an 

objective value below 1.5 (next best fits OV is 3.512

 

). Manual inspection found only one 

fitted model to behave in a sensible way. This parameter set was a big improvement 

from earlier models in that all signaling proteins remain in the uM range, in accordance 

to the data about Spk1, which shows a rise form ~0.1 uM to ~ 0.5 uM. Sxa2 is an 

exception, but this is an externally secreted protein, whose effective level has to cope 

with diffusion, therefore it is expected to be expressed magnitudes stronger. Still as 

shown in the earlier model, Sxa2 levels are very easy to parameterize.  

FIGURE 28: SIMULATED BEHAVIOR OF ALL PROTEINS IN MODEL MARK II. SXA2 IS LEFT OUT FOR THE CONVINIENCE OF 
VISUALIZATION. IT SATURATES AROUND 160 UM STRONGLY DELAYED AT AROUND 200H. 

The surprising result of the new fits was that none of the 3 numerically acceptable fits 

formed an early side peak in Spk1 activity. Compare Figure 22 to Figure 30.  In any 

further development version I was unable to find a parameter set with an early side-

peak. A reason for not finding that parameter regime again may be the fact that 

numerical optimization often has problems with capturing delicate data features. It 

often comes up with a qualitatively different result that is numerically more similar to 

the data, as exemplified in Figure 29. 

                                                        
12 OV worse than ~1.8 generally denotes a model that does not capture the shape of the 
dynamics at all  
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FIGURE 29: NUMERICAL OPTIMIZATION FAVORS FIT1, AS THE SUM OF SQUARED ERROR IS SMALLER THAN IN FIT 2. STILL 
FIT2 IS CLEARLY A BETTER QUALITATIVE REPRODUCTION OF THE DYNAMICS IN THE DATA. 

Increased predictability 
The new model also correctly describes the WT strain by introducing the same change 

as in Model Mark-I. With the optimal GTP hydrolysis parameter of 11.2 the model 

describes the WT data with a sum of squared error of 0.52. The change in behavior is 

shown in Figure 30. 

 

 

FIGURE 30:  SIMULATED DIFFERENCE IN PHOSPHO-SPK1 DYNAMICS BETWEEN WT (LOWER LINE) AND RAS.VAL MODELS 
(UPPER LINE). ALL MODEL PARAMETERS WERE FITTED TO THE RAS.VAL DATA, AND THEN THE MODEL WAS SIMULATED 
ONCE. A MODEL WAS SIMULATED A 2ND TIME WITH THE PARAMETER WITH THAT THE MODEL BEST DESCRIBES THE WT 
DATA. 

Predicted Byr1.DD behavior was much closer to biological range, reaching saturation 

around 4 uM.  Other tests showed that Spk1 saturation value linearly scales with the 

Spk1 activation parameter, therefore further increase in accuracy is expected to be easy 

in further model development. The timing of activation is nevertheless accurately 

described by the model variant. The relation normalized simulation values to data is 
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depicted in Figure 31. The un- normalized Spk1 time course is shown further down in 

Figure 32 (the lower curve, in blue). 

 

FIGURE 31: NORMALIZED PHOSPHO-SPK1 LEVELS IN THE BYR1.DD MODEL. SPK1 SATURATES AT 4 UM, NORMALIZATION 
ONLY HIGHLIGHTS THAT THE PREDICTED TIMING OF SATURATION IS CORRECT. THE DIFFERENCE IN THE EARLY 
DYNAMICS IS EXPECTED TO BE CORRECTED ONCE THE CONCRETE EFFECT OF STARVATION ACTIVATION IS CLARIFIED. 
THIS MODEL WAS CREATED BY SETTING PPBYR1 DEPHOSPHORYLATION TO 0 IN THE WT MODEL; IT WAS NOT FITTED TO 
BYR1.DD DATASET.  

One note on Byr1.DD protein: although it contains a constitutively active Byr1 protein, 

no one showed actually whether the engineered protein is indeed as effective as the WT 

phosphorylated protein. If it is smaller, than no wonder that model overestimates the 

observed activity. 

Issues 
Model Mark II still has a few drawbacks. First of all Sxa2 levels are relatively high, 

although this is solely an impression, as Sxa2 levels are completely unknown. The 

Ras.Val -> WT back-mutation results in exploding Sxa2 levels, instead of saturating. 

Nevertheless this was easy to correct for. Sxa2 has the single role to degrade 

pheromone, and this function is defined by the product of Sxa2 level *activity. So I just 

had to find a different parameter set, where lower Sxa2 values with higher activity exert 

the same effect as in the original model. This was successfully achieved by optimizing 

the corresponding four parameters (See modeling supplementary).  Figure 32 shows, 

that now Sxa2 is not exploding up to 100x faster Ras1GTP hydrolysis rates (Ras.Val -> 

WT back-mutation) while ppSpk1 still behaves correctly, exactly as above.  
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FIGURE 32: DECREASING RAS1 GTP–HYDROLYSIS DOES NOT LEAD TO THE ACCUMULATION OF SXA2 OR PHOSPHO-SPK1 IN 
THE “SXA2 CORRECTED” VERSION OF MODEL MARK - II. 

Another critical point is why Mam2 induction is implemented as explicitly starvation 

dependent. It is known that many proteins require starvation for their induction. In the 

model I chose only one protein to be explicitly depending on starvation, whereas others 

implicitly depend on it. Strikingly, almost none of the Ste11 dependent proteins could 

be measured  (Table 1) although all of them gave a signal at mRNA level. This could 

suggest that pheromone pathway proteins are indeed not there before starvation. This 

also opens the question translational regulation of HMG-box induced genes. Mam2 was 

the lowest expressed mRNA, therefore was receptor chosen to represent the pathways 

suppression before starvation. 

FURTHER DEVELOPMENT 
In the next model I removed the mentioned explicit dependence, and the model was still 

able to describe data similarly well (SSE around 1.3) with a refitted parameter set. All 

protein concentrations remain within their corresponding limits, and I found nothing 

problematic during manual inspection.  However the model does not predict the 

Byr1.DD behavior nor predicts the delayed activation upon WT back-mutation. It is still 

possible that a parameter set can be found; it is just very hard to find it in a 42 

dimensional parameter space. However this model at its current stage only tells, that it 

is possible to describe the data with less assumptions regarding starvation induction.  
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Further work should focus to predict further mutants by parallel fitting to all available 

dataset. By fitting the model to WT, Ras.Val and Byr1.DD datasets in parallel one could 

achieve better identified parameters, and may be able to predict the effect of further 

mutations. Nevertheless, as long as pieces of qualitative information are missing from 

the pathway, quantitative enhancement of the model is less important. 

ANNOTATION 
Proving the validity and reusability of the model, considerable emphasis was put on 

detailed annotation of proteins and their interactions. Annotation of reaction and 

proteins helps to check the validity of each bit of information in the model. The flexible 

and straightforward annotation possibilities in Copasi are incredible; they provided a 

great help for this process. In summary, the model is generally well annotated. Proteins 

are linked to UniProt entries and their discovery is referred to original papers on 

PubMed. Sometimes complementary notes point out some details about reactions, 

global quantities and variables. Reactions are also generally annotated with links to the 

publications (on PubMed) that has porven the given physical interaction. Some of the 

annotation is only accessible in the corresponding “Annotations” Excel file, as Copasi 

not yet supports links eg. to SMART protein interaction database. 
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THE RAS1 COLOCALIZATION MODEL 
In other organisms, Ras1 seems not only to localize but also to activate its effector. 

[61,98–101] In pombe however Ras1 binding does not activate Byr2. [52] The idea in 

this model is to show, that concentrating two otherwise also active proteins by 

colocalization can be sufficient to deliver a specific, signal triggered response. The 

concept is detailed below. 

Assume two compartments, cytoplasm with a volume of 10 (arbitrary unit) and a 

membrane compartment with a volume of 1 (arbitrary unit). Assume two reactants 

Substrate and Enzyme that produce Substrate ACTIVE and Enzyme once they collide. 

Both have the concentration of 0.5 in the cytoplasm. 

 𝑆𝑆𝑐𝑐𝑆𝑆𝑄𝑄𝑐𝑐𝑝𝑝𝑉𝑉𝑐𝑐𝑝𝑝  +  𝐸𝐸𝑐𝑐𝐸𝐸𝐸𝐸𝑚𝑚𝑝𝑝 =  𝑆𝑆𝑐𝑐𝑆𝑆𝑄𝑄𝑐𝑐𝑝𝑝𝑉𝑉𝑐𝑐𝑝𝑝 𝑚𝑚𝐴𝐴𝐴𝐴𝐴𝐴𝑉𝑉𝐸𝐸  +  𝐸𝐸𝑐𝑐𝐸𝐸𝐸𝐸𝑚𝑚𝑝𝑝 (1.3.)  
Assume that RasACTIVE localizes both reactants to the membrane compartment, thereby 

concentrating them locally. 

 𝑚𝑚𝑉𝑉𝑄𝑄 𝑚𝑚𝐴𝐴𝐴𝐴𝐴𝐴𝑉𝑉𝐸𝐸   +  𝑆𝑆𝑐𝑐𝑆𝑆𝑄𝑄𝑐𝑐𝑝𝑝𝑉𝑉𝑐𝑐𝑝𝑝  =  𝑚𝑚𝑉𝑉𝑄𝑄 𝑚𝑚𝐴𝐴𝐴𝐴𝐴𝐴𝑉𝑉𝐸𝐸  +  𝑆𝑆𝑐𝑐𝑆𝑆𝑄𝑄𝑐𝑐𝑝𝑝𝑉𝑉𝑐𝑐𝑝𝑝 𝑀𝑀𝐸𝐸𝑀𝑀𝑀𝑀𝑚𝑚𝑚𝑚𝑚𝑚𝐸𝐸  (1.4.)  
and 

 𝑚𝑚𝑉𝑉𝑄𝑄 𝑚𝑚𝐴𝐴𝐴𝐴𝐴𝐴𝑉𝑉𝐸𝐸   +  𝐸𝐸𝑐𝑐𝐸𝐸𝐸𝐸𝑚𝑚𝑝𝑝 =  𝑚𝑚𝑉𝑉𝑄𝑄 𝑚𝑚𝐴𝐴𝐴𝐴𝐴𝐴𝑉𝑉𝐸𝐸  +  𝐸𝐸𝑐𝑐𝐸𝐸𝐸𝐸𝑚𝑚𝑝𝑝 𝑀𝑀𝐸𝐸𝑀𝑀𝑀𝑀𝑚𝑚𝑚𝑚𝑚𝑚𝐸𝐸  (1.5.)  
 

The active substrate is the output of this system. Now describe the pathways activity 

before and after to the activation of Ras. For simplicity, assume that Ras is instantly 

converted to RasACTIVE upon stimuli; this in turn instantly localizes all Enzyme and 

Substrate molecules to the small membrane compartment. A general ODE looks like the 

following: 

 
𝑑𝑑

[𝑆𝑆𝑐𝑐𝑆𝑆𝑄𝑄𝑐𝑐𝑝𝑝𝑉𝑉𝑐𝑐𝑝𝑝 𝑚𝑚𝐴𝐴𝐴𝐴𝐴𝐴𝑉𝑉𝐸𝐸]
𝑑𝑑𝑐𝑐

 

=  𝑉𝑉𝑐𝑐𝑣𝑣𝑐𝑐𝑚𝑚𝑝𝑝 ∗  [𝑆𝑆𝑐𝑐𝑆𝑆𝑄𝑄𝑐𝑐𝑝𝑝𝑉𝑉𝑐𝑐𝑝𝑝]  ∗ [𝐸𝐸𝑐𝑐𝐸𝐸𝐸𝐸𝑚𝑚𝑝𝑝]  

∗  𝑝𝑝𝑝𝑝𝑉𝑉𝑐𝑐𝑐𝑐𝑝𝑝𝑐𝑐𝑐𝑐_𝑝𝑝𝑉𝑉𝑝𝑝𝑉𝑉𝑚𝑚𝑝𝑝𝑐𝑐𝑝𝑝𝑝𝑝 

(1.6.)  

 

The equation can be simplified by setting the constant reaction parameter to 1. So the 

bimolecular reaction prior to activation looks: 

 𝑑𝑑[𝑆𝑆𝑐𝑐𝑆𝑆𝑄𝑄𝑐𝑐𝑝𝑝𝑉𝑉𝑐𝑐𝑝𝑝 𝑚𝑚𝐴𝐴𝐴𝐴𝐴𝐴𝑉𝑉𝐸𝐸]/𝑑𝑑𝑐𝑐 =  10 ∗  [0.5]  ∗ [0.5]  ∗  1 =  2.5  (1.7.)  
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is the initial rate of activation. After the activation, when substrate and enzyme are both 

completely re-localized: 

 

 𝑑𝑑
[𝑆𝑆𝑐𝑐𝑆𝑆𝑄𝑄𝑐𝑐𝑝𝑝𝑉𝑉𝑐𝑐𝑝𝑝 𝑚𝑚𝐴𝐴𝐴𝐴𝐴𝐴𝑉𝑉𝐸𝐸]

𝑑𝑑𝑐𝑐
 =  1 ∗  [5]  ∗ [5]  ∗  1 =  25  (1.8.)  

is the initial rate of activation. This means the rate of activation of this bimolecular 

reaction is one fold increased upon relocalization.  

Now let’s see what happens if there is a monomolecular deactivation of substrate. (In 

biological sense, it can be bimolecular when e.g. catalyzed by a homogenously 

distributed phosphatase). The rate here depends on the amount of active substrate, not 

the concentration! Let us see the simplest case: there is a pool of active substrate (no 

production as above) and no inactive substrate. Then: 

 
𝑑𝑑

[𝑆𝑆𝑐𝑐𝑆𝑆𝑄𝑄𝑐𝑐𝑝𝑝𝑉𝑉𝑐𝑐𝑝𝑝]
𝑑𝑑𝑐𝑐

 =  𝑉𝑉𝑐𝑐𝑣𝑣𝑐𝑐𝑚𝑚𝑝𝑝 ∗  [𝑆𝑆𝑐𝑐𝑆𝑆𝑄𝑄𝑐𝑐𝑝𝑝𝑉𝑉𝑐𝑐𝑝𝑝 𝑚𝑚𝐴𝐴𝐴𝐴𝐴𝐴𝑉𝑉𝐸𝐸 ]  ∗ [𝑃𝑃ℎ𝑐𝑐𝑄𝑄𝑝𝑝ℎ𝑉𝑉𝑐𝑐𝑉𝑉𝑄𝑄𝑝𝑝]  

∗  𝑝𝑝𝑝𝑝𝑉𝑉𝑐𝑐𝑐𝑐𝑝𝑝𝑐𝑐𝑐𝑐_𝑝𝑝𝑉𝑉𝑝𝑝𝑉𝑉𝑚𝑚𝑝𝑝𝑐𝑐𝑝𝑝𝑝𝑝2 
(1.9.)  

Deactivation prior to activation, simplifying by setting the constant reaction parameter 

and the equally distributed phosphatase to 1 (also a parameter): 

 𝑑𝑑
[𝑆𝑆𝑐𝑐𝑆𝑆𝑄𝑄𝑐𝑐𝑝𝑝𝑉𝑉𝑐𝑐𝑝𝑝]

𝑑𝑑𝑐𝑐
 =  10 ∗  [0.5]  ∗ [1]  ∗  1 =  5  (1.10.)  

is the initial rate of deactivation. Deactivation after the activation: 

 𝑑𝑑
[𝑆𝑆𝑐𝑐𝑆𝑆𝑄𝑄𝑐𝑐𝑝𝑝𝑉𝑉𝑐𝑐𝑝𝑝]

𝑑𝑑𝑐𝑐
 =  1 ∗  [5]  ∗ [1]  ∗  1 =  5 (1.11.)  

is the initial rate of deactivation.  

It shows that the deactivation, or a monomolecular reaction is not affected by 

relocalization!  It means the speed of approaching the steady state is much higher. But is 

the steady state value itself is different? Surely, since an unchanged deactivation (Eq. 

15) with a faster activation (Eq. 11 vs. 12) leads to an elevated steady state. This is the 

basic idea, how a colocalization step could switch the system to a more efficient state.  

The aim was to build simplistic top-down model to check whether a simple 

colocalization (concentration) step of two otherwise unchanged components (Byr2 and 

Cdc42-Scd1-Scd2-Shk1 complex) can describe the observations. The aim was to 
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minimize the number of variables while describing the spatial role of Ras1 correctly.  If 

the model can describe the data correctly, it can support the hypothesis that the only 

role of Ras1 is to colocalize two interacting components, without affecting their activity. 

The model principally encodes the Ras1 mediated crosstalk of the two main branches of 

the pathway, TRAB and MOB. See: Figure 17 

IMPLEMENTATION 
A strongly reductionist version of the pathway was implemented as a two-compartment 

model in Copasi. A graphical interpretation of the model is presented in Figure 33. 

 

FIGURE 33:  REACTION DIAGRAM OF THE RAS-COLOCALIZATION MODEL.  

The model consists of 11 species and 15 reactions, compared to the 29 species 52 

reactions of the full-scale model. One could argue that this model is still moderately 

complex, and this is certainly true. The reason why it cannot be further simplified is the 

relatively complex data (rich Spk1 dynamics) and the number of variable-states and 

transport-reactions introduced by compartment modeling. 

The model variables and parameters do not correspond to concrete proteins or their 

properties, rather to “pathway-chunks”. These chunks include the “Ras1 and everything 

upstream”, denoted by Ras; the “Cdc42-Scd1&2-Shk1 complex” named MOB; and 

“MAPK-cascade + Ste11” called TRAB.  What happens is that COT is activated by 

Pheromone, which itself is induced upon a starvation signal. Active Ras1 colocalizes the 
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cytoplasmic MOB and TRAB into the small membrane compartment thereby enhancing 

the reaction among them. The active substrate (TRAB_active) is then transported back 

to the cytoplasm, where it triggers the downregulation. Cytoplasmic TRAB_active is the 

pathway output, this is fitted to the Spk1_pp dataset. 

RESULTS AND DISCUSSION 
The main idea was to provide support for the hypothesis regarding the function of Ras 

by modeling. The purposeof the model was to reproduce the key features of 

transcriptional response to pheromone, not to build a complete and elaborate model of 

the system. Most importantly, the model reproduces the data, as shown in Figure 34. 

The result supports that colocalizing role of Ras1 is sufficient to describe the activity of 

the transcriptional branch.  

 

FIGURE 34: SPK1 ACTIVITY (BLUE) FITTED TO THE FAKE DATASET (RED CROSSES) IN THE RAS COLOCALIZATION MODEL. 
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FIGURE 35: SIMULATION RESULTS OF THE RAS COLOCALIZATION MODEL ON A LONGER TIMESCALE. A:  SPK1 ACTIVITY 
ONLY IN SEPARATE SIMULATIONS SHOWS THAT EARLIER OR LATER START OF STARVATION DOES NOT AFFECT PHOSPHO-
SPK1 DYNAMICS, B: BEHAVIOR OF ALL PROTEINS WITH STARVATION AT 100H. 

The compartmentalization is an additional layer of complexity, and since there are 

many vague parts regarding the full pathway structure, this concept is not directly 

implemented as a part of the full scale model. The mechanism is nevertheless present in 

the full scale model in a form of an approximation. It is assumed that the difference in 

volume is at least two magnitudes; if so; we can neglect the process in the cytoplasm (as 

being 100x-slower). This is a strong assumption, which should definitely be confirmed 

before we can achieve a consolidated picture of the pathway. In the full model, instead 

of treating compartments with respective volumes and the reaction rate separately, the 

chance of passive -> active state transition is lumped into one parameter. This 

parameter stands for the product of the volume * (volume independent) enzyme activity. 

This simplifies the representation to mass action equation. 

Parameter identifyability was tested with 250 Levenberg-Marquardt optimization runs 

initiated at random points in parameter space. In fits not 5% worse than the best fit, 4 

parameters were completely identified (a single value), another 4 were well identified 

(barely differ more than a magnitude), whereas 7 were not identified, although their 

values were not spread over the whole parameter range. See modeling supplement for 

results.  
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MODELS FOR SUBSEQUENT ACTIVATION PEAKS 
At the beginning of the project it was unclear what starvation actually induces the 

system. It was known to induce transcription, but it was unknown whether it causes 

Spk1 activity. Spk1 activation could be direct or indirect, through the transcription of 

pathway-components or their regulators.  

I noticed that the Spk1 activation profile contains an early side peak. It is rather small; 

therefore my collaborators considered it as a result of experimental noise. However I 

found it in almost all datasets. See the western blot curves before the main peak in: 

Time course data and cell morphology. Two-phase response of the pheromone 

response was never reported before, and we could not explain it with the initial concept 

of pathway activation: Figure 2. I tried to explain it with different hypotheses. Two, 

literature- and data-consistent hypotheses could be formulated. The hypotheses 

consider only the dual activation, not how it is downregulated. Later it was supported 

by the results of Full Scale Model Mark I: a single common downregulator is enough to 

repress both peaks at different times.  

Simplified versions of the hypotheses were translated into ODE models. The models 

contained 9 variables, 10 reactions and 10 parameters; model files can be found in 

modeling supplementary. To test whether they can at least qualitatively capable of dual 

activation, they were fitted to a set of points representing an exaggerated dual 

activation. The reason why the models were not fitted to the real dataset is discussed at 

Figure 29 in section:  Model - Mark II.  

MODEL 1: DIFFERENT ACTIVATORS MODEL 
The most plausible idea for dual peaking is that the first peak is caused by starvation, 

and the second by pheromone. In this model N-starvation triggers M-factor production. 

M-factor stimulates P-cells who secrete P-factor in turn13

Figure 36

. P-factor in turn stimulates the 

modeled M-cells.  This delayed activation by P-factor may be responsible for the 2nd 

peak. The concept is schematically depicted in . In the model though, it was 

depicted as a delayed self activation. The self activation is a reasonable simplification of 

reality, where two, otherwise mostly identical systems cross-activate each other. 

                                                        
13 Alternatively, P-cells secrete pheromone independently of M-cells, only initiated by 
starvation. This makes no difference for the decisive experiment. 
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It was believed in the pombe community that N-starvation only prepares the pathway 

for signaling by cell-cycles arrest at G1 and the transcription of components, but not by 

activating Spk1. p 291 in [12] and Kayoko Tanaka personal communications.  The 2nd 

model implemented this idea. 

 

FIGURE 36:  ALTERNATIVE MODELS FOR THE INDUCTION OF SPK1. THE FIRST MODEL GENERATES ONLY ONE PEAK IN 
“STARVATION ONLY” EXPERIMENTS, WHEREAS THE 2ND HYPOTHESIS GENERATES ZERO. WE OBSERVED ONE ACTIVATION 
PEAK. 

MODEL 2: SELF-SENSITIZATION MODEL 
The second hypothesis bases on the classical assumption in which starvation does not 

result in Spk1 activation. In this model a single activation is considered: Pheromone. In 

the model, it is switched from 0 to 1 (as starvation in the previous). This causes the first 

activation peak. The second round of activation happens by the sensitization of the PW, 

namely that a positive regulator is transcribed upon this initial PW activation, which in 

turn activate the transcriptional branch, just as pheromone does. Functionally, in this 

model the role of the 2nd peak of Spk1 activity is kind of commitment of the cell to the 

same input rather a stronger answer to a stronger external stimulus. In the previous 

model, the commitment for mating can be interpreted on the cell culture level and not on 

the level of the individual cell. Figure 36 panel B depicts one concrete molecular 

hypothesis about a self-sensitizing model. At least six other positive feedbacks exist in 

the pathway. The model is not specific about them. 

RESULTS AND VALIDATION TRIAL  
The simplistic ODE implementation of the two models is practically identical as both 

models make use of a delayed positive feedback to generate the 2nd peak. Both models 
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could describe the observation. However biologically there is an important difference 

between them. In the second case, the feedback is within the cell, whereas in the first 

case the feedback is realized by the cross stimulation of opposite sex cells in the culture. 

This gives us the chance to interrupt this feedback in one model, but not in the other. By 

removing opposite sex cells from the culture, there would be no second activation peak 

in the 1st model and absolutely no stimulation in the 2nd model. My collaborators 

performed the experiment and indeed found a small activation at 4 hours not followed 

by the typical big peak around 7-9 hours. This result is consistent with the first model of 

different activators. A control experiment for the finding could be done with a strain 

with a non-functional Spk1 protein. If the 1st small peak is present, but the 2nd bigger is 

missing, than indeed subsequent activations cause the dual peaks. 

Although it seemed that the used h- strain senses nitrogen starvation only, since M-cells 

only express P-factor receptor (along with M-factor production) after N-starvation. 

Some colleagues shared their concerns, that M-factor receptor [19] is still in the 

genome, and we cannot exclude the possibility that it is unspecifically expressed. If so, 

the cells would sense the M-factor, which may generate the basal signal. For this reason 

a receptor eliminated strain is created and the experiment is planned to be repeated. 

Parameter identifyability was tested with 100 Levenberg-Marquardt optimization runs 

initiated at random points in parameter space. In fits not 5% worse than the best fit, 5 

parameters were completely identified (a single value), another 4 were well identified 

(barely differ more than a magnitude) and 1 parameter was spread over a bit more than 

two magnitudes. Remark: Many other hypotheses are also possible, which are not 

detailed here, but these either turned out to contradict previous findings, or do not 

make sense biologically. For instance a starvation induced self-sensitization (and double 

peak) could be possible, but it would mean that Spk1 is primarily functions as a 

starvation sensor, which is not sensible in light of previous research. Our measurements 

also refused this possibility. Also one should be aware that the side-peaks may only 

appear in specific experimental setups, even if they are not artifacts. Cells may behave 

differently, because the proportion of mating cells can vary or stress can be different. 

Nevertheless the fact that such peak appears at some condition already gives some 

insight to the pheromone response.  
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MAPK MODELS  
…for the likely position of a negative feedback 

ALTERNATIVES IN NEGATIVE REGULATION 
There are several known negative regulators known in the system: Sxa2, Rgs1, Gap1, 

Rad24, Rad25, Pmp1 and Pyp1. The data shows that the signal is downregulated after a 

transient peak (see: Time course data and cell morphology).  To produce such an 

overshoot before downregulation, a delay in the negative feedback is necessary. On the 

time scale of several hours it is reasonable to assume that the downregulation happens 

somehow involving transcription. 

Direct regulation 
Downregulation of a pathway can be direct, when a negative pathway regulator is 

transcribed, or a pathway component/positive regulator is repressed during pathway 

activity14

Indirect regulation 

. No transcriptional silencing of any positive regulator is discovered in the 

genome wide expression study [31], therefore we can relatively safely exclude this 

possibility. Likewise, Ste11 is found to work as a transcriptional enhancer. 

Alternatively, regulation could follow an indirect scheme. In this case the regulators’ 

expressions do not change, but an enzyme is expressed or suppressed, which then post-

transcriptionally regulates a regulator. Since I found no sign of any indirect regulation 

under transcriptional role, I concentrate on direct regulation. Still indirect regulation 

cannot be excluded from the possibilities, as new function of known proteins is often 

found.  

Transcriptional and translational regulation 
In recent years it became a quite popular finding, that proteins are not only regulated 

transcriptionally, but also translationally. Although this is a possibility, I found that in 

pombe the best predictor of protein concentration is still mRNA level. Protein isoelectric 

point, protein mass, ribosome occupancy, relative poly(A) length, relative PolII 

occupancy, or mRNA half-life showed much worse correlation to protein levels. (See: 

Genome wide protein expression data and data supplement). It is exactly what others 

                                                        
14 Increased degradation of specific proteins is also a theoretical possibility, but there is 
no sign for such specific proteases. 
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found in mammalian cells. Therefore I acknowledge mRNA level as an acceptable 

estimate of protein counts, and disregard translational regulation. 

TRANSCRIPTIONALLY CONTROLLED REGULATORS  
Using the online gene expression database of the Bähler Lab15

  

, I found that only two 

negative regulators, Sxa2 and Rgs1 are upregulated. See also: [9,102]. These therefore 

fulfill the criteria to generate an overshoot (delayed downregulation). Sxa2 is a protease 

degrading pheromone, and Rgs1 is a “G-protein Activating Protein”, it enhances the 

GTPase activity of Gpa1. 

Collaborators previously tested the knockout of Gap1, and Sxa2 and both strains still 

undergo delayed downregulation. Sxa2 is a bit special, because it almost does not 

downregulate in the first 24 hours. However, in terms of late sustained activity, this is 

very different from Byr1.DD which does not downregulate even in 36 hour 

measurements. Morphology of the cells is also strikingly different, Sxa2 is very similar 

to Ras.Val macroscopic phenotype, and does not resemble Byr1.DD cells. Rgs1 knockout 

has still to be tested, but it is anticipated by experimentalists to yield similar results as 

Sxa2-knockouts as their morphology is very similar. [9,102] From these results it seems 

that the major regulatory feedback loop is still missing.  

Negative regulation upstream of Ras is unlikely, since downregulation deficient Ras.Val 

strains show almost intact or even stronger downregulation. If the downregulation 

would happen upstream of Ras.Val, it would contradict its molecular phenotype, as 

Ras.Val molecule is thought to retain its activity much longer. This lessens the 

probability of classical downregulation by receptor internalization or desensitization. A 

complete proof could be measuring activity in a mutant strain, harboring a fully 

constitutively active Byr2. (Strain is being designed) My collaborators hypothesize that 

the downregulator may be a specific phosphatase of Byr1 or Byr2. I tried to support or 

object this idea by dynamical modeling, and found two opposite effects, which hamper 

drawing a definite conclusion. Nevertheless I share the increasingly recognized view 

that negative results are also important to increase understanding, therefore I present 

this part of my work. 

                                                        
15 http://www.bahlerlab.info/cgi-bin/SPGE/geexview 

http://www.bahlerlab.info/cgi-bin/SPGE/geexview�
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MODELING A GENERAL MAPK MODULE WITH A DELAYED DOWNREGULATION 
 

 

FIGURE 37: GENERAL MODEL MAP1-2-3K MODEL. THE MODEL SUPPORTED THE INITIAL GUESS THAT THE FURTHER DOWN 
ONE PROTEIN FROM THE DOWNREGULATOR IS, THE MORE BLURRED SIGNAL IT RECIEVES. THEREFORE STRONG 
TRANSIENT PEAKS ARE MORE LIKELY CLOSE DOWNSTREAM OF THE REGULATOR.  NEVERTHELESS AN OPPOSITE EFFECT 
ALSO WORKS IN THE SYSTEM: THE LONGER THE FEEDBACK LOOP IS, THE MORE LIKELY AN OVERSHOOT IS. THEREFORE, 
WITH THIS SIMPLE MODEL I COULD NOT CONCLUDE WHICH IS THE LIKELY POINT OF ACTION OF THE –YET 
UNDISCOVERED- PHEROMONE PATHWAY DOWNREGULATOR. NAMING FOLLOWS THE POMBE PHEROMONE MAPK-
CASCADE. 

I created a general model of a MAPK module to see, how the overshoot depends on its 

downstream distance from the regulative step, but not on the length of the regulatory 

loop. The idea was that in a cascade of activators, each step blurs somewhat an initially 

sharp signal (not even considering stochasticity); this means the bigger the distance 

between the downregulator and the observation is, the less likely is to observe strong 

overshoots. Less likely here only means, that parameter range for the behavior is 

narrower; which does not necessarily mean that it is biologically less probable. 

I implemented the cascade depicted in Figure 37, and found that an overshoot in Spk1 

can be achieved only within a limited parameter range. This range of parameter was 

much wider for the upstream Byr1, the protein just below the downregulation. The 

model was tested for a wide range of parameters. In all cases the transient peak was 

more blurred for the more downstream species, but not always smaller.  One should 

notice that in this simple system a direct ppSpk1 -> ppByr1 negative feedback abolishes 

overshoot completely, regardless of parameters. There is no time window in direct 
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feedbacks for overshoot. (See an exemplary scan in supplementary: 

“MAPK_poz_of_phosphatase/ Length_of_regulatory_loop/”) This has the same reason 

why oscillations are impossible in two component systems. [103] Also, in case of the 

pombe pheromone pathway I am not aware of direct negative coupling in the MAPK 

module.   

 

FIGURE 38: A REPRESENTATIVE EXAMPLE OF TYPICAL ACTIVITY PROFILES. GENERALLY SPEAKING, THE FURTHER THE 
PROTEIN FROM THE REGULATOR LIES, THE SMALLER OR BROADER OVERSHOOT IS OBSERVED (BLUE->PINK->YELLOW). 
GREEN DENOTES THE STIMULUS. IT IS SWITCHED FROM 0 TO 1 AFTER 5 MINUTES. 

It was concluded that the distance from regulation has a strong negative effect on 

chance that a random parameter set results in an overshoot. Further characteristics of 

this effect, like dependence on loop size, are not investigated in this model. 

OPPOSITE EFFECT OF LOOP-LENGTH AND DISTANCE FROM POINT OF REGULATION 
In such a simple dynamical system, two forces shape the strength of the transient peak 

in opposing directions. Firstly, the longer the regulatory loop is, the more likely an 

overshoot is, since the time window between activation and downregulation is bigger, 

and so a wider range of parameters can produce an overshoot. Secondly, as we have 

shown above, the closer the protein is to the regulator of the pathway, the separate 

effect of activation and downregulation are less blurred; therefore it is more likely to 

observe an overshoot. A negative feedback on Byr1 instead of the upstream Byr2 brings 

the downregulation closer, but also shortens the regulatory loop. For this reason one 

cannot tell which protein is more likely to be target of negative regulation, given that we 
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observed a strong transient activation peak at Spk1. Still this set of in silico experiments 

highlighted two generally important features of simple, negatively coupled systems. 

Nevertheless I do not claim that these are new findings, only that they helped the 

understanding some details of this problem. Surely many classic mathematical 

textbooks have examples showing e.g. the effect of feedback loop length, although I am 

not familiar with the classic literature of mathematical biology. 

For model files, further images see, the Models Supplementary.  
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GPA1-RGS1 MODEL 
Generalization of an explanatory model for Rgs1-Gpa1 interaction 

THE GENERAL EXPLANATION OF GPA1 BEHAVIOR 
A very interesting study was published recently about the Gpa1-Rgs1 system. [104] It 

was shown that Rgs1 overexpression decreases signaling activity as expected, but 

surprisingly cells lacking Rgs1 show a decreased signal activity too. Although the 

observed behavior can easily be due to a completely different function of Rgs (e.g. a role 

related to its nuclear localization - see localization supplementary and appendix & 

[105]), I found it appealing that the current interactions can also be enough to describe 

these striking observations. It is fascinating to understand how a single protein can 

possibly act in opposing directions. Such behavior could also means that by tuning the 

Rgs1 level in an artificial setup, the system switches the behavior given to the same 

input. Such switch can be very useful in synthetic biology. Incorporation of Rgs1 into a 

constructed Gpa1-system could also promote a more distinct switch-like response to 

graded input. 

 

FIGURE 39: HIGHER RGS1 LEVELS SUPPRESS SIGNALING AT HIGHER STIMULUS LEVELS. AT THE SAME TIME THEY ALLOW 
STRONGER MAXIMAL ACTIVITY IF THE STIMULUS IS STRONG ENOUGH. THE BEHAVIOR OF 3X RGS1 IS UNEXPLAINED IN 
THE ORIGINAL PAPER, AND IT IS NOT CLEAR WHICH DYNAMICAL RELATION COULD PRODUCE SUCH BEHAVIOR. 
REPRINTED FROM SMITH ET AL.; 2009 CELLULAR SIGNALING. 

The main message of the observation is that level of stimulus or input and the level of 

Rgs1 shape the output non trivial. Figure 39 suggests the following: when the stimulus 

stimulus/Rgs1 ratio is low, the output is suppressed. When the stimulus/Rgs1 ratio 

increases the output steeply climbs up to the saturating output level. With increasing 
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Rgs-level, the switch point is shifted to the right, meaning more input is needed to 

achieve the critical input/Rgs1 quotient.  

A second effect to see is that the saturating activity increases with Rgs1 levels. The 3x 

plasmid copy dataset (dark green) does not show this relation (it should show the 

highest saturation, possibly out of the graph). Biologically this saturation is 

unexplained, but shown to be reproduced by their model.  Also notice, if the last data 

point is measured wrong, the fitted spine could also be very different than saturating.  

For what mechanical reason does it saturates low is not explained in the original paper, 

and since I was not provided with the model file upon request, I cannot tell it. My 

assumption is that this unexpected behavior arises as an effect of other parts of the 

rather complex original model. It means that this behavior rises from other reasons 

than the core Rgs-Gpa1 interaction. (There are only two reactions in their model 

catalyzed by Rgs1.) Nevertheless a simple re-implementation of the core of the model 

does yield a non-monotonic output behavior (increasing than decreasing), but cannot 

reproduce the ‘3X Rgs'- behavior. 

The core of their model is depicted in Figure 40 Panel B. Increasing Rgs1 should always 

decrease the pool of Gpa1GTP_INACTIVE. Reaction 2 & 5 both decrease this pool 

directly. The indirect positive coupling from reaction 5 (more substrate to go through r1 

-> r3 -> r4) cannot be faster than the direct consummation of Gpa1GTP_INACTIVE 

because of the mass conservation of Gpa1. Therefore the observed relation at 0x, 1x and 

2x Rgs1-levels are possible to reproduce, but results at 3xRgs1 (Figure 39 above, dark 

green) cannot be explained by principle. How the published model done that is not clear 

to me. 
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FIGURE 40: DIFFERENT MODELS FOR THE GPA1-RGS1 SYSTEM. PANEL A: THIS SCHEME DEPICTS OUR ^GENERAL 
UNDERSTANDING OF A GPA-RGS SYSTEM. THIS SYSTEM IS INCAPABLE TO PRODUCE A NON-MONOTONIC RGS1-OUTPUT 
RELATION, AS EXPLAINED IN THE ANALYTICAL SECTION. PANEL B: “SMITH AND LADDS”: RGS1 CATALYZES TWO 
REACTIONS. REACTION 2 ALWAYS DECREASE SIGNALING, BUT REACTION 5 CAN ENHANCE SIGNALING, IF THERE IS VERY 
STRONG STIMULATION, AND ALL GPA1 WILL EVENTUALLY BE STUCK AT THE  GPA1GTP-INACTIVE POOL. PANEL C: NEW 
ALTERNATIVE MODEL 1.  PANEL D: NEW ALTERNATIVE MODEL 2. THERE IS NO PRINCIPAL DIFFERENCE BETWEEN C AND D, 
THEY ARE JUST TWO CONCRETE REALIZATION OF A GENERAL CONCEPT. 

The original finding provides an explanatory model, which was found by the authors to 

be the only model describing measurements in a manually generated set of candidate 

models. This model bases on a set of assumptions that I found very fragile. Therefore 

my aim was to relax these assumptions, thereby give a generalized description. Also I 

aimed to show that alternative models with fewer assumptions could also account for 

the data.  

Firstly I looked at their rather complex model (17 reactions) and tried to identify, which 

idea gives the core of this behavior.  I found that the following assumptions could be 

generalized for other models: 

• Gpa1 can only activate one substrate per its on activation. 
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• Gpa1 has a general -but not necessarily standalone- inactive pool that is reached 
after the substrate is activated. 

These were the most important differences from the default model of G-protein cycle 

See: Figure 40, Panel A.  

ANALYTIC CONFIRMATION OF THE MINIMUM NUMBER OF STATES OF GPA1 
It was found in [104] by numerical simulations that the default Gpa1-Rgs1 mechanism 

is insufficient to describe the observed behavior. Here I show analytically why it is so. 

First we have to look at the activation mechanism of G-proteins. They activate their 

substrates by binding, not by covalent modification.  This means the substrate is active 

as long as the G-protein is bound. 

 

𝐴𝐴𝑐𝑐𝑉𝑉𝑐𝑐𝑐𝑐𝑝𝑝𝑉𝑉𝑝𝑝_𝑄𝑄𝑐𝑐𝑆𝑆𝑄𝑄𝑐𝑐𝑝𝑝𝑉𝑉𝑐𝑐𝑝𝑝 +  𝐺𝐺_𝑝𝑝𝑝𝑝𝑐𝑐𝑐𝑐𝑝𝑝𝑝𝑝𝑐𝑐_𝐺𝐺𝐴𝐴𝑃𝑃 

→  𝑚𝑚𝑐𝑐𝑐𝑐𝑝𝑝𝑉𝑉𝑝𝑝_𝑄𝑄𝑐𝑐𝑆𝑆𝑄𝑄𝑐𝑐𝑝𝑝𝑉𝑉𝑐𝑐𝑝𝑝_𝐺𝐺_𝑝𝑝𝑝𝑝𝑐𝑐𝑐𝑐𝑝𝑝𝑝𝑝𝑐𝑐_𝐺𝐺𝐴𝐴𝑃𝑃_𝑐𝑐𝑐𝑐𝑚𝑚𝑝𝑝𝑣𝑣𝑝𝑝𝑐𝑐

→  𝐴𝐴𝑐𝑐𝑉𝑉𝑐𝑐𝑐𝑐𝑝𝑝𝑉𝑉𝑝𝑝_𝑄𝑄𝑐𝑐𝑆𝑆𝑄𝑄𝑐𝑐𝑝𝑝𝑉𝑉𝑐𝑐𝑝𝑝 +  𝐺𝐺_𝑝𝑝𝑝𝑝𝑐𝑐𝑐𝑐𝑝𝑝𝑝𝑝𝑐𝑐_𝐺𝐺𝐺𝐺𝑃𝑃 
(1.12.)  

The known behavior of GAP16

Figure 40

 proteins is that they catalyze a GTP-hydrolytic step by 

activating the G-protein’s internal GTPase activity, here the 2nd reaction. The general 

activation scheme of G-protein is depicted in  Panel A. [106] By transforming it 

to a set of ODE-s I show that this scheme is insufficient to describe a non monotonic 

relation between Rgs level and signaling output. I simply use hereafter ‘Gpa1’ for the 

GDP bound form! 

System of differential equations: 

 𝑑𝑑
[𝑆𝑆𝑐𝑐𝑝𝑝𝑚𝑚𝑐𝑐𝑣𝑣𝑉𝑉𝑐𝑐𝑐𝑐]

𝑑𝑑𝑐𝑐
 =  𝑐𝑐𝑐𝑐𝑐𝑐𝑄𝑄𝑐𝑐𝑉𝑉𝑐𝑐𝑐𝑐: 𝑐𝑐1 (1.13.)  

 

 𝑑𝑑
[𝑚𝑚𝑉𝑉𝑄𝑄1]
𝑑𝑑𝑐𝑐

=  𝑐𝑐𝑐𝑐𝑐𝑐𝑄𝑄𝑐𝑐𝑉𝑉𝑐𝑐𝑐𝑐: 𝑚𝑚𝑉𝑉𝑄𝑄1     (1.14.)  

 

 
𝑑𝑑

[𝑆𝑆𝑐𝑐𝑆𝑆𝑄𝑄𝑐𝑐𝑝𝑝𝑉𝑉𝑐𝑐𝑝𝑝]
𝑑𝑑𝑐𝑐

=  𝐺𝐺𝑝𝑝𝑉𝑉1𝐺𝐺𝐴𝐴𝑃𝑃 − 𝑆𝑆𝑐𝑐𝑆𝑆𝑄𝑄𝑐𝑐𝑝𝑝𝑉𝑉𝑐𝑐𝑝𝑝𝑆𝑆𝐴𝐴𝑚𝑚𝐴𝐴𝑚𝑚𝐺𝐺 ∗  𝑚𝑚𝑉𝑉𝑄𝑄1 ∗  𝑘𝑘4 

−  𝐺𝐺𝑝𝑝𝑉𝑉1𝐺𝐺𝐴𝐴𝑃𝑃 ∗  𝑆𝑆𝑐𝑐𝑆𝑆𝑄𝑄𝑐𝑐𝑝𝑝𝑉𝑉𝑐𝑐𝑝𝑝 ∗  𝑘𝑘3 
(1.15.)  

 

                                                        
16 Rgs1 is a G-protein activating protein (a GAP). 
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𝑑𝑑

[𝐺𝐺𝑝𝑝𝑉𝑉1]
𝑑𝑑𝑐𝑐

=  𝐺𝐺𝑝𝑝𝑉𝑉1𝐺𝐺𝐴𝐴𝑃𝑃 ∗  𝑚𝑚𝑉𝑉𝑄𝑄1 ∗  𝑘𝑘2 +  𝐺𝐺𝑝𝑝𝑉𝑉1𝐺𝐺𝐴𝐴𝑃𝑃 − 𝑆𝑆𝑐𝑐𝑆𝑆𝑄𝑄𝑐𝑐𝑝𝑝𝑉𝑉𝑐𝑐𝑝𝑝𝑆𝑆𝐴𝐴𝑚𝑚𝐴𝐴𝑚𝑚𝐺𝐺 

∗  𝑚𝑚𝑉𝑉𝑄𝑄1 ∗  𝑘𝑘4 
(1.16.)  

 

 
𝑑𝑑

[𝐺𝐺𝑝𝑝𝑉𝑉1𝐺𝐺𝐴𝐴𝑃𝑃 ]
𝑑𝑑𝑐𝑐

=  𝐺𝐺𝑝𝑝𝑉𝑉1 ∗  𝑐𝑐1 ∗  𝑘𝑘1 −  𝐺𝐺𝑝𝑝𝑉𝑉1𝐺𝐺𝐴𝐴𝑃𝑃 ∗  𝑚𝑚𝑉𝑉𝑄𝑄1 ∗  𝑘𝑘2 

−  𝐺𝐺𝑝𝑝𝑉𝑉1𝐺𝐺𝐴𝐴𝑃𝑃 ∗  𝑆𝑆𝑐𝑐𝑆𝑆𝑄𝑄𝑐𝑐𝑝𝑝𝑉𝑉𝑐𝑐𝑝𝑝 ∗  𝑘𝑘3 
(1.17.)  

 

 
𝑑𝑑

[𝐺𝐺𝑝𝑝𝑉𝑉1𝐺𝐺𝐴𝐴𝑃𝑃 − 𝑆𝑆𝑐𝑐𝑆𝑆𝑄𝑄𝑐𝑐𝑝𝑝𝑉𝑉𝑐𝑐𝑝𝑝𝑆𝑆𝐴𝐴𝑚𝑚𝐴𝐴𝑚𝑚𝐺𝐺]
𝑑𝑑𝑐𝑐

= 

𝐺𝐺𝑝𝑝𝑉𝑉1𝐺𝐺𝐴𝐴𝑃𝑃 ∗  𝑆𝑆𝑐𝑐𝑆𝑆𝑄𝑄𝑐𝑐𝑝𝑝𝑉𝑉𝑐𝑐𝑝𝑝 ∗  𝑘𝑘3 −  𝐺𝐺𝑝𝑝𝑉𝑉1𝐺𝐺𝐴𝐴𝑃𝑃 − 𝑆𝑆𝑐𝑐𝑆𝑆𝑄𝑄𝑐𝑐𝑝𝑝𝑉𝑉𝑐𝑐𝑝𝑝𝑆𝑆𝐴𝐴𝑚𝑚𝐴𝐴𝑚𝑚𝐺𝐺 ∗  𝑚𝑚𝑉𝑉𝑄𝑄1 

∗  𝑘𝑘4 

(1.18.)  

 

Now see, how the focal variables behave if Rgs1 is increased 0->∞. 

• Stimulant = NA     
• Rgs1  = ->>∞; increases by definition 
• Gpa1  = ->> ∞; monotonically increases, since Rgs1 only appears in 

the positive part of the equation.  

 In other words, Rgs1 catalyzed reactions decrease both other pools of Gpa1: Gpa1GTP 

and Gpa1GTP-SubstrateFIRING. So, if the above Gpa1 monotonically increases, the sum 

of Gpa1GTP and Gpa1GTP-SubstrateFIRING variables must decrease to fulfill the Gpa1 

mass conservation relation: Gpa1 + Gpa1GTP + Gpa1GTP-SubstrateFIRING = a fixed 

pool; let us set it to 1. 

• Gpa1GTP + Gpa1GTP-SubstrateFIRING = ->> 0; monotonic decrease. 

We are interested in the firing complex, which produces the output signal of this system. 

Rgs catalyzes the disassembly of the active complex, but is it possible that it indirectly 

increases the pool of it? If the sum of (Gpa1GTP + Gpa1GTP-Substrate) decreases, we 

have the following possibilities depending of the choice of parameter set:  

• Either Gpa1GTP-Substrate itself  decreases, this means Rgs always decreases output 
activity, 

• or Gpa1GTP decreases, but this variable stays in the only positive term in the 
equation of d[Gpa1GTP-Substrate]/dt and all other numbers stay constant, 
therefore Rgs1 decreases output activity again. 
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• Finally it may decrease both Gpa1GTP and Gpa1GTP-Substrate; this again states the 
Rgs1 has a negative role on signaling output. 

So in systems where Gpa1 has only two states, a firing-GTP-state, and an inactive state, 

output and Rgs has a monotonic negative correlation: If Rgs is increased, the output 

necessarily decreases. Now the above conclusion is not necessarily true in more 

complex systems where Gpa1 can only activate a single substrate, and has fourth, 

inactive pool.  

THE ORIGINAL MODEL 
The idea was proposed in [104]. The core of their proposal is depicted in Figure 40 

Panel B. They found this scheme by trying different models and finally arriving to one 

that can describe the data.  Their proposed model bases on a set of assumptions that 

were never proven, and I found them very peculiar in a biochemical sense. Assumptions 

implicitly or explicitly made by the authors: 

• Rgs1 cannot deactivate the G-protein-Substrate complex by GTP hydrolysis; it can 
only act on unbound Gpa1. This is contrary to the generally known behavior of 
GAP’s: they activate G-proteins internal GTPase activity to release the substrate. 

• Gpa1 unbound to any partners have a 3rd, "inactive” state, which is independent of 
its GTP/GDP state. One can assume two GTP-bound conformation, where the 2nd 
inactive conformation is reached (in significant proportion) only after the release 
the substrate. Gpa1 is protein of moderate size (46.2 KDa), and there is no evidence 
for two stable conformational GTP-bound state. 

• This inactive state can be rescued by simple GTP hydrolysis. For this reason, the 
inactive state cannot have covalent modification. (Surely, one can assume further 
proteins that very rapidly remove this covalent modification only after the GTP 
hydrolysis -  another layer of complication) 

• Gpa1-Substrate disassembly is independent of Gpa1’s GDP/GTP state. This is the 
other side of assumption 1, and it is similarly atypical.  
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ALTERNATIVE MODELS 
My idea was to show that none of these assumptions are necessary to account for the 

dual role of Rgs, except two core assumptions: 

• Gpa1 can only activate one substrate per it’s on activation.  
• Gpa1 has an inactive pool that is reached after the substrate is activated.  

Additionally the following assumption is made to show a concrete alternative 

mechanism that can describe the observations: 

• Gpa1 is only pre-activating its substrate by changing its conformation, but a second 
step is necessary for a fully active/firing substrate.  

This second activation can be by the binding of another effector (a complex formation), 

or it can also be that Gpa1-bound substrate is e.g. phosphorylated by itself or another 

enzyme. In mathematical terms these steps are very similar (assuming irreversible 

steps), and the ‘complex-formation’ alternative is implemented for simulation. In the 

new model Gpa1 is still trapped in an inactive form, but it is not a new standalone 

conformational change, rather Gpa1 is trapped in its own effector-complex.  The model 

is depicted in Figure 40 Panel C &D. 

Although the following statements are nothing different from the default behavior of 

GAP-s, for completeness, one must consider that the following assumptions are also 

made: 

• Rgs1 can deactivate the G-protein-Substrate complex (default behavior) 
• Gpa1-Substrate complex dissociates only/mostly by GTP hydrolysis of Gpa1. 

RESULTS 
I reproduced the original model in a simple form, and simulated it with different levels 

of Rgs1. (See the original model scheme in the supplementary of the publication: [104] 

also in modeling supplement) This simplified original model could reproduce the 

bimodal output behavior. The model is not parameterized with data; therefore concrete 

numerical values are omitted from description. Further details and simulation results 

are in: modeling supplement/Gpa1-Rgs1_model. 
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The simplified Smith and Ladds model 
The substrate level can be treated as constant or variable in the simulation; both are 

tested in simulation, and did not change the outcome. Here for reasons of simplification 

we treat it as constant. 

 

FIGURE 41: PARAMETER SCAN OVER DIFFERENT RGS1 LEVELS AT A CONSTANT STIMULUS. THE STEADY-STATE LEVEL OF 
FIRING COMPLEX INITIALLY INCREASES, BUT LATER DECREASES (IN LIGHT PURPLE), THOUGH THE MAXIMAL ACTIVITY 
(PEAK VALUE) MONOTONICALLY DECREASES FOR A SINGLE STIMULATION LEVEL (DEEP PURPLE). 

 

FIGURE 42: 10 SIMULATIONS OF OUTPUT DYNAMICS WITH INCREASING RGS1 LEVEL SHOW HOW THE DYNAMIC CHANGES. 
INITIALLY THE PEAK ACTIVITY REMAINS CONSTANT, AND THE STEADY STATE LEVEL OF ACTIVE EFFECTOR INCREASES. 
FURTHER INCREASE OF RGS1 DECREASES THE PEAK AND THE STEADY STAT VALUE IN PARALLEL.  

The new alternative model 
The alternative model depicted in Panel C of Figure 40 was also implemented. The 

simulation of this model at constant stimulus level and different Rgs1 levels yielded a 

similar, but not exactly the same observation. The parameter scan highlighted that in 

http://www.deeppurple.com/�
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this setup the steady state is always reached without an overshoot at any levels of 

signaling. Overshoot can still be possible at other parameter sets. 

 

FIGURE 43: HISTOGRAM OF 1000 SIMULATIONS SHOW THAT SYSTEM OUTPUT INITIALLY INCREASES, LATER DECREASE 
WITH INCREASING RGS1 ACTIVITY/CONCENTRATION. 

 

FIGURE 44: TIME COURSE OF 25 SIMULATIONS WITH INCREASING RGS1 LEVEL SHOWS SIMILAR BEHAVIOR TO THE 
ORIGINAL MODEL WITH THE EXCEPTION THAT NO TRANSIENT PEAK APPEARS BEFORE STEADY STATE. 
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Discussion 
An interesting hypothesis was proposed in an earlier work to explain the observed dual 

role of Rgs1 only considering Rgs1’s known interaction with Gpa1, and not assuming 

completely new functions to it. I provided an alternative model for the Gpa1 activation 

cycle, that base upon a smaller set of assumptions than the original model.  

One must be aware, that this alternative model is also just a hypothesis unproven, so 

one could argue that this is no improvement in understanding of pombe pheromone 

pathway. My sole point was to relax the original requirements of an interesting 

hypothesis, and highlight the core of this mechanism that produces non-monotonic 

behavior. The simplified core motif that I achieved may appear in other biological or 

artificial systems. Similarly this model provided an interesting insight, how G-proteins 

with an inactive pool could change the effect of GAP protein. The alternative model 

yielded further interesting result. Before modeling the system I was wondering whether 

the release of Gpa1 from the double activated substrate complex is necessary to 

reproduce behavior.  I speculated no to be. It turned out that is necessary at all tested 

parameter sets.  
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CELL POLARIZATION IN PHEROMONE SIGNALING 
Successful mating requires the robust selection of the single best partner. This requires 

cellular polarization. What mechanism underlies polarization events in biology is not 

clear, and many models are proposed. An overview of models classified by the 

mechanism of spatial focusing is published recently by [93]. 

Many of these models were shown to reproduce some but not all aspects of biological 

polarization; however most of the proposed mechanisms are not clearly demonstrated 

on a molecular level. Although one could argue, having numerous models one should 

focus on validating them, I find highlighting that the currently described biological 

system can –at least- partially be sufficient for polarization also has its validity. This 

section is merely a play with thoughts, but it may serve as a source of inspiration for 

later spatial modeling. 

The idea is that the spatially asymmetric activation followed by a delayed global 

inhibition can be sufficient for shmooing site selection. This global inhibition elevates 

the response threshold so that only the highest point of excitation can pass it. This 

concept seems similar to the “Local Excitation Global Inhibition” or LEGI model 

proposed by [107], without knowing it in detail. 

In concrete biological terms, pheromone stimulus both triggers genetic- and 

morphological changes in Pombe. The transcription of negative pathway regulators is 

induced as the sum of all stimuli over the cell surface. Sxa2 and Rgs1, two negative 

regulators are expressed and secreted or spread in cytoplasm globally. These than 

globally repress signaling. 

 

FIGURE 45: SIMPLIFIED SCHEME SHOWING HOW A HOMOGENOUS NEGATIVE REGULATOR CAN HELP SHMOOING LOCUS 
SELECTION BY BIOCHEMICALLY SUBTRACTING A CONSTANT VALUE FROM A GRADIENT OF STIMULUS. 

In the hypothesized morphological response, there is just a certain pool of protein is 

available; indeed, none of the morphology branch components are transcribed in mating. 
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Typically it is assumed that polarization involves a step of commitment. After this, the 

cell executes the response whenever a certain activation threshold is passed.  

Cdc42 seems to be heavily involved in polarization in cerevisiae. [108] In a 

biochemically detailed model of Cerevisiae bud site selection, Cdc42 organizes itself into 

more stable clusters in a self-enhancing manner. [109]  In this hypothesis, a similar 

mechanism is assumed. As long as the pool of necessary proteins is distributed (or 

trapped) along the whole cell surface, the cell cannot commit for one shmooing position. 

After global negative regulators repress the answer over most of the cell surface, the 

required protein (e.g. Cdc42) becomes available in sufficient amount for the place of 

highest excitation. Six positive feedbacks exist for the pathway. These may encode 

commitment, at least for the transcriptional response. That commitment by self 

activation can correct for the decreased stimulation caused by negative regulators. 

Whether such a model could work could be tested by an ODE-based compartment 

model. The concept how such model could work is depicted in the following picture. 

 

FIGURE 46: DETAILED CONCEPT FOR A COMPARTMENT MODEL TO TEST WHETHER KNOWN COMPONENTS OF POMBE 
PHEROMONE RESPONSE CAN HELP CELL POLARIZATION. 

This time compartments describe adjacent areas on a simplified one dimensional cell 

surface. Each compartment receives a different input stimulus representing stimulation 
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by a pheromone gradient. Since the diffusion in membrane is very slow compared to the 

cytosol (See in section The 'Conservation of Spatial Information' concept (CSI)), 

transport only implemented between a globally mixed cytoplasm and the local 

membrane “boxes”. The combination of local stimulation and global repression may 

give rise to spatially focused morphological response. Since the global negative 

regulation is a transcriptional step, it can produce any level of amplification. 

This hypothesis is not proven to any level; it is nothing more than a possibility. It is 

neither implemented in a mathematical model; therefore I do not know whether the 

mechanism can indeed work as it is speculated to. Still I find it useful to think about that 

only the already proven interactions in the pathway can give rise to cellular 

polarization, without assuming any further component or interaction.   
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THE DISTANCE MEASUREMENT HYPOTHESIS 
It appeared to me that cells with strongly defective genetic activity (Byr1.DD) are still 

capable to find and attach to their partners, whereas other cells with only slightly 

altered genetic activity (e.g. gap1Δ) absolutely cannot find their partners. 

 

FIGURE 47: COMPARISON OF “MATING” MORPHOLOGY OF BYR1DD AND RAS.VAL CELLS. © EMMA KELLSALL & DR. KAYOKO 
TANAKA 

I found it also interesting why all strains deficient in common trunk negative regulators 

(gap1Δ, Ras.Val, rgs1Δ [40,102] , sxa2Δ) show very similar, but characteristic faulty 

morphology. My impression was -although many regulators exist in the pathway- that 

fine tuning is not necessary for the transcriptional program, only for the morphological 

change. I formulated this idea in a testable hypothesis. 

SHMOOING IN POMBE 
Shmooing right is a very difficult thing. Cells can grow a single shmoo of very limited 

length. Therefore cells should: 

• Find out the single best partner 
• Find out the precise direction  
• Find out its distance (only  grow shmoo if the partners is close enough) 

The best partner is probably chosen as the highest pheromone source, its direction is 

likely to be signaled through the gradient of pheromone. Timing shmoo growth is more 

difficult thing, if cells respond to too distant cell they grow a shmoo that can never reach 

the partner. If they respond only to very close cells, they may wait forever for such. 

Therefore, they have to establish how far the partner is.  

In general, one would expect that cells cannot rely on absolute concentration values, 

because population density could vary hugely, so should vary the background 

pheromone level. However it was shown that the addition of pheromone after a certain 

threshold induces shmoo growth without a gradient. [7]  Similar behavior was found in 
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cerevisiae. [110] The natural variance in background pheromone level is possibly 

magnitudes smaller than the difference between a close partner and the background, 

explaining the existence of an absolute threshold. At least such difference is suggested 

by the fact that pheromone cannot be isolated from a liquid culture. (According to 

Kayoko Tanaka’s experiences at Masuki Yamamoto’s lab). 

THE HYPOTHESIS 
This hypothesis claims that the fine tuning of the pathway activity is necessary to 

accurately time shmoo growth, but -within limits- not necessary for a functional 

transcriptional program.  A consequence of this statement is that disturbing or 

removing negative regulators in the upstream common trunk destroys the cells 

capacity to correctly establish whether the partner is close enough. 

The genetic and the morphological pathways are still coupled. This means there is no 

morphology answer without Spk1 activation, and in turn there is no Spk1 activation, if 

the morphology pathways activity is repressed upstream of Shk1. Consequently, a 

rough intervention into the pathway, i.e. knockout of any backbone component –at least 

functionally- abolishes both responses. 

SUPPORT FOR THE HYPOTHESIS 
Shmoos correctly find each other and attach even with strongly deficient 
genetic activity. 
Byr1.DD is a strain containing a significantly disturbed transcriptional program, 

whereas an intact morphology pathway. This strain show a significantly delayed, non-

downregulated Spk1 activity induced solely by starvation. Even with a so distinct 

transcriptional pattern these cells are capable to correctly find their mating partners 

and attach to them. Shmoos are generally not grown into the ‘void’. This suggests that a 

change in genetic background is necessary, but not needed to be precisely timed and 

regulated. (Pheromone is in all cases necessary for shmooing) 

Strains deficient in the common trunk grow shmoos that do not reach any 
partner 
On the other hand, all strains that have a mutation in negative regulation of the common 

trunk (sxa2Δ, Rgs1Δ, Gap1Δ, ras1Δ) show a single type of morphology, the ‘Ras.Val-class’ 

phenotype. These cells grow thick, long, linear shmoos, but they never reach a partner. 

It would still be possible that these mutations affect the transcriptional branch, and the 
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changed transcription affects the morphology in turn (see: Figure 17). However we 

could exclude this possibility with the generation of the Ras.Val & Byr1.DD strain. Since 

Spk1 activity is solely starvation induced in Byr1.DD cells (as it does not take any input 

from the upstream Byr2), we know that Ras.Val mutation only affects the morphology 

branch in this strain. So the observed morphology is only due to the mutations direct 

effect on shmooing. In fact we observed Ras.Val morphology, while –as expected- the 

Spk1 activity remained Byr1.DD. Concluding, the abnormal shmoos are solely due to the 

deregulation of the morphology response. It is known that Ras.Val is a hypersensitive 

strain, as Ras1 has a high basal activity. Still why do these cells never find their 

partners? Simply arguing a too active shmoo-building nor explains the mechanism, nor 

provides real insights.  I found two possible specific reasons to explain this.  

One explanation is that cells cannot establish the direction of the partner, and the 

shmoo is just grown in a random direction. Alternatively cells grow their shmoo (with 

decreased precision) into the direction of the steepest pheromone gradient, they only 

lose their sense of distance. In other words, cells with a deregulated morphology branch 

do not know anymore when to start growing a shmoo; on the other hand, they lost their 

ability to suppress response to weak stimuli. This means that cells more or less respond 

on a first come, first served basis; they start growing their shmoos into the direction of 

the first incoming pheromone signal (although some diminished threshold may still 

exist).  

The observation that these cells have much longer and thicker shmoos, may have 

partially independent grounds.  These mutants lost a negative regulator; therefore their 

response is stronger.  Also, partially it can be that the shmoos grow longer and thicker, 

since the cell struggles to reach its partner. These strong shmoos therefore may not be a 

cause of mating incapability, rather a consequence of it, or a side product of the 

diminished response threshold. I do not claim whether Ras.Val strains are capable of 

other steps in mating, like cell fusion. The cells may have further deficiencies besides 

locating their partner. Though the concept bases on a set of assumptions, that are not 

too hard to test. Even if the hypothesis fails, it could be a good food for thoughts. I 

designed a series of experiments to find out some basic facts about the precise 

regulation of partner localization.  
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A PLAN TO SELECT THE CORRECT HYPOTHESIS 
Based on our current observations, we do not know whether Ras.Val cells indeed can 

sense the direction of the partner, or whether they really respond to smaller 

stimulation. 

Stimulus threshold  
First, we have to find whether Ras.Val , or any other common trunk regulatory deficient 

strains indeed respond to weaker signals than the wild type cells. 

Decisive experiment: Liquid -culture and Synthetic P-factor is used for the experiment. 

WT and Ras.Val h- cultures are grown in parallel and separate samples are treated with 

each different amounts of synthetic pheromone.  At some threshold WT cells start to 

grow (undirected) shmoos. If Ras.Val cells grow shmoos at lower pheromone levels, 

they indeed have a deficiency in response threshold.  

Directed shmoo growth 
Secondly one has to prove whether the shmoos show a directional preference, or they 

are grown to random directions. 

• Decisive experiment: The working hypothesis is that Ras.Val cells can sense what 
direction the partner is. The aim of the experiment is to prove that Ras.Val cells 
shmooing direction is non-random, they are grown towards a suitable partner cell. 

A plate culture, suitable for imaging should be created with loosely spotted cell from: h+ 

Byr1.DD & ras1Δ  cells and h- Ras.Val cells. For control an equivalent plate of h+17

                                                        
17 h+ denotes P-cells, h- M-cells. 

 

Byr1.DD & ras1Δ cells and h-WT cells could serve. In both experiments, the role of 

Byr1.DD & ras1Δ P-cells, is solely producing P-factor pheromone  independently of 

anything else than starvation. The ras1Δ mutation only helps to distinguish P-cells, since 

these cells are round, and do not shmoo. 

Imaging (time lapse at best) both cultures during shmooing under light microscope 

could highlight whether both WT and Ras.Val cells grow shmoos to the direction of the 

closest h+ cells. A critical step is that the plate-culture should not be too dense, that the 

direction of the closest partner is obvious. 
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Distance measurement 
If it turns out from earlier experiments that Ras.Val cells can sense the direction, one 

could proceed further. One should than prove that Ras.Val cells are indeed deficient in 

establishing the distance of the mating partner. 

Decisive experiment: The working hypothesis is that Ras.Val cells cannot sense if a 

partner is too far, therefore they grow shmoos even if they cannot reach their partners. 

The aim is to prove that Ras.Val cells shmoo towards the partner cells, even if they are 

“out of range”. Similarly to above, a plate culture, suitable for imaging should be created 

with loosely spotted cells of:  

Sex Mutation Morphology Expected phenotype 

h- WT Small shmoos 
Grow  small shmoos only h+ cells which are within 
'shmooing-range' 

h- Ras.Val 
Long linear 
shmoos 

Grow long shmoos to the closest partner, even if it is 
far away 

h+ 
Byr1.DD & 
ras1Δ 

No shmoos, 
round cells 

Produce pheromone upon starvation, no change in 
morphology 

TABLE 4: EXPERIMENTAL SETUP TO TEST THE WHETHER RAS.VAL CELLS INDEED HAVE A DEFECT IN MEASURING THE 
PARTNERS DISTANCE. 

A critical step is again that the cell suspension should be diluted enough that suitable 

couples are placed far from each other! To precisely distinguish strains, one h- strain 

should constantly express GFP. Normal light yields sufficient fluorescent emission to 

identify these cells. For confirmation, the culture could be separated into two 

experiments: h- WT co-cultured with h+ Byr1.DD & ras1Δ and h- Ras.Val & h+ co-

cultured with Byr1.DD & ras1Δ.  
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CONCLUSION AND OUTLOOK 
I consider this project was successful from many perspectives. First of all the project 

contributed some small details to the pombe research community. Secondly, the project 

resulted in a better understanding of the pheromone response, leading to new 

experiments and new conclusions. Thirdly, I learned much about how to address 

scientific problems. Furthermore, I enjoyed being responsible for a project from the 

beginning to its end. 

Overview 

This research contributed a set of smaller details. Most of them are small advances from 

the current state of knowledge. We provided a molecular level overview of the full 

pheromone response. Surprisingly, there was no such present before. There were very 

rough representations available, concentrating mostly on the MAPK cascade and Ste11. 

Alternatively there are some studies published about the interactions or regulation of 

one or two components. Up to now there was no attempt to incorporate all available 

knowledge in one consistent frame. We presented such a complete description, and also 

validated it with in vivo experiments on its most critical points.  

Applicability of formal methods 

Another conclusion of my work was that although a wealth of formal framework exists, 

their utilization is often very limited, as they often require much better data than 

typically available. A framework is needed that could generate all possible hypotheses 

of state transition from a set of proteins, functional and physical interactions.  In this 

sense it would be similar to rule based model definition, but it would use interaction 

information to hypothesize state transitions, and not use state transitions to 

hypothesize ‘contextualized reactions’. 

Pathway induction 

The observation that all datasets show an early side peak led to the formulation of 

testable hypotheses. One explained the dual peaking of phospho-Spk1 by a single 

induction followed by positive feedback, the other with subsequent activations by 

starvation and pheromone. The decisive experiment has been performed, and favored 
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the subsequent activation hypothesis. However the experiment has to be repeated to 

ensure the conclusion. 

Role of Ras1 

It is thought in the research community that Ras1 is a kind of side activator of the 

pathway, [12], [18]. Our results shown that, although Ras1-independent activation 

exists, Ras1 is a backbone component of the pathway (Panel A in Figure 13). What the 

activator mechanism of Ras1 in is unknown. The proven function of pombe Ras1 is the 

binding, but not activating its target Byr2. There are no works to my knowledge that 

explain how this molecular function of Ras1 concretely leads to signal transduction. 

This work presents the first coherent, molecular level hypothesis supported by data-

driven modeling that provides insights in the underlying dynamical system. Beside its 

relevance in pombe, this concept –once proven- may help understanding other systems. 

In general, to my very limited knowledge, the concrete molecular effects of Ras-

homologues are not clear either.  In mammalian systems, it is currently believed, that a 

combination of activation and localization is the mechanism how Ras activates its 

effectors. [61,98–100] 

Pathway crosstalk 

Although it was known for a very long time that pheromone signal activates 

transcription and the actin reorganization in parallel, also the interaction between 

components were found [91], the crosstalk of the two pathways was never addressed 

before precisely. We have in vivo validated a proposed interaction between the 

Morphology- and the Genetic- Pathway, and subsequently used this knowledge to 

dissect what is the effect of this interplay on shmoo morphology and transcriptional 

activity. Based on this interplay we could interpret both genetic and morphological 

phenotype with concrete molecular explanations, in a series of knockout experiments. 

Earlier research on pheromone pathway was not seeking to interpret the observed 

morphology of mutant strains; descriptions often stayed with simple terms like "mating 

deficient" or "sterile". 
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Quantitative and predictive model 

Finally we developed a mathematical model that describes the three focal mutant 

strains, and upon fitting to one (Ras.Val), could predict accurately the behavior of WT 

cells, and qualitatively the behavior of the other strain (Byr1.DD). To derive further 

predictions despite parameter non-identifyability, model ensemble based methods could 

be a choice. In these, one works with a set of models that describe the data equally well 

with possibly different parameter sets. One looks for predictions that appear in all, or in 

large class of models and tries to validate these. This basically involves a cluster analysis 

of simulation results. Such a method was applied and proven to be useful in [111]. 

Critical self reflection 

One clear failure of the project is that we still have not identified the key player in 

downregulating the Spk1 signal. More attention should be drawn on that as a prominent 

regulator of dynamics. The model should also be further developed. Since the pathway 

reconstruction taken up most of the time, its development started out late. Not all the 

data is readily incorporated into the model. WT and Ras.Val absolute Spk1 

concentrations are not yet used for model fitting. This should be incorporated. 

 

Closing Words 

I hope that you enjoyed reading this work, and that you found some interesting ideas.  



Ábel Vértesy  30/10/2012 
 

106 / 120 

APPENDIX 

HOMOLOGY WITH CEREVISIAE AND GENERAL NAMES 
in Pombe in Cerevisiae Function / protein type References 
Mam2/Ma
p3 Ste2/Ste3 Pheromone receptor Tanaka 1993 
Gpa1, 
signal 
conveyer 

Gpa1, negative signal 
regulator G-protein alpha 

http://www-
bcf.usc.edu/~forsburg/ge
netable.html 

Does not 
exist Ste4 & Ste18, signal conveyer 

G-protein beta-gamma 
complex 

Dohlman et al. 1993 PMID 
8415763 

Rgs1 

Sst2 (N-terminal domain 
shows high sequence 
similarity!) 

Regulator of G-protein 
signaling Pereirea & Jones, 2001 

Ras1 Ras1 & 2 Colocalization / ?? 

http://www-
bcf.usc.edu/~forsburg/ge
netable.html 

Ste6 Cdc25 (Some domains) 
Ras activation by GDP-
>GTP exchange 

Hughes & Yamamoto 
1990 

Ste4 Ste50-some extent Unspecific PW activator Barr & Wigler 1996 

Shk1 STE20, and 2 others 
Morphology PW effector 
/ Genetic PW activator Tu & Wigler 1998 

Byr2+ STE11  MAP3K 

http://www-
bcf.usc.edu/~forsburg/ge
netable.html 

Byr1+ STE7  MAP2K 

http://www-
bcf.usc.edu/~forsburg/ge
netable.html 

Spk1 Fus3, Kss1 MAPK 

http://www-
bcf.usc.edu/~forsburg/ge
netable.html 

Ste11 

No apparent S. cerevisiae 
homolog, Ste11 [cer] is 
different! 

Global transcription 
factor [12] 

Sxa2 / Sxa1 Bar1 / Sst2 Pheromone protease Imai & Yamamoto, 1992 

ALTERNATIVE NAMES OF POMBE PROTEINS  
Names that come up in literature 

Pombe protein def. name Alternative name  General name 
Sty1 Spc1 SAP3(?)K  
Shk1 Orb2, Shk1, Ste20 MAP4K 
Byr1 Ste1 MAPK 

SEX-SPECIFIC GENES 
M-cells P-cells Function 
mam2 map3 Receptor 
mfm1, 2, 3 map2 Pheromone / precursors 

http://www-bcf.usc.edu/~forsburg/genetable.html�
http://www-bcf.usc.edu/~forsburg/genetable.html�
http://www-bcf.usc.edu/~forsburg/genetable.html�
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=8415763�
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=8415763�
http://www-bcf.usc.edu/~forsburg/genetable.html�
http://www-bcf.usc.edu/~forsburg/genetable.html�
http://www-bcf.usc.edu/~forsburg/genetable.html�
http://www-bcf.usc.edu/~forsburg/genetable.html�
http://www-bcf.usc.edu/~forsburg/genetable.html�
http://www-bcf.usc.edu/~forsburg/genetable.html�
http://www-bcf.usc.edu/~forsburg/genetable.html�
http://www-bcf.usc.edu/~forsburg/genetable.html�
http://www-bcf.usc.edu/~forsburg/genetable.html�
http://www-bcf.usc.edu/~forsburg/genetable.html�
http://www-bcf.usc.edu/~forsburg/genetable.html�
http://www-bcf.usc.edu/~forsburg/genetable.html�
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n.a. map1 Sex-specific MADS-box 
transcription factor 

mat-Mc is constantly 
expressed, Mat-Pc is 
expressed upon starvation. 

mat-Pc is constantly 
expressed, Mat-Mc is 
expressed upon starvation. 

HMG-box transcription factor 
pair (act also in heterodimer) 

mat-Mi is constantly 
expressed, Mat-Pi is 
expressed upon starvation. 

mat-Pi is constantly 
expressed, Mat-Mi is 
expressed upon starvation. 

Homeobox transcription factor 
pair of Mei2 (act in 
heterodimer) 

Sxa2 Sxa1 Pheromone protease 
Mam1 ??? ABC transporter secreting Phe. 
?? Map1 MADS-box TF 
Source: table 18.1. in chapter 18 of [12]. Genes involved in pheromone “maturation” are 

excluded, see [12] p 282 

ONLINE RESOURCES USED IN THE PROJECT 
STRING 

This database not only provides an interaction database, but provides a very 

informative summary information on proteins, the type and proof of interactions, gives 

direct links to publications and other databases. It proved excellent for pathway 

reconstruction, and was the most often used database in this project. 

Link: http://string-db.org/ 

Bähler Lab’s online gene expression viewer 

This online database presents large scale expression data in five different experiments 

with adequate control and replicates. The ‘Pheromone Response / Mating’, the 

‘Meiosis/Sporulation’, and the ‘Cell Cycle’ experiments nicely highlighted regulation 

among the pathway components, also the Ste11 dependence was measured with a 

positive and negative control. It proved most useful in discovering the genetic 

regulation in the system. 

Link: http://www.bahlerlab.info/cgi-bin/SPGE/geexview 

GeneDB: Schizosaccharomyces pombe 

This database summarizes all kind of information about pombe genes, and contains 

links to further resources. 

Link: http://old.genedb.org/genedb/pombe/ 

http://string-db.org/�
http://www.bahlerlab.info/cgi-bin/SPGE/geexview�
http://old.genedb.org/genedb/pombe/�
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Its newer variant is the PomBase (http://www.pombase.org/), however it proved much 

less useful, simply because of its user interface 

Bionumbers 

Bionumbers is a manually curated source that collects published quantitative data with 

references. It was used to estimate boundaries on the concentration of signaling 

proteins, establish cell- and nuclear- size, and some other values. 

Link: http://bionumbers.hms.harvard.edu/default.aspx 

SPD (S.pombe Postgenome Database): Localizome 

This database rose up from the supplementary images of a large scale localization study 

// HT localization. GFP tagged proteins’ localization was checked during development of 

the model.    

Link: http://www.riken.jp/SPD/Img_page/32_iP/32F08_Loc.html 

PombeNet: gene conversion table 

This is a summary table of Pombe-Cerevisiae homolog proteins. 

Link: http://www-bcf.usc.edu/~forsburg/genetable.html 

UniProt 

The fundamental protein database was used for searching for protein homologues by its 

Blast function. 

Link: http://www.uniprot.org/blast/  

http://www.pombase.org/�
http://bionumbers.hms.harvard.edu/default.aspx�
http://www.riken.jp/SPD/Img_page/32_iP/32F08_Loc.html�
http://www-bcf.usc.edu/~forsburg/genetable.html�
http://www.uniprot.org/blast/�
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SUMMARY OF MUTANT STRAINS 

Strain Condition 
Spk1 activity (very rough 
schemes) Evidence Shmoo (observed) 

Cell shape  
(observed) 

WT 
Starvation 
only 

Small peak (N-strv 
induced) Q&D WB no Normal 

 
Starvation + 
Pheromone Normal activity WB normal Normal 

Byr1.DD 
Starvation 
only no downregulation Q&D WB kiss but not fuse Normal 

 
Starvation + 
Pheromone no downregulation WB kiss but not fuse Normal 

Ras.Val 
Starvation 
only 

Small peak (N-strv 
induced) Q&D WB no Normal 

 
Starvation + 
Pheromone Earlier and higher peak WB 

elongated, no 
partner is touched Normal 

Ras-- 
Starvation 
only 

Small peak (N-strv 
induced) ??? predicted  Round (!) 

 
Starvation + 
Pheromone 

Small peak (N-strv 
induced) ??? predicted  Round (!) 

Scd1-- 
Starvation 
only 

Small peak (N-strv 
induced) predicted no (!) Round (!) 

 
Starvation + 
Pheromone very low activity Q&D WB no (!) Round (!) 

Scd2-- 
Starvation 
only 

Small peak (N-strv 
induced) predicted no (!) Round (!) 

 
Starvation + 
Pheromone very low activity predicted no (!) Round (!) 

Byr2-- 
Starvation 
only very low activity predicted no Normal 

 
Starvation + 
Pheromone very low activity predicted no Normal 

Byr1-- 
Starvation 
only very low activity predicted no Normal 

 
Starvation + 
Pheromone very low activity predicted no Normal 

GapΔ 
Starvation 
only 

Small peak (N-strv 
induced) predicted no Normal 

 
Starvation + 
Pheromone Earlier and higher peak WB 

elongated, no 
partner is touched Normal 

sxa2Δ 
Starvation 
only 

Small peak (N-strv 
induced) predicted no  

 
Starvation + 
Pheromone Earlier and higher peak WB 

elongated, no 
partner is touched  
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TRANSCRIPTIONAL REGULATION 
According to Bähler’s expression viewer 

Transcription induced by Ste11 
No transcriptional regulation (appr. flat expression 
profile) 

Name Role Name Role 
Pheromone (Sex 
spec.) Stimulant Ras1 COT component 
Sxa_ (Sex spec.) COT component Gap1 Negative regulator 
Receptor (Sex spec.) COT component byr2 TRAB component 
Gpa1 COT component Byr1 TRAB component 
Rgs1 COT component Cdc42 MOB component 

Ste6 
COT/TRAB 
component Scd1 MOB component 

Ste4 
Positive Regulator 
(?) Scd2 MOB component 

Spk1 TRAB component Shk1 MOB/TRAB component 
Ste11 (self 
inducing!) TF efc25 MOB component 
Pat1 Negative regulator Rad24 Negative regulator 
Mat-_c (Sex spec.) TF Rad25 Negative regulator 
Mat-_i (Sex spec.) TF     
“_” character is the placeholder for sex specific name variants! 

SUBCELLULAR LOCALIZATION OF PPW-PROTEINS 
Localization for all proteins in vegetative state stands in the supplement!  Source:  [10] 

Species RIKEN database Link Comment 2nd Reference 
ras1 cytosol=nucleus:  http://www.riken.jp

/SPD/43/43A06.html 

Known example of 
wrong localization! 
(K.Tanaka, pers. 
communication) 

  

byr2 No Signal http://www.riken.jp
/SPD/33/33E12.html 

periphery; cytosol Ozoe'02 

- -  periphery; cytosol Baumann & 
Albright'98 

byr1 nucleus>=cytosol http://www.riken.jp
/SPD/15/15C10.html 

Accepted: but no 
function is nucles is 
known 

  

rgs1 nucleus>>cytosol http://www.riken.jp
/SPD/23/23C06.html 

OK Pereira and 
Jones 2001 

sxa2 there is no signal on 
the images!!! They 
conclude: cytoplasm 
= nucleus 

http://www.riken.jp
/SPD/24/24G01.html 

Not accepted, this 
protein i secreted 

Ladds 2000; 
reviewed in: 
Didmon 2002 

ste4 cytosol http://www.riken.jp
/SPD/13/13D07.html 

OK   

http://www.riken.jp/SPD/43/43A06.html�
http://www.riken.jp/SPD/43/43A06.html�
http://www.riken.jp/SPD/33/33E12.html�
http://www.riken.jp/SPD/33/33E12.html�
http://www.riken.jp/SPD/15/15C10.html�
http://www.riken.jp/SPD/15/15C10.html�
http://www.riken.jp/SPD/23/23C06.html�
http://www.riken.jp/SPD/23/23C06.html�
http://www.riken.jp/SPD/24/24G01.html�
http://www.riken.jp/SPD/24/24G01.html�
http://www.riken.jp/SPD/13/13D07.html�
http://www.riken.jp/SPD/13/13D07.html�
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cdc42 nucleus>cytosol http://www.riken.jp
/SPD/50/50D07.html 

-   

scd2 nucleus>cytosol; 
periphery at cell tip 
and site of septum 
formation 

http://www.riken.jp
/SPD/34/34H02.html 

-   

gpa2 SPB; periphery at 
site of septum 
formation; 
nucleus>cytosol 

http://www.riken.jp
/SPD/23/23F07.html 

-   

spk1 SPB; 
nucleus>cytosol 

http://www.riken.jp
/SPD/32/32E07.html 

OK   

sxa1 ER http://www.riken.jp
/SPD/25/25F10.html 

-   

scd1 nucleus>>cytosol; 
periphery at site of 
septum formation; 
SPB? 

http://www.riken.jp
/SPD/39/39A01.html 

-   

mam2 periphery at cell tip 
and site of septum 
formation; vacuole 

http://www.riken.jp
/SPD/15/15H10.html 

OK   

gpa1 periphery; cytosol http://www.riken.jp
/SPD/32/32F08.html 

Likely to be coupled to 
Receptor, since it is the 
same in Cerevisiae. 

Obara 1991 

efc25 cytosol http://www.riken.jp
/SPD/47/47F03.html 

-   

ste11 nucleus>cytosol http://www.riken.jp
/SPD/33/33A02.html 

OK   

ste6 cytosol http://www.riken.jp
/SPD/39/39A11.html 

OK   

pak1 periphery at cell tip 
and site of septum 
formation; cytosol 

http://www.riken.jp
/SPD/39/39F04.html 

OK   

LIST OF SUPPLEMENTARY MATERIAL 
There are files which do not fit to these pages but could be of interest. These are listed 

here and provided as .zip archive. The supplementary is accessible from the author, 

and on the following website: http://vertesy.web.elte.hu/Pombe_thesis/ 

Data supplement: All quantitative and some other high-throughput data used for 

modeling and pathway reconstruction is to be found in the data supplement. References 

mentioned in each folder. Western Blot data is confidential, as it is yet unpublished 

work of E. Kelsall and K.Tanaka. Model supplement: The model supplementary is a 

folder with model files, the datasets which were used in parameter estimation, Excel 

http://www.riken.jp/SPD/50/50D07.html�
http://www.riken.jp/SPD/50/50D07.html�
http://www.riken.jp/SPD/34/34H02.html�
http://www.riken.jp/SPD/34/34H02.html�
http://www.riken.jp/SPD/23/23F07.html�
http://www.riken.jp/SPD/23/23F07.html�
http://www.riken.jp/SPD/32/32E07.html�
http://www.riken.jp/SPD/32/32E07.html�
http://www.riken.jp/SPD/25/25F10.html�
http://www.riken.jp/SPD/25/25F10.html�
http://www.riken.jp/SPD/39/39A01.html�
http://www.riken.jp/SPD/39/39A01.html�
http://www.riken.jp/SPD/15/15H10.html�
http://www.riken.jp/SPD/15/15H10.html�
http://www.riken.jp/SPD/32/32F08.html�
http://www.riken.jp/SPD/32/32F08.html�
http://www.riken.jp/SPD/47/47F03.html�
http://www.riken.jp/SPD/47/47F03.html�
http://www.riken.jp/SPD/33/33A02.html�
http://www.riken.jp/SPD/33/33A02.html�
http://www.riken.jp/SPD/39/39A11.html�
http://www.riken.jp/SPD/39/39A11.html�
http://www.riken.jp/SPD/39/39F04.html�
http://www.riken.jp/SPD/39/39F04.html�
http://vertesy.web.elte.hu/Pombe_thesis/�
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tables about analysis of the results and figures representing the model or showing some 

model behavior. The following models are presented: 01_Full_scale_model; 

02_The_Ras1_colocalization_modelFull_model; 03_Subsequent_activation_models;  

4_MAPK_poz_of_neg_regulator; 05_Gpa1-Rgs1_model. Annotation of reactions and 

species of the full model stands in: Annotations.xlsx. 
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